proofpoint

Exploiting Spammer's Tactics of Obfuscations for Better Corporate Level Spam Filtering

Vipul Sharma, Steve Lewis Proofpoint, Inc

- Machine Learning 101
- Problem
 - Definition
 - Strategies
- Solution
 - Existing
 - Proposal
- Validation
 - Why our system works better
 - Overall improvement in blocking spam
- Conclusions

How does MLX work?

 Machine learning is the study of making computers learn; the goal is to make computers improve their performance through experience.

Environment

Training/Testing

e.g. MAN vs. WOMAN

Spam \rightarrow Adversarial

• Spam is a special problem of ML

Training/Testing

Deceiving Content based Spam Filters using Text Obfuscation

- Come play your favorite ca\$in0 games online right now.
- Come play your favorite c\$in0 games online right now.

Come play your favorite ca#ino games online right now.

 Come play your favorite
 caniso games online right now.

• Come play your favorite cassiino games online right now.

 Come play your favorite
 ca \$ ino games online right now.

Types of Text Obfuscation

- Come play your favorite
 ca\$in0 games online right now.
 Substitution
- Come play your favorite
 cassiino
 games online
 right now.
 Addition

- Come play your favorite
 caniso games online right now.
 Shuffling
- Come play your favorite
 ca s ino games online right now.
 Segmentation

- Come play your favorite **CaSNO** games online right now. Deletion
- Come play your favorite (\$iino0 games online right now.
 Combination

How to Counter V!@gr@@?

Advantages / Disadvantages

- Deobfuscation (Lee et al. CEAS 2005)
 - HMM
 - Accurate (97%),
 - Very Slow (240 letters/sec) on English letters (Bad for corporate level spam filters)
- Identification
 - Regular Expressions
 - Inaccurate
 - Expensive to maintain
 - Edit distance (Oliver et al. Spam Conference 2005)
 - Less Accurate (75%) (Bad for corporate level spam filters)
 - Cheap / Faster

What is a Good Solution?

Accurate (~95%) & Fast (near real time) & Computationally Inexpensive (minimal overhead) & Easy to Maintain

Obfuscation Detection Model

- A machine learning based detection system
- Benchmarked several supervised multivariate classification techniques
- Uses a domain knowledge of ~800 hand collected frequently obfuscated words (FOW)
- Auxiliary classifier that can be easily integrated with base classifier
- Fast, accurate and easy to maintain

Frequently Obfuscated Words (FOW)

 Come play your favorite ca\$\$iino games online right now

WHAT WOULD

Buy cheapest Vi@gr@, Ci@#lis, mbian on!!ine

• we offer real, genuine degrees, that include bachelo-rs's, ma|ster's, mba, and do,ctorate degrees. they are fully verifiable

SPAMMERS WANT TO HIDE?

Re|^ian@nce your m0rtg@g3 today. Click here

Problem Space → To detect variations of FOW

- Dataset
 - 67,907 hand collected obfuscated words
 - 250,000 valid words, parsed from ham messages
 - 12,000 commonly used valid word as dictionary
 - 727 frequently obfuscated words (FOWs)
- Class of Task → Obfuscated | Valid

Feature Set

Feature Set

- A: Count of non-alphanumeric characters (~!@#\$..)
- B: Count of Numeric letters (not on boundary)(01234 ..)
 - DEC009988
 - M0r1gage
- C: Length of the word
- D: Dictionary presence of the word {0,1}
- E: Similarity between FOW and the word (0-1)

- A common technique of obfuscation is *shuffling* for e.g. *mtograge*
- Levenshtein Distance, Jaro Winkler metric match
 - L(mortgage, mortal) = 4
 - *L(mortgage, mrogtgae)*=6
- Other metric are sensitive towards ordered variations
- We need a metric that neglects order of letters

Similarity Metric

- L is the list of FOW; Ii? L (Viagra, Mortgage ..)
- $b_i = \text{length}(I_i)$
- m be any test word Vi!@gra
 Filtered word m' = Viera
 - Filtered word m' = Vigra
- $b_m = \text{length}(m')$
- b_{im} = common letters (b_i, b_{m'})
- $S_{im} = max_i(b_{im}/(b_i + b_{m'} b_{im}))$

Similarity Metric Example

- L = { Viagra, mortgage} ; m = mrogtgae
- bviagra = 6; bmortgage = 8; bmrogtgae = 6
- bviagra, mrogtgae = 3; bmortgage, mrogtgae = 8
- Sviagra, mrogtgae = 3/(6+8-3) = 0.27
- Smortgage, mrogtgae = 8/(8+8-8) = 1
- S = max (1,0.27) = 1
- S mortgage, mortal = 5/8+6-5 = 0.55

Preprocessing

- Discretization (Fayyad & Irani's MDL method)
 - Converted numeric features to nominal features
 - Increase classification accuracy for certain classifiers
 - Certain classifier works only for nominal features
- Cutoff bins are calculated such that the entropy of the model is minimized

Entropy \rightarrow measure of randomness ~ prediction

Low Entropy More Predictive

High Entropy Less Predictive

Discretization

Feature Generation using Constructor Functions

- General Constructor Functions generated 13 features
 - Set of operators used +, > , <, =, !=, &, |</p>
 - Cut-points generated via discretization used as ranges
 - Use beam search
 - Heuristics used \rightarrow maximize Information Gain
- E > 0.710084 and A > 1 (V!a-gra)
 - If similarity index > 0.710084 and number of non alpha numeric character > 1 → strong representation of obfuscated class

Learning Model

- Various multivariate classification techniques were compared using Weka
- 10-fold cross validation was used for accuracy estimation
- Accuracy was compared on both feature set
 - 5 basic feature before preprocessing
 - 13 generated features after preprocessing

Obfuscation Detection Accuracy Comparison

- Training produces weights for all the 13 feature
- Any given word will be converted in the form of a feature vector
- A score for each word is calculated using the weights and the logistic function
- If Score > 0.5 → Obfuscated
- If Score < 0.5 → True

- Used to generate features for base classifier
- Weight of the spam filter feature **a** confidence of obfuscation (Score of the term)
- Logistic regression scores each term between 0-1
- Score(term) > 0.5 → obfuscated
- Score(term) > 0.9 → HIGHOBFS
- 0.7 < Score(term) < 0.9 → LOWOBFS
- The weight of HIGHOBFS, LOWOBFS is determined during base classifier training

Integration

Sample Integration

Overall Spam Detection Accuracy

Test Corpora

- 400,000 spam messages
- 112,000 ham messages
- Accuracy improvements
 - FNs decreased by 50%
 - A negligible increase in FP $\sim 0\%$
 - Overall accuracy ~ average increase 0.3%

Overall Spam Detection Accuracy

• Tested on one of the Proofpoint's honeypot

Conclusions

- Concentrate on FOW
- Use preprocessing techniques for feature generation
- A very low overhead to spam engine
- Logistic regression achieved highest detection accuracy with lowest false positives
- Similarity Metric should not be weighted around ordered similarity
- We noticed a significant improvement in spam detection accuracy with almost no false positives

- Biased towards the FOW list
- Works for all languages
- FOW list do not contain words with length equal or less than 4
- FP rate can be decreased by adding the errors in dictionary
- A interesting method of using supervised classification technique for feature generation

For information about Proofpoint, contact us at: info@proofpoint.com 408-517-4710 www.proofpoint.com

For a FREE 45-day trial of Proofpoint, visit: <u>www.proofpoint.com/vb2006</u>