Tales from cloud nine

Mihai Chiriac, BitDefender

Talk outline

- Motivation
- Technical challenges
- Implementation results
- Future ideas
- Conclusions

 Malware numbers have grown at exponential rates

- Bloated local virus signature databases...
 - Large memory usage (60 200 MB)
 - Slower loading times
- Harder to deliver virus updates
 - Hourly updates...
 - Bandwidth cost 😕

- Not a big problem for now, but we expect 10M signatures in 2010 !

Virus writer's profile, 1989-1999

- Primary reasons
 - Underground recognition
 - Fame (newspapers etc)
 - Boredom
 - "Playing God"
 - "Getting even"

Typically independent

Virus writer's profile, 1999-2009

- Malware writing became an industry
 - Source control software (CVS etc)
 - Release cycles
 - Updates
- Purely financially-driven
 - Bot nets sold for spam, DoS
 - Identity & data theft
 - Ransom

Idea

- Keep as much as possible of the malware DB on the AV company's servers
- Provide same
 performance
 - Same detection/FP rates
 - Similar speed

- Signature numbers vary between 2 and 7 million, depending on vendor
 - Detection method
 - Heuristics?
 - Signatures or generic routines?
- Signatures are important
 - Exact identification: support, prioritization, remediation

Malware detection types

Detection types – non executable

- Complex file format parsers, interpreters
- Less than 3% of signatures
- Client-server scanning is inefficient
- Privacy issues when uploading chunks of files for scanning
- It's best to keep detection engines and signatures locally.

- String search
 - Mostly based on Aho-Corasick
 - Boyer-Moore, KMP, also used
 - Only used in extreme cases (corrupted or too short viruses, weird file formats, etc)
 - -0.1% of virus DB size
 - Should run on the client

- X-ray (cryptanalysis)
 - Plaintext attack against encrypted data
 - Some X-ray algorithms are CPU intensive
 - Needs the buffer...
 - ...and the plaintext data ③
 - 1.6% of signatures...
 - Should run client-side

- Sandbox & generic detection routines
 - Need file chunks
 - 50+% of all new malware is detected generically
 - CPU intensive task
 - Should run on the client

- Static malware
 - Does not change over time
 - Detected with checksums at fixed offsets, fixed sizes
 - 90.9% of the BitDefender malware DB size!
 - Easy to identify a file via its crypto hash
 - Easy to port to a client-server architecture!!

Static malware detection - 1

- Parse the file, extract N zones
- Perform the N checksums
- Search for the checksums
 - "not found" clean
 - "list of additional blocks"
- Perform additional checksums
 - Verify the results

Static malware detection - 3

- We can keep the static malware DB on our servers
- Instant updates for static malware
- Same detection rate, 10% DB size!
- Malware DB becomes a dynamic entity
 - Easy to spot "busy" checksums
 - Easy to change/optimize signatures

Static malware detection - 4

- Checksum queries can be expensive
- Local copy of the checksum table?
 - Only a fraction of the full DB (memory, bandwidth for updates, etc)
 - Query the server only when we have a checksum "hit"
- …Can be a solution in case malware numbers continue to grow at this rate...

- Disconnected operation
- Client-server approach needs specialized content-delivery systems
 - Standard methods won't work
- Privacy
 - Only checksums, but they're enough to identify files

- Same detection rate, ~20% DB size (with local hash table)
- ...but if we only scan a few files we don't need the local hash table!! ⁽ⁱ⁾
- Less than 20% bandwidth for DB updates
- Several issues need to be addressed
- It's a possible solution for the future

- We're scanning "a normal system", and not a "virus collection"
- Scan only the system's "sensitive areas"
- The vast majority of malware is detected!

Sensitive areas - 1

- All executable modules from all processes (on-disk and in-memory)
- All kernel modules
- All system services (regardless of their execution state)
- All system entry points
- All BHOs, browser add-ons etc (even if the browser is not loaded)

Sensitive areas - 2

- All sensitive registry keys & associations
- All modules registered as LSPs, Winlogon notify DLLs...
- All files present in sensitive folders

First statistics

- An average of 685 "sensitive" files to scan
- 675 for Windows® XP machines
- 755 for Windows
 Vista machines
- The majority are known-clean files...
 - identify them (on disk & in memory) and exclude them...
 - continuously scan these files server-side
- What about the files that are unknown?

