DSD-Tracer

Boris Lau, SophosLabs

Virus Bulletin 2007, Vienna

[=
[l e+ T

,_

el =1=1= =il =1 = T
= Y=Y=1o-T=
= O

[l=1=T1"1
HORRE
[l l=T =
1 =1

What does DSD stand for?
« Dynamic Static DSD

« A framework which allows data to be passed between dynamic
and static analysis stages seamlessly

* To explain further...

 Demo — GUI based on Chris Eagle’s x86emu

sophoslabs

Source of idea

» Testing discipline of software engineering

« DSD crasher
» Christoph Csallner

 Name of DSD-Tracer is chosen to pay tribute to this very
interesting research

« Dynamic and static testing in software engineering

« Define testing: “an examination of the characteristics of
something”

« Similar with D and S stage AV research

» Very different requirements sophoslabs

How do we combine D and S?
 Different input/output

« Dynamic analysis generally observes environmental changes

« Static analysis look at low level binary characteristics

 In order to share information between the 2 stages...

* One of the easiest ways is to find an intersection between
domain and image of the analysis function

* The dynamic element of DSD framework will use each state of
the CPU at each tick as the basic data structure

sophoslabs

Why do we want to do this?

Aim to improve on traditional analysis techniques

What is a good analysis technique?

Coverage

 How many of the characteristics have been explored?

 How much has been explored?

Accuracy

Is the result obscurable by the malware?

Economy sophoslabs

* How much development/human/computation time does it require?

Evaluation

Economy Coverage Accuracy
D No guarantee on WYSIWYG except
(e.g. coverage armour techniques
snapshot-
diffing)
S Difficult to Difficult to armour —
(e.g. IDA) automate but no WYSIWYG
Principle
of DSD

Improve accuracy

* Record low level assembly instructions
« Compare the divergence between the 2 different dynamic
analysis traces

« Assumption: low probability that an armor technique would
work across different dynamic analysis techniques at the same
assembly instruction

sophoslabs

Simple architecture

N

DSDt{gger interface

A\
A

———

Bochs Emulator .DSD Tile

.. and other dynamic tracers Experimental

Static analysis tools

DSD Database

IDA dsd-emu PaiMei
DSDReader IDA interface for DSDTracer Integration with PaiMei via
+next() paimei_import. py
+previous()
+settick()

+instn_len()
+instn_disasm()
+cpu_state()
+memw_data()

+memw_origdata () dsddump. exe dsddb_plot. py
ZP tools for dumping dsd trace code covearge analysis utility
DSDDumper

+add_buffer()
+get_word ()
+get_dword ()
+get_dump_buffer()

readtrace. exe dsddb_graph.py
display raw dsd trace generate control flow graph

DSDStacker

+get_tos(offset) SOphOSIabS

+print_stack_frame()

Dynamic stage implementation

« Chose to instrument Virtual Machine
* Accuracy — no OS-level, CPU-level trace detectable
 Isolation — analysis run in a separate environment
* Cross-platform — VM is mostly cross-platform
e Bochs — simplest to hack!
* CPU instructions are emulated — instead of executing natively
* Does not employ any Dynamic Binary Translation technique
« “remarkably robust” (Tavis Ormandy , CanSecWest 2007)

* Also contain it's own ring -1 debugger

sophoslabs

Identify target process

Linear Address Space

Linear Address

» Dir | Table | Offset |

Linear Addr.

0 1

- -

Page Directory Page Table Page

3| Physical Addr.

Pg. Dir. Entry W Pg. Tbl. Entry 1

This page mapping example is for 4-KByte pages

and the normal 32-bit physical address size.

*Physical Address

« Target: Win32

 |dentify the start of the process via entry point recognition

« Careful! Need protection from static pre-analysis

« Windows separates process address space by using different Page

Directory

sophoslabs

* Monitor CR3 which points to the current PD

The DSD Trace

o Serialised list of data

« Assembly instructions
« CPU states at each instruction

* Read/write to memory

 Interrupts/Exceptions generated

* API for accessing it
« Written in C++ (Win32/Linux compatiable)

* Object oriented - Based class is the DSDReader class
« Can be used by dynamic languages via swig

