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What does DSD stand for?
• Dynamic Static DSD

• A framework which allows data to be passed between dynamic
and static analysis stages seamlessly

• To explain further…
• Demo – GUI based on Chris Eagle’s x86emu



Source of idea
• Testing discipline of software engineering

• DSD crasher
• Christoph Csallner

• Name of DSD-Tracer is chosen to pay tribute to this very
interesting research

• Dynamic and static testing in software engineering

• Define testing: “an examination of the characteristics of
something”

• Similar with D and S stage AV research

• Very different requirements



How do we combine D and S?
• Different input/output

• Dynamic analysis generally observes environmental changes

• Static analysis look at low level binary characteristics

• In order to share information between the 2 stages…
• One of the easiest ways is to find an intersection between

domain and image of the analysis function

• The dynamic element of DSD framework will use each state of
the CPU at each tick as the basic data structure



Why do we want to do this?

• Aim to improve on traditional analysis techniques

• What is a good analysis technique?

• Coverage
• How many of the characteristics have been explored?

• How much has been explored?

• Accuracy
• Is the result obscurable by the malware?

• Economy
• How much development/human/computation time does it require?
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Improve accuracy
• Record low level assembly instructions

• Compare the divergence between the 2 different dynamic
analysis traces

• Assumption: low probability that an armor technique would
work across different dynamic analysis techniques at the same
assembly instruction



Simple architecture



Dynamic stage implementation
• Chose to instrument Virtual Machine

• Accuracy – no OS-level, CPU-level trace detectable

• Isolation – analysis run in a separate environment

• Cross-platform – VM is mostly cross-platform

• Bochs – simplest to hack!
• CPU instructions are emulated – instead of executing natively

• Does not employ any Dynamic Binary Translation technique

• “remarkably robust” (Tavis Ormandy , CanSecWest 2007)

• Also contain it’s own ring -1 debugger



Identify target process

• Target: Win32

• Identify the start of the process via entry point recognition

•  Careful! Need protection from static pre-analysis

• Windows separates process address space by using different Page
Directory

• Monitor CR3 which points to the current PD



The DSD Trace
• Serialised list of data

• Assembly instructions

• CPU states at each instruction

• Read/write to memory

• Interrupts/Exceptions generated

• API for accessing it
• Written in C++ (Win32/Linux compatiable)

• Object oriented - Based class is the DSDReader class

• Can be used by dynamic languages via swig

• Perl, Python, Ruby, etc.



Flexibility of dynamic language

• Easy to create your own tools
• Use your favourite language

• A brief demo
• String information on stack

• Very cheap to re-run the analysis by having the
dynamic trace already serialised



Static analysis tools

• Tools which observe detail changes
• IDA plugin for accessing trace

• DSD Dumper

• Tools which abstract information
• Control flow analysis

• Coverage analysis

• Data I/O analysis



Demo

• An example of how to handle customized packer



Packer identification
• The I/O graph could be an interesting way to differentiate

packers
• Capture information about the packer:

• Compression ratio – gradient between read and write

• Control flow property – how distributed is the ip

• Section order – how the write cursor moves

• IP vs. Relative write location

• Distinct pattern of images used by various packers



Some example graphs: UPX + Armadillo



Some example graphs: Obsidium + YodaProtect



Automatic packer comparison

•Use image comparison
• Experimented with ImageMagik’s convert/compare

• convert -blur 10x2 -fuzz 20% -trim -resize 640x480!

• compare -metric MEPP

• Gnuplot into cleaner state and compare



Results
MEPP metrics, full image

• Obsidium.1 vs. Obsidium.2 : 1502

• Obsidium.1 vs. UPX: 3684

• Obsidium.1 vs. YodaProtect: 3861

• Armadillo.1 vs. Armadillo.2 : 1965

• Armadillo.1 vs. UPX: 2304

• Armadillo.1 vs. YodaProtect: 2174

• Obsidium.1 vs. Armadillo.1: 4171



TODO
• TODO: S->D

• Already able to change the state of the CPU via debugger

• Add scripting capability to send keystrokes remotely to the VM

• More research required on how to implement a suitable interface

• Better implementation of dynamic stage
• Different techniques for generating traces

• Handling of multiple processes and code injection



Conclusion
• Improve quality of analysis

• Accuracy

• Coverage

• Economy

• Proof of concept
• Generating trace by instrumentation of Virtual Machine

• Provide an easy standardised API for accessing dynamic results

• Improve ability to provide automation



Future
• Techniques for generating new analysis data

• Backwards stepping in IDA

• Stack based string analysis

• Data I/O analysis

• There are certainly more possibilities….



Thank you!
• Questions?

• Email me at boris.lau(a)sophos.com
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