
A FAST RANDOMNESS TEST A FAST RANDOMNESS TEST A FAST RANDOMNESS TEST A FAST RANDOMNESS TEST
THAT PRESERVES LOCAL THAT PRESERVES LOCAL
DETAILDETAIL

Tim Ebringer – The university of Melbourne,
Australia
Li Sun – RMIT university, Australia
Serdar Boztas – RMIT university, Australia
VB 2008
Ottawa, Canada, 1-3rd Oct

AcknowledgmentAcknowledgmentAcknowledgmentAcknowledgment
This research was supported andThis research was supported and
sponsored by CA Labs, the research

fdivision of CA.
◦ Ms Sun is presently a Ph.D. candidate p y

sponsored by CA Labs
◦ Dr Ebringer was an employee of CA,Dr Ebringer was an employee of CA,

working in the CA Labs

OverviewOverviewOverviewOverview
Packer and its characteristicPacker and its characteristic
Randomness test
Algorithms
Experiments and resultsExperiments and results
Further work
Conclusion

PE packingPE packingPE packingPE packing
Dos MZ Header

PE Header
Section Table

Sections
.unpacker

. packed data

Dos MZ Header

PE Header

Section Table

Sections

...

PackersPackersPackersPackers
UPX ASPackUPX
FSG

ASPack
ASProtect

MEW
Upack

tElock
ArmadilloUpack

PCShrinker
Armadillo
Themida

PECompact
Morphine

VMProtect
Morphine …

PE unpackingPE unpackingPE unpackingPE unpacking
Dos MZ Header

PE H dPE Header
Section Table

S tiSections

.unpacker

. packed data

Dos MZ Header

PE Header

Section Table

Sections

...

Byte frequency distribution of a Byte frequency distribution of a
packed filepacked file

How random are the data ?How random are the data ?How random are the data ?How random are the data ?
Shannon entropy measures theShannon entropy – measures the
amount of uncertainty in a variable

Randomness testRandomness test
◦ TAOCP (Art of Computer Programming,

Knuth)Knuth)
◦ DIEHARD (Marsaglia)
◦ DIEHARDER (Brown)◦ DIEHARDER (Brown)

AAlgorithmslgorithmsAAlgorithmslgorithms
Build a byte-frequency histogram;Build a byte frequency histogram;
Construct the Huffman tree by inserting bytes
into the tree in the order of their frequency;
Construct a “length-encoding” array, which
gives the distance to the top of the tree for
each element This is the number of bitseach element. This is the number of bits
needed to encode this byte.
Use the total code length to represent the g p
corresponding data
◦ Fixed sample count

Slidi i d◦ Sliding window
Very fast!

Huffman codingHuffman codingHuffman codingHuffman coding
Variable length coding -- fast
Example “ This program cannot be run in DOS
mode”

111

101110

Fixed sample countFixed sample countFixed sample countFixed sample count
Set a number of sample points equallySet a number of sample points, equally
spaced throughout the file
Windows overlapWindows overlap
Sum the “length encoding” of the bytes
within each windowwithin each window
Advantages:
◦ Files of dis-similar length can be easily◦ Files of dis-similar length can be easily

compared
Disadvantages:g
◦ Long files will lose detail because of the very

large window
Sh t fil ill b d t il d b f th◦ Short files will be over detailed because of the
very small window

Illustration of fixed sample Illustration of fixed sample
count algorithmcount algorithm

S l i 4Sample count is 4

Sliding windowSliding windowSliding windowSliding window
Pick a fixed window sizePick a fixed window size
Move the window along the file by α
bytes (skip size)bytes (skip size)
Sum the “length encoding” of the bytes
within each window
Advantages:
◦ Can look for areas of high entropy and fixed g py

size (like crypto keys) in a sea of more
structured data

Disadvantages:Disadvantages:
◦ Can get a lot of data
◦ It Is hard to compare files of different size◦ It Is hard to compare files of different size

Illustration of sliding window Illustration of sliding window
algorithmalgorithm

Wi d i i 15 d ki i i 2Window size is 15 and skip size is 2

PruningPruningPruningPruning
Simplify comparison between inputSimplify comparison between input
samples of different length (the sliding

)window algorithm)
Retain data of low randomnesseta data o o a do ess
Eliminate data of high randomness

Proposed pruning heuristicsProposed pruning heuristicsProposed pruning heuristicsProposed pruning heuristics
FirstFirst
◦ Retrieves the first N values from the output
SmallestSmallest
◦ Sorts the output
◦ Gets the first N smallest values
Ordered smallest
◦ Sorts the output
◦ Gets the first N smallest values
◦ Lists them in the order of its original position
T kTrunk
◦ Removes the middle part of the output
◦ keeps N/2 values from the beginning and N/2 values◦ keeps N/2 values from the beginning and N/2 values

from the end

Sample of pruningSample of pruningSample of pruning Sample of pruning
For an input {1 3 4 9 8 10 6 7 2For an input {1, 3, 4, 9, 8, 10, 6, 7, 2,
5}
If N = 6
◦ First: {1, 3, 4, 9, 8, 10}First: {1, 3, 4, 9, 8, 10}
◦ Smallest: {1, 2, 3, 4, 5, 6}

