USING GAME THEORY TO ASSESS THE STRENGTH OF AN AV SYSTEM AGAINST EVOLVING OFFENCES

Bin Mai

Northwestern State University

Anshuman Singh, Andrew Walenstein, Arun Lakhotia

University of Louisiana at Lafayette

Composition Experiences

- Choices reflect composition ideas in AV
 - Which choices do we use?
- We were experimenting with composition
 - We were building tools for analysis and detection
 - Could compose and integrate in variety of ways
- Ran into some interesting questions along the way...

Vilo Composition

■ Vilo:

- Automated classifier / detector
 - Analyzes binaries
 - Constructs generic matcher
- Applications
 - Black list: use malware for training
 - White list: use benign for training
- Question:
 - How to integrate Vilo into AV systems?

Composition: Vilo in Sequence

Composition: Vilo in Parallel

Normalizer/Filter Composition

Mutant Normalizer:

- Converts mutants/variants to a single form
- Perform ordinary scan on normalized form
- Concern:
 - Relatively expensive
- Solution:
 - Apply only on files likely to be mutants
 - We developed <u>fast filter</u> to identify likely mutants
- Question:
 - How to integrate Normalizer/Filter into AV system?

Composition: Filter/Normalizer

Composition Choices

Sequence

Parallel

Select

Composition: a Way of Life

- Multiple identification methods in AV scanners
 - Crypto checksum
 - X-ray scanning
 - Static behaviour-based patterns
 - Emulation-based behavior matching
 - Heuristic analysis

. . .

- Common to be combined in AV system
 - Including composition using selection logic

Important Questions

- Compositions raise important questions
 - How do we know a composition is any good?
 - How do we tune the composed system for optimal performance?
 - If two classifiers are optimally tuned, will their composition also be optimal?
- Game theory can yield insight into such composition problems

Some Interesting Results

- For a particular selector/classifier architecture it can be shown that:
 - Adding another classifier to a scanner will not always make a scanner better
 - better only if the cost of "stealthing" the selector is above a specific threshold
 - AV designer is always advised to deter "stealthing" the selector
 - by increasing the spread in the detection rates of the classifiers

Steps To Enlightenment

- Introduce general game theory approach
- Show application to two common architectures
- Derive analysis of game strategies

Game Theory: General Approach

- Game Theory:
 - Aid to analyze strategic choices of adversaries
- Basic idea:
 - Model adversary interaction as game
 - Associate payoffs (costs/benefits) to outcome
 - Mathematical manipulation to analyze strategies
 - Search for optimal strategies

Game Theory Modeling Process

- Four steps
 - 1. Identify agents
 - 2. Identify game parameters
 - 3. Develop game tree
 - 4. Analyze tree to compute expected payoffs
- Two step introduction using two games:
 - Simple: One classifier
 - Complex: Selector/Classifier

Step 1: Agents & Roles

- Normal User (NU)
 - Presents uninfected files to the system
 - Wants to use system to derive positive utility
- Malware Author (MA)
 - Presents infected files to system
 - Wants to attack system to derive positive utility
- Security Analyst (SA)
 - Attempts to provide optimal system, including:
 - Detect and thwart MA's malware
 - Minimize AV system's total cost

Step 1: Game

- Simple game setup
 - Single classifier

Step 2: Classifier Parameter

- Many classifiers have a tunable parameter
 - Parameter trades off between
 - P_D : true positive rate
 - *P_F*: false positive rate
 - ROC curve shows relation between P_D and P_F

ROC Curve

Step 2: Classifier Parameter

- Parameters are settings the SA can control
 - These define the SA's moves in the game
 - Need to choose parameter to model ROC
- Typical ROC curves follow power function

$$P_D = P_F^r, 0 < r < 1$$

- r can be used as model parameter
 - i.e., SA chooses *r* as part of the game strategy

Step 2: Outcomes and Payoffs

- Actual payoffs for agents are their benefits less costs given a particular game outcome
- Define the game based on analysis of SA, MA, and NU payoffs

Step 2: Outcomes and Payoffs

Security Anthorst aletings designification of the security of

malware gets through

Step 3: Construct Game Tree

Step 4: Expected Payoff Analysis

Step 4: Expected Payoff Analysis

■ The expected payoffs for all agents:

NU:
$$(\mu_N - \beta)p_F + \mu_N(1-p_F) = \mu_N - \beta p_F$$

MA:
$$\mu_{H}(1-p_{D}) + \mu_{L}p_{D}$$

SA:
$$v - (d+v)\lambda - c(1-\lambda)p_F + (d-c)\lambda p_D$$

Step 4: Strategy Analysis

Optimal solution for SA:

$$p_D = \left(\frac{\xi}{r}\right)^{\frac{r}{r-1}}$$
 where $\xi = \frac{c}{d-c} \times \frac{1-\lambda}{\lambda}$

Selector Game

■ SA

- Sets up system
- Tunes it
- MA
 - Chooses anti-AV technique
 - Sends cloaked file
- Question:
 - Optimal parameters?