- Static malware client/server scanning
- Non-static malware:
 - -1. "Force" static detection
 - 2. Download non-static detection engines + signatures
 - 3. Upload all unknown files (or file chunks)
 - 4. Upload only "suspicious" files

- Average file size 220 KB
- The average user can upload ~660 KB or download ~5 MB
- Upload:
 - Only once, other users will benefit
 - Less bandwidth (although upload may be slower than download on some connections)
 - Some privacy issues

- Upload the entire file
 - We can continuously rescan it server-side
 - We can use the file in our collections (both white and black lists) and tests
- Upload only file chunks
 - We only need an average of 18 KB from each file!
 - New detection routines will possibly need new file content ^(S)

- Average 1st scan took 59s
- Average 2nd scan took 29s
- Quick diagnostic tool?
- NAC device?
- Etc...

- ~20% of users were infected
- Non-static malware
 - 10% of all detected malware!
 - Samples seen only once!
 - "Forced" static detection won't work

Forensics analysis

- Thousands of new computers per day
- At least 1 in 5 is infected!
- We can extract info from the possibly compromised PCs!

In theory....

- We've already lost the game
- The machine is compromised
- Malware is already running!
- We only "see" what it allows us to see!

- No such thing as "perfect stealth"
- Non-perfect stealth is a dead giveaway!!
- Many useful informations
- Simple process (I.M.D.)
 - Collect intelligence
 - Send it to the cloud
 - Parse the data using rules
 - Use the result for prioritization

File informations

- BitDefender "SimFS" raw file system parser
 - Allows access to locked files
 - Detects hidden files
- File content analyzer
 - PE structure, imports
 - Entropy
 - Digital signature

Module informations

- Already running
 - Probably already decrypted!
- We can search for "clues"
 - Exploits and shellcode
 - Embedded PE files (device drivers?)
 - Strings used by interesting protocols, etc
- On-disk vs. in-memory image
 - Packed module?

System informations - 1

- Hidden process detection
 - A "detected" hidden process is a dead giveaway!
- Hidden module detection
 - Legally loaded module, but removed from PEB In*Order lists
 - Manually mapped module (orphan code)
 - Very strong flags!

System informations - 2

- Open ports
 - Process connected to server, port?
 - Process listening on a specific port?
- API Hooking
 - Target of an API hook?
- Keystroke logging?
- (Auto)execution method

- Parent process?

System informations - 3

- "Sensitive" registry keys
 - AppInit_DLLs? Winsock LSP?
 - Hidden? Even better 🙂
- "Sensitive" file system areas
 - StartUp? Autorun.inf? Streams?
- "Sensitive" processes
 - Hidden/packed/unsigned module loaded inside a system process?

Data processing

- "IMD Packets"
- A packet contains file, module, "system" informations
- Processed by a series of "IMD Rules"
 - Manually added, for now
 - To be automated...
- Helps in sample prioritization

- ... and maybe more?

Automatic blacklisting - 1

- Any single rule is not enough
- File info
 - Any file may be locked
 - -~20% of executables are packed...
- Memory info
 - Shellcode in memory image of any vulnerability scanner, AV, etc...
- System info

Automatic blacklisting - 2

- We use a combination of rules
 - Distribution, spreading info
 - Geographic data
- Sets of "IMD Flags" can be seen as a pseudo-signature
 - Group malware into families
 - Blacklist sets of flags

Future ideas

- Add more flags
 - From AVC (behaviour-based analyzer)
 - From B-HAVE (sandbox)
- Automate detection rules
 - Neural network?
- New idea: file "similarity"
 - Still to be analyzed...

- Right now, local scanning still works best for the general case
- A "best of both worlds" solution can be employed in the future
- Specific instances where cloud-scanning is more efficient
- Cloud intelligence can be extremely helpful ③

Q&A mchiriac@bitdefender.com

