
DSD-Tracer

Boris Lau, SophosLabs

Virus Bulletin 2007, Vienna

What does DSD stand for?
• Dynamic Static DSD

• A framework which allows data to be passed between dynamic
and static analysis stages seamlessly

• To explain further…
• Demo – GUI based on Chris Eagle’s x86emu

Source of idea
• Testing discipline of software engineering

• DSD crasher
• Christoph Csallner

• Name of DSD-Tracer is chosen to pay tribute to this very
interesting research

• Dynamic and static testing in software engineering

• Define testing: “an examination of the characteristics of
something”

• Similar with D and S stage AV research

• Very different requirements

How do we combine D and S?
• Different input/output

• Dynamic analysis generally observes environmental changes

• Static analysis look at low level binary characteristics

• In order to share information between the 2 stages…
• One of the easiest ways is to find an intersection between

domain and image of the analysis function

• The dynamic element of DSD framework will use each state of
the CPU at each tick as the basic data structure

Why do we want to do this?

• Aim to improve on traditional analysis techniques

• What is a good analysis technique?

• Coverage
• How many of the characteristics have been explored?

• How much has been explored?

• Accuracy
• Is the result obscurable by the malware?

• Economy
• How much development/human/computation time does it require?

Evaluation

Completeness

Good, can measure
how much is
covered

No guarantee on
coverage

Coverage

Cross-verifyDynamic
language
integration

Principle
of DSD

Difficult to armour –
but no WYSIWYG

Difficult to
automate

S
(e.g. IDA)

WYSIWYG except
armour techniques

Good, easy to
automate

D
(e.g.
snapshot-
diffing)

AccuracyEconomy

Improve accuracy
• Record low level assembly instructions

• Compare the divergence between the 2 different dynamic
analysis traces

• Assumption: low probability that an armor technique would
work across different dynamic analysis techniques at the same
assembly instruction

Simple architecture

Dynamic stage implementation
• Chose to instrument Virtual Machine

• Accuracy – no OS-level, CPU-level trace detectable

• Isolation – analysis run in a separate environment

• Cross-platform – VM is mostly cross-platform

• Bochs – simplest to hack!
• CPU instructions are emulated – instead of executing natively

• Does not employ any Dynamic Binary Translation technique

• “remarkably robust” (Tavis Ormandy , CanSecWest 2007)

• Also contain it’s own ring -1 debugger

Identify target process

• Target: Win32

• Identify the start of the process via entry point recognition

• Careful! Need protection from static pre-analysis

• Windows separates process address space by using different Page
Directory

• Monitor CR3 which points to the current PD

The DSD Trace
• Serialised list of data

• Assembly instructions

• CPU states at each instruction

• Read/write to memory

• Interrupts/Exceptions generated

• API for accessing it
• Written in C++ (Win32/Linux compatiable)

• Object oriented - Based class is the DSDReader class

• Can be used by dynamic languages via swig

• Perl, Python, Ruby, etc.

Flexibility of dynamic language

• Easy to create your own tools
• Use your favourite language

• A brief demo
• String information on stack

• Very cheap to re-run the analysis by having the
dynamic trace already serialised

Static analysis tools

• Tools which observe detail changes
• IDA plugin for accessing trace

• DSD Dumper

• Tools which abstract information
• Control flow analysis

• Coverage analysis

• Data I/O analysis

Demo

• An example of how to handle customized packer

Packer identification
• The I/O graph could be an interesting way to differentiate

packers
• Capture information about the packer:

• Compression ratio – gradient between read and write

• Control flow property – how distributed is the ip

• Section order – how the write cursor moves

• IP vs. Relative write location

• Distinct pattern of images used by various packers

Some example graphs: UPX + Armadillo

Some example graphs: Obsidium + YodaProtect

Automatic packer comparison

•Use image comparison
• Experimented with ImageMagik’s convert/compare

• convert -blur 10x2 -fuzz 20% -trim -resize 640x480!

• compare -metric MEPP

• Gnuplot into cleaner state and compare

Results
MEPP metrics, full image

• Obsidium.1 vs. Obsidium.2 : 1502

• Obsidium.1 vs. UPX: 3684

• Obsidium.1 vs. YodaProtect: 3861

• Armadillo.1 vs. Armadillo.2 : 1965

• Armadillo.1 vs. UPX: 2304

• Armadillo.1 vs. YodaProtect: 2174

• Obsidium.1 vs. Armadillo.1: 4171

TODO
• TODO: S->D

• Already able to change the state of the CPU via debugger

• Add scripting capability to send keystrokes remotely to the VM

• More research required on how to implement a suitable interface

• Better implementation of dynamic stage
• Different techniques for generating traces

• Handling of multiple processes and code injection

Conclusion
• Improve quality of analysis

• Accuracy

• Coverage

• Economy

• Proof of concept
• Generating trace by instrumentation of Virtual Machine

• Provide an easy standardised API for accessing dynamic results

• Improve ability to provide automation

Future
• Techniques for generating new analysis data

• Backwards stepping in IDA

• Stack based string analysis

• Data I/O analysis

• There are certainly more possibilities….

Thank you!
• Questions?

• Email me at boris.lau(a)sophos.com

	DSD-Tracer
	What does DSD stand for?
	Source of idea
	How do we combine D and S?
	Why do we want to do this?
	Evaluation
	Improve accuracy
	Simple architecture
	Dynamic stage implementation
	Identify target process
	The DSD Trace
	Flexibility of dynamic language
	Static analysis tools
	Demo
	Packer identification
	Some example graphs: UPX + Armadillo
	Some example graphs: Obsidium + YodaProtect
	Automatic packer comparison
	Results
	TODO
	Conclusion
	Future
	Thank you!

