Hide’n Seek Revisited
- Full Stealth Is Back
Kimmo Kasslin / 6th October 2005
Kimmo Kasslin

- Email: kimmo.kasslin@f-secure.com
- Researcher in F-Secure Security Labs
- Research is focused in the area of Windows rootkits and modern stealth malware
- Member of the team responsible for F-Secure BlackLight technology
Windows Rootkits

Allow intruders to maintain access to the system

Operate in user mode or in kernel mode

Try to avoid detection by hiding e.g.

- Processes
- Files
- Registry keys
- Network connections
In the era of DOS, stealth viruses were common

- 1986 – Brain
- 1990 – Frodo

They started to disappear when Windows 95 became the dominant OS

Since then, their numbers remained low

- 1997 – Cabanas, first Windows NT virus
Stealth Malware - Present

Today, we are seeing increasing numbers of stealth malware

Hiding Techniques – Execution Path

Win32 Application

Call ReadFile

ReadFile in Kernel32.dll

Call NtReadFile

NtReadFile in Ntdll.dll

Int 2e/Sysenter

User mode

Kernel mode

Call HAL

File-System Drivers

Send IRP

NtReadFile in Ntoskrnl.exe

Call NtReadFile

KiSystemService in Ntoskrnl.exe

12 October 2005 Page 7
Hiding Techniques - Summary

Objects can be hidden through several means

- Inline hooking
- Import Address Table hooking
- Export Address Table hooking
- System Service Table hooking
- Interrupt Table hooking
- I/O Request Packet hooking
- Filter drivers
- Kernel object manipulation
One of the most popular rootkits in the wild

- User-mode rootkit
- Feature rich
- Very stable and portable
- Under active development

Modifies the execution path of several Native and Windows API functions

- Inline hooking through direct memory patching
Inline Hooking à la Detours

Source Function
CALL [TargetFunction]

Target Function
E9XXXXXXXXX JMP [DetourFunction]
BA0003FE7F MOV EDX, 7FFE0300
FF12 CALL [EDX]
C22400 RET 0024

Detour Function
<prelogical>
CALL [TrampolineFunction]
<epilogue>

Trampoline Function
B8B7000000 MOV EAX, 000000B7
E9XXXXXXXXX JMP [TargetFunction+5]
Demo 1
Hacker Defender - Hook Installation

Installs user-mode hooks into every process
 • WriteProcessMemory API function
 • Requires debug privileges

New processes and dynamically loaded DLLs are patched through special hooks
 • Ntdll!NtResumeThread of parent process
 • Ntdll!LdrInitializeThunk of child process
 • Ntdll!LdrLoadDll of child process
Hacker Defender – Hook Installation

Parent process

Parent Code
Windows API
HxDef

CreateProcess()
NtResumeThread()
Hook()

Hooks
LdrInitializeThunk()
in child with
WriteProcessMemory().

Child process

Child Code
Windows API
HxDef

LdrInitializeThunk()
Hook()
InstallHooks()
Hidden Object Detection

One possible approach – “Cross-View Diff”

- Tainted view
- Trusted view

Challenges with this approach

- Collecting data for the trusted view
- Today, also collecting data for the tainted view

F-Secure BlackLight

- Stand-alone beta was released in March 2005
- Integrated into F-Secure Internet Security 2006
Anti-Detection Techniques

Successful detection requires that there is a difference between the two views.

If the detector process can be identified by the rootkit, do not hide from it:

- Filename
- Version information in image resources

Other approach is to only hide data from processes normally used by users:

- Explorer, Task Manager, Process Explorer
Demo 2
Golden Hacker Defender

Identifies detectors through binary signatures
 • Our sample contains around 40 signatures

The signature is checked against the memory resident image when the first hook is executed
 • Detection possible even if the binary is packed

If a match is found, a bit mask is set that defines which hooks will be disabled

In addition, modifies code in some images
 • Defeats most of current anti-anti-detection measures
Demo 3
Future Challenges

Rootkits that do not need processes, files or registry keys

- ByShell

Rootkits that hide themselves even from kernel-mode memory scanning

- Shadow Walker

With kernel-mode rootkits only the imagination and skills of the developer are the limits
Conclusions

Stealth malware is back and kicking

- Hiding is based on rootkit techniques
- The most advanced techniques are still quite rare

Generic rootkit detection is feasible

- Cross-view diff based detectors can find majority of present stealth malware
- False positives are rare

Rootkits are evolving rapidly and will find ways to bypass detectors

- Direct attacks against the detectors
THANK YOU – QUESTIONS?

kimmo.kasslin@f-secure.com