Game Theory Steps - Revisited

- Four steps
 - 1. Identify agents
 - 2. Identify game parameters
 - 3. Develop game tree
 - 4. Analyze tree to compute expected payoffs

Step 2: Outcomes and Payoffs (Δ)

		Benefits			A	Costs		
Outcomes		SA	NU	MA		SA	NU	MA
Normal	Alarm	V	μ_{N}			С	β	
	No Alarm	V	μ_{N}					
Malware Malware (normal)	Alarm			μ_{L}		С		
	No Alarm			μ _Η		d		
Malware (stealth)	Alarm			μ_{L}		С		Δ
	No Alarm			μ _Η		d		Δ

Step 2: Parameters (t_{NU} and t_{MA})

Step 3: Game Tree (no Stealth)

Step 3: Game Tree (w/ Stealth)

Step 4: Strategy Analysis

Game tree analysis yields expected payoffs

NU:
$$t_{NU}((\mu_N - \beta)p_F^{NU} + \mu_N(1 - p_F^{NU})) + (1 - t_{NU})(p_F^{MA}(\mu_N - \beta) + (1 - p_F^{MA})\mu_N)$$

MA if not using anti-AV:

$$(1-t_{MA})(\mu_l p_D^{NU} + \mu_h (1-p_D^{NU})) + t_{MA}(\mu_l p_D^{MA} + \mu_h (1-p_D^{MA}))$$

MA if using anti-AV:

$$\begin{array}{l} (1 - t_{NU})((\mu_l - \!\!\! \Delta) p_D^{\ M\!A} + (\mu_h - \!\!\!\! \Delta)(1 - p_D^{\ M\!A})) + \ t_{NU} \\ ((\mu_l - \!\!\!\! \Delta) p_D^{\ N\!U} + (\mu_h - \!\!\!\!\! \Delta)(1 - p_D^{\ N\!U})) \end{array}$$

SA: p(selected as normal, alarm) * [p(normal file | selected as normal, alarm)*v - c] + p(selected as normal, no alarm) * [p(normal file | selected as normal, no alarm)*v - p(malware | selected as normal, no alarm)*d] + p(selected as malware, alarm) * [p(normal file | selected as malware, alarm)*v - c] + p(selected as malware, no alarm) * [p(normal file | selected as malware, no alarm)*v - p(malware | selected as

Step 4: Optimal Solutions

Optimal solution for SA:

If $\Delta \geq$ Threshold(r) then $p_D^{MA} = f(r)$ and $p_D^{NU} = g(r)$

If
$$\Delta$$
 < Threshold(r) then $p_D^{MA} - p_D^{NU} = \frac{\Delta}{(\mu_H - \mu_L)(t_{MA} + t_{NU} - 1)}$ and $(1 - t_{NU})(p_D^{MA})^{\frac{1-r}{r}} + t_{NU}(p_D^{NU})^{\frac{1-r}{r}} = \frac{r}{\xi}$

Where

Threshold(r) =
$$(t_{MA} + t_{NU} - 1)(f(r) - g(r))(\mu_H - \mu_L)$$

$$f(r) = \left(\frac{\xi}{r} \times \frac{1 - t_{NU}}{t_{MA}}\right)^{\frac{r}{r-1}} \text{ and } g(r) = \left(\frac{\xi}{r} \times \frac{t_{MA}}{1 - t_{MA}}\right)^{\frac{r}{r-1}}$$

Step 4: Insights

- For a particular selector/classifier architecture it can be shown that:
 - Adding another classifier to a scanner will not always make a scanner better
 - better only if the cost of "stealthing" the selector is above a specific threshold
 - AV designer is always advised to deter "stealthing" the selector
 - by increasing the spread in the detection rates of the classifiers
- Have equations for setting parameters

Conclusions

- Introduced way to analyse AV systems using Game Theory
- Showed it may lead to interesting, possibly counter-intuitive results
- Mathematically derive optimal configurations

Thanks!

