
Pimp My PE:
Parsing Malicious and
Malformed Executables

Virus Bulletin 2007



2

Authors

• Sunbelt Software, Tampa FL
• Anti-Malware SDK team:

– Casey Sheehan, lead developer
– Nick Hnatiw, developer / researcher
– Tom Robinson, developer / researcher
– Nick Suan, developer / researcher



3

Purpose
• Chronicles the early development of our detection engine

– Specifically, the PE parser
– Building enterprise infrastructure to support development

• Technical issues:
– Understand malformations prevalent in wild PE’s
– Methods for identifying malicious PE’s
– Reliably parsing PE’s

• Pietrek’s article “An In-Depth Look into the Win32 Portable
Executable File Format” [3] a great intro, but much more is needed
to successfully process modern PE’s

• Virtually all commercial analysis tools have serious issues parsing
malicious PEs



4

Overview

• Introduction
• Technical Background
• Infrastructure
• Image parsing in depth



5

Part 1:
Introduction



6

The Need

• Ability to parse any PE into a robust internal
representation

• Ability to detect and remediate threats



7

The Problem
• Initial assumption: parsing is easy

– Simple parser should be able to cope with all samples.
• Reality: malicious samples break parser constantly
• Reaction: are these all corrupted PEs?
• Realization: Windows loader behavior a valuable

comparison metric.
– If Windows loads an image, we had better parse it
– Corrupted images are, at very least, suspicious.

• In summary:
– Implementations in the literature perform poorly versus threats

in the wild; generally cope poorly with “malformed” images
– A large percentage of images in the wild are malformed (68%)



8

The Problem (con’t)
• The actual problem: building a parser to

effectively process modern, malicious PEs
• Key hurdles:

– Qualify behavior of Windows loader for comparison
purposes

– Analyze and categorize “anomalous” characteristics of
sample images which identify malformed images

– Iteratively improve parser performance (i.e., avoid
performance regression)



9

The Solution

• Iteratively build and test parser
• Constant regression testing

– Ensure new features don’t cause overall performance
to regress

• Verify performance vs. Windows loader
– Gauge parser performance in absolute terms



10

Image Anomalies

• Anomaly:
– specific structural malformation; a particular field

malformed a particular way
– frequently inconsistent with PE specification, or just

unusual or suspicious

• Analysis of anomalies and other structural
characteristics provides key insight into common
image malformations



11

Part 2:
Background



12

Basic PE Structure

• PE Header
• PE Sections
• Overlay (optional)

header

sect 1

sect 2

sect n

overlay



13

Alignment

• Alignment applies to section mapping
• PE header specifies two sectional alignment

values
– File alignment specifies file mapped alignment
– Virtual alignment specifies virtual mapped alignment



14

Image Mapping
• Windows loader performs “map and load” operation:

– Map:
– Size the view
– Create view in process VA space
– Allocate storage

– Load image section by section
• Our parser mimics this behavior

– “Source representation”
• Frequently file mapped (linker output)
• However we may be given memory mapped image with no

corresponding file image
– “Target representation”

• Typically virtual mapped



15

Mapping Translation

• Need to handle both file- and virtual-mapped
images

• cImageStream class
– Accepts any source representation
– Translates to requested target representation
– Manages all stream-related details



16

Section Size
• Fundamental concept when dealing with

sections due to variable section alignment
– Applies to header and sections

• 3 unique size concepts:
– Raw size: unpadded data size
– File size: RoundUp(raw_size, file_align)

• “File cave”; persistent
– Virtual size: RoundUp(file_size, virtual_align)

• “Virtual cave”; transient
– Be precise!

• Always explicitly state the size type in source code



17

Section Size (con’t)

• Interesting (and annoying) that raw section size
is unavailable
– Important if you want size of REAL content!
– E.g., when parsing structures in the header
– … Or instructions (atoms) in a code section

• In practice, file aligned size is often treated as
synonymous with raw size

• Demo:
– Dump basic white file; identify raw, file, virtual sizes



18

PE Structure
• PE header:

– Documents “explicit” image structure
– Vs. “implicit” structure

• PE section
– Primary image content
– Code, data, etc.
– Described in header’s section table

• Overlay: non-loadable data, appended to PE image
– Certificates
– Debug info
– Malware-specific payload
– Demo Ganda



19

PE Structural Abstractions

• Metasection:
– abstraction for header, section, overlay components

• Metadata:
– predefined data types
– enumerated in the Data Directory (“DD”)
– scattered throughout the image (and overlay)



20

Part 3:
Enterprise Infrastructure:
Data Management & Analysis



21

Infrastructure Overview

Black
Files

White
Files

Analysis
DB

Regression
DB

Data Warehouse

Analysis Tools

PESWEEP PeID Regression
Suite



22

Data Repositories
• PE repository consists of

– ~9,000 known good PEs (“white collection”)
– ~70,000 known malicious PEs (“black collection”)

• Images processed through two tools
– PEiD packer identifier [1]