« Perl, Python, Ruby, etc. sophoslabs

Flexibility of dynamic language
» Easy to create your own tools

« Use your favourite language

* A brief demo
« String information on stack

* Very cheap to re-run the analysis by having the
dynamic trace already serialised

sophoslabs

Static analysis tools

* Tools which observe detail changes

 |IDA plugin for accessing trace
« DSD Dumper

 Tools which abstract information
« Control flow analysis
« Coverage analysis

e Data I/O analysis
sophoslabs

Demo

* An example of how to handle customized packer

sophoslabs

Packer identification

* The I/O graph could be an interesting way to differentiate
packers

« Capture information about the packer:
« Compression ratio — gradient between read and write
« Control flow property — how distributed is the ip
» Section order — how the write cursor moves

 |P vs. Relative write location

 Distinct pattern of images used by various packers

sophoslabs

ome example graphs: UPX + Armadillo

Linear address

Linear address

1682cann

1827bed

1822dce

181dfan

1919188

1814368

188548

188a728

1685988

1600aed

47b768

4638c8

44aa2a

432388

a19cen

481648

A Hit count distribution

ip
L read J
write
0 200008 400008 600008 88000 1e+86 1.2e+0
tickeount
A Hit count distribution
[: - : - : : : IS 1
read
write
[100000 200008 300000 400000 5O000P G00DOD 70OOOD G0DDOD 90640

tickcount

linear address

linear address

101dfas

18191868

1814366

1868548

188a728

1885988

16888ae8

4acdad

493e00

47b768

4638cB

44aa28

432380

419ced

401648

A Hit count distribution

60000¢

ip
L read 1
write
[100800 200008 300008 400808 Se0a08
tickcount
A Hit count distribution
: : : - - ™
read
write 1
] 100680 200680 300000 400000 SP00BA 6OOOOO 7GA000 Baaaa(SIabs

tickcount

Some example graphs: Obsidium + YodaProtect

A Hit count distribution A Hit count distribution
T — — T T T ™ T T T T T T T T ™
o read |
e f . R write - 493¢06 ST urite
47b768 - 1
47b760 |- b
4638c0 - 1
o 4636c8 [g
é H
H H
g I
= 5
R 44aaze - 1 ®
] 5 44aa2e - E
g g
2 Z
£ £
= =
432380 1
432380 | g
419ced [1 at9cen |- |
481648 & i i i i i ; ; i ; E 481648 L ; i H H i i H ; H J
[166600 200000 300000 400000 S00600 GOOOGO 700000 SOD000 00BEAO le+05] 160860 200000 300000 400600 500000 GOPDOG 7OOPOD GOOODD 90DOBE 1le+06
tickcount tickeount
A Hit count distribution A Hit count distribution
ip L ip 4
read 61f620 read
write - urite
badaze - 1
61cf1e | g
bob31a [1
61a800 |- . 2 b
9 @
é H
H H
}:5 boscen - 1 E
® A gigefe - g
5 5 !
@ o !
= 5
= besara -] 5
1 61598 |- 1
b83ded |- ~
A 6132de |- 1
boi6da - 1
616bce |- b
[160860 206608 306600 408600 5000606 66608] 106600 20000868 300000 400000 500060 606608 70000¢
tickcount tickeount

sophoslabs

Automatic packer comparison

*Use image comparison
« Experimented with ImageMagik’s convert/compare
» convert -blur 10x2 -fuzz 20% -trim -resize 640x480!
e compare -metric MEPP

sophoslabs
* Gnuplot into cleaner state and compare

Results

MEPP metrics, full image
* Obsidium.1 vs. Obsidium.2 : 1502
* Obsidium.1 vs. UPX: 3684
* Obsidium.1 vs. YodaProtect: 3861
* Armadillo.1 vs. Armadillo.2 : 1965
* Armadillo.1 vs. UPX: 2304
« Armadillo.1 vs. YodaProtect: 2174
* Obsidium.1 vs. Armadillo.1: 4171

sophoslabs

TODO

« TODO: S->D

» Already able to change the state of the CPU via debugger

« Add scripting capability to send keystrokes remotely to the VM

* More research required on how to implement a suitable interface
« Better implementation of dynamic stage

» Different techniques for generating traces

« Handling of multiple processes and code injection

sophoslabs

Conclusion

« Improve quality of analysis
* Accuracy
« Coverage

 Economy

* Proof of concept
» Generating trace by instrumentation of Virtual Machine
* Provide an easy standardised API for accessing dynamic results

* Improve ability to provide automation

sophoslabs

Future

« Techniques for generating new analysis data
« Backwards stepping in IDA
« Stack based string analysis

« Data I/O analysis

* There are certainly more possibilities....

sophoslabs

Thank you!

e Questions?

« Email me at boris.lau(a)sophos.com

sophoslabs

	DSD-Tracer
	What does DSD stand for?
	Source of idea
	How do we combine D and S?
	Why do we want to do this?
	Evaluation
	Improve accuracy
	Simple architecture
	Dynamic stage implementation
	Identify target process
	The DSD Trace
	Flexibility of dynamic language
	Static analysis tools
	Demo
	Packer identification
	Some example graphs: UPX + Armadillo
	Some example graphs: Obsidium + YodaProtect
	Automatic packer comparison
	Results
	TODO
	Conclusion
	Future
	Thank you!