Ordered smallest: {1 3 4 6 2 5}◦ Ordered smallest: {1, 3, 4, 6, 2, 5}
◦ Trunk: {1, 3, 4, 7, 2, 5}

Randomness scanning (1)Randomness scanning (1)Randomness scanning (1)Randomness scanning (1)
PackersPackers
◦ FSG 2.0
◦ Mew 11◦ Mew 11
◦ Morphine 2.7
◦ RLPack 1 19◦ RLPack 1.19
◦ Upack 0.399
◦ UPX 2 03w◦ UPX 2.03w
Data

U Util◦ UnxUtils
116 files
File size 3KB 191KBFile size 3KB – 191KB

Randomness scanning (2)Randomness scanning (2)Randomness scanning (2)Randomness scanning (2)
6 x 116 packed files6 x 116 packed files
Fixed sample count
◦ Sample count is 512
◦ Balance the effect of over-represent detailBalance the effect of over represent detail

of the small file and under-represent detail
of the big fileof the big file

Sliding window
Wi d i i 32 b t (256 bit)◦ Window size is 32 bytes (256 bits)
◦ Skip size is 16

Randomness scanning results Randomness scanning results
(1)(1)

Randomness scanning results Randomness scanning results
(2)(2)

Randomness test applicationsRandomness test applicationsRandomness test applicationsRandomness test applications
Packer classification systemPacker classification system
Unpacking animation

Packer classificationPacker classificationPacker classificationPacker classification
Characteristic extractionCharacteristic extraction
◦ A file is represented as an n-dimensional vector

◦ A packer’s signature is also represented as an n-
dimensional vector

where for a set of
packed files

Identification
Di t (k d fil & k ’◦ Distance measures (packed file & packer’s
signature)

Sum-of-squares distance (SSD)Sum of squares distance (SSD)
Cosine distance

SSDSSD vs Cosine distancevs Cosine distanceSSDSSD vs. Cosine distancevs. Cosine distance
SSDSSD

Cosine distanceCosine distance

Also fast!

Packer classification (PC)Packer classification (PC)Packer classification (PC) Packer classification (PC)
FullFull
◦ Whole set of randomness outputs from

“the previous “randomness scanning”
experiment

Big
◦ Output from files that are over 20 KBOutput from files that are over 20 KB
Medium

O t t f fil i th f 10 19 KB◦ Output from files in the range of 10-19 KB
Small
◦ Output from files less than 10 KB

PC results (1)PC results (1)PC results (1)PC results (1)
Evaluation of two distance measures andEvaluation of two distance measures and
four pruning strategies using the sliding
window algorithm and full data set, N=100window algorithm and full data set, N 100

Prunin
g

Distance
measure

Total
files

Positiv
e

False Identification
rateg

method
First SSD 691 561 130 81.19%

Cosine 691 572 119 82.78%
Smalles
t

SSD 691 578 113 83.65%
Cosine 690 639 51 92 61%t Cosine 690 639 51 92.61%

Ordered
smallest

SSD 691 624 67 90.63%
Cosine 690 676 14 97 97%Cosine 690 676 14 97.97%

Trunk SSD 693 662 31 95.53%
Cosine 693 686 7 98.99%

PC results (2)PC results (2)PC results (2)PC results (2)
Algorithm Data set Total Positiv False IdentificationAlgorithm
(Pruning
method)

Data set
type

Total
files

Positiv
e

False Identification
rate

Fixed sample
count

Full 696 396 300 56.90%

Big 265 195 70 73.58%

Medium 236 210 26 88.98%

Small 185 162 23 87.57%

Sliding
window

Full 693 686 7 98.99%

Big 263 261 2 99 24%(Trunk) Big 263 261 2 99.24%

Medium 236 234 2 99.15%

Small 185 184 1 99 46%Small 185 184 1 99.46%

PC on malware samplesPC on malware samplesPC on malware samplesPC on malware samples
Five samples for each packerFive samples for each packer
Randomly picked from CA’s zoo
Sliding window algorithm
◦ Cosine distance measure◦ Cosine distance measure
◦ Trunk pruning heuristic

Data set
type

Total
files

Positive False Identification
rate

Full 30 24 6 80.00%

Big 24 18 6 75.00%

Small 6 6 0 100.00%

Unpacking animationUnpacking animationUnpacking animationUnpacking animation
Monitor the memory changeMonitor the memory change
◦ Place breakpoints on main loops

Use “Hump and dump” to identify main loop
◦ Dump memory

IDA plugin to allow multi-dumping
◦ Perform the detailed preservingPerform the detailed preserving

randomness analysis on the dump
Illustrate how a packer is workingIllustrate how a packer is working
Demo

Further workFurther workFurther workFurther work
Improve the algorithm performance byImprove the algorithm performance by
tuning parameters
Develop new effective pruning
strategiesst ateg es
Evaluate various distance measures
B ild l t i i d t tBuild a large training data set

ConclusionConclusionConclusionConclusion
FastFast
Preserves local detail
Useful
◦ Packer classification◦ Packer classification
◦ Investigative tool

ThanksThanksThanksThanks
Any questions?Any questions?