– Proprietary static analyzer PeSweep
• Post-process tool output, import into DB
• Mine DB for interesting correlations

– Data mining is speculative, iterative, time-consuming
– Results shown here are tip of iceberg



23

PeSweep Analysis
• Analyzes single file, directory, optional recursion
• For every file processed, generates info on:

– Infer whether Windows is able to load it
– Details on how much of the structure the parser is able to parse
– Entropy values on a sectional basis
– Header structure
– Anomaly bits

• Able to create both file and virtually mapped target
mappings of the image

• Fully parses “explicit” content (header+metadata) :
import, export, relocation, resource, etc values



24

Sample Analysis Results



25



26



27



28

Section Name Frequency



29

Sectional Analysis



30

Overlay Prevalence



31

Anomaly Frequency



32

Analysis Summary

• We’re profiling characteristics of known-bad and
known-good images

• Distilling these results into general rules for
filtering files at runtime

• These rules could help identify suspicious files
– E.g., the more suspicious a file, the more analysis

resources it receives



33

Analysis Use Case 1

• Goal: Identify Loadable PEs
– Classify PEs as valid / invalid at runtime

• Approach: synthesized “loader test”
– Indicates whether Windows will run the file
– Comprised of CreateProcess/LoadLibraryEx
– Run across NT, 2000, XP, Vista



34

Loader Test Results



35

Analysis Data Use Case 2

• Goal: Identify Malicious PEs
– Obviously a runtime heuristic generating a reliable “Is

Suspicious” flag is valuable

• Single query of anomaly bits
– Identifies 67% of black list
– Identifies 1.4% of white list

• This could be improved dramatically by
increasing the sophistication of our query.



36

Part 4:
Image Parsing in Depth



37

PE Parser Class Organization



38

PE Parsing Flowchart



39

ImageStream Initialization
• Same MapAndLoad process as before
• Calculate target stream size

– Sum source stream metasection sizes, according to target
stream mapping

• Construct target stream
– Copy each source metasection at computed offset in target

stream
– Delicate process due to possible structural anomalies

• Parse anomalies are tracked throughout entire parsing
process



40

Stream Normalization

• Problem: MapAndLoad process is fragile
– Image structure can be corrupted in a myriad of

different ways
– Non-validated fields can lead to crashes during

mapping and loading

• Solution: preliminary scan of header
– “Normalization” pass through the header to fix

obviously illegal values
– Guarantee subsequent parse pass succeeds

• Initial results were promising!



41

Stream Normalization (con’t)
• Sample “illegal” values:

– Section table entry RVA falls within the header
– Section table entry wild RVA and sizes entry
– Header structures overlap
– Wild DD entries

• TinyPE breaks them all! [2]
– File ends before nominal end of OptHdr!

• Demo
• Summary:

– Normalization must allow many degenerate cases
– Less is more

• none is best ☺



42

In Summary

• Anomaly Mechanism
– Useful source of info for analysis engine

• Parser Design
– Hope there are some useful nuggets here..

• Infrastructure
– Supports ongoing technology improvement and QA
– Insight into malformations prevalent in the wild
– Proven useful for technology refinement



43

Future Work
• Extend

– Infrastructure
– Analysis

• Refine heuristics for identifying malware and “suspicious”
images

• Build additional tools
– GUI version of PeSweep

• For now, SDK resources available at
http://research.sunbelt-software.com/ViperSDK/
– PeSweep (cmdline binary; no source ☺)
– Presentation



44

Thanks!

caseys@sunbelt-software.com

References:
[1] PEiD homepage (http://peid.has.it/)
[2] TinyPE (http://www.phreedom.org/solar/code/tinype/)

[3] Matt Pietrek, Under The Hood, An In-Depth Look into the
Win32 Portable Executable File Format, MSDN Magazine, April
2002, http://msdn.microsoft.com/msdnmag/issues/02/02/PE


	Pimp My PE:Parsing Malicious and Malformed Executables
	Authors
	Purpose
	Overview
	Part 1:Introduction
	The Need
	The Problem
	The Problem (con’t)
	The Solution
	Image Anomalies
	Part 2: Background
	Basic PE Structure
	Alignment
	Image Mapping
	Mapping Translation
	Section Size
	Section Size (con’t)
	PE Structure
	PE Structural Abstractions
	Part 3:Enterprise Infrastructure:Data Management & Analysis
	Infrastructure Overview
	Data Repositories
	PeSweep Analysis
	Sample Analysis Results
	Section Name Frequency
	Sectional Analysis
	Overlay Prevalence
	Anomaly Frequency
	Analysis Summary
	Analysis Use Case 1
	Loader Test Results
	Analysis Data Use Case 2
	Part 4:Image Parsing in Depth
	PE Parser Class Organization
	PE Parsing Flowchart
	ImageStream Initialization
	Stream Normalization
	Stream Normalization (con’t)
	In Summary
	Future Work
	Thanks!

