
Tales from cloud nine

Mihai Chiriac,
BitDefender

Talk outline

• MotivationMotivation
• Technical challenges
• Implementation results
• Future ideas• Future ideas
• Conclusions

Reasons

• Malware numbers have grown at
exponential ratesp

4000000
5000000

2000000
3000000

Signatures

0
1000000

05 05 06 06 07 07 08 08 09 09

Signatures

Ja
n-

0
Ju

l-0
Ja

n-
0

Ju
l-0

Ja
n-

0
Ju

l-0
Ja

n-
0

Ju
l-0

Ja
n-

0
Ju

l-0

Reasons

• Bloated local virus signature databases…
– Large memory usage (60 – 200 MB)g y g ()
– Slower loading times

H d t d li i d t• Harder to deliver virus updates
– Hourly updates…
– Bandwidth cost

• Not a big problem for now but• Not a big problem for now, but
we expect 10M signatures in 2010 !

Virus writer’s profile, 1989-1999

• Primary reasons
– Underground recognitiong g
– Fame (newspapers etc)

Boredom– Boredom
– “Playing God”
– “Getting even”
– …

• Typically independent

Virus writer’s profile, 1999-2009

• Malware writing became an industry
– Source control software (CVS etc)()
– Release cycles

Updates– Updates
• Purely financially-driven

– Bot nets sold for spam, DoS
– Identity & data theftIdentity & data theft
– Ransom

Idea

• Keep as much as possible
of the malware DB on the
AV company’s servers

• Provide same• Provide same
performance
– Same detection/FP rates
– Similar speedp

2M vs. 7M?

• Signature numbers vary between 2 and 7
million, depending on vendor, p g
– Detection method

Heuristics?– Heuristics?
– Signatures or generic routines?

• Signatures are important
– Exact identification: support, prioritization,Exact identification: support, prioritization,

remediation

Malware detection types

Detection types – non executable

• Complex file format parsers, interpreters
• Less than 3% of signaturesLess than 3% of signatures
• Client-server scanning is inefficient
• Privacy issues when uploading chunks of

files for scanninges o sca g
• It’s best to keep detection engines and

signat res locallsignatures locally.

Detection types - executable

• String search
– Mostly based on Aho-Corasicky
– Boyer-Moore, KMP, also used

Only used in extreme cases (corrupted or too– Only used in extreme cases (corrupted or too
short viruses, weird file formats, etc)
0 1% f i DB i– 0.1% of virus DB size

– Should run on the client

Detection types - executable

• X-ray (cryptanalysis)
– Plaintext attack against encrypted datag yp
– Some X-ray algorithms are CPU intensive

Needs the buffer– Needs the buffer…
– …and the plaintext data ☺
– 1.6% of signatures…
– Should run client-side

Detection types - executable

• Sandbox & generic detection routines
– Need file chunks
– 50+% of all new malware is detected

genericallygenerically
– CPU intensive task

Sh ld th li t– Should run on the client

Detection types - executable

• Static malware
– Does not change over timeg
– Detected with checksums at fixed offsets,

fixed sizesfixed sizes
– 90.9% of the BitDefender malware DB size!

E t id tif fil i it t h h– Easy to identify a file via its crypto hash
– Easy to port to a client-server architecture!!

Static malware detection - 1

• Parse the file, extract N zones
• Perform the N checksumsPerform the N checksums
• Search for the checksums

– “not found” – clean
– “list of additional blocks”

• Perform additional checksums
V if th lt– Verify the results

Static malware detection - 2

Static malware detection - 3

• We can keep the static malware DB on our
servers

• Instant updates for static malware
S d t ti t 10% DB i !• Same detection rate, 10% DB size!

• Malware DB becomes a dynamic entitya a e beco es a dy a c e t ty
– Easy to spot “busy” checksums

Easy to change/optimize signatures– Easy to change/optimize signatures

Static malware detection - 4

• Checksum queries can be expensive
• Local copy of the checksum table?Local copy of the checksum table?

– Only a fraction of the full DB (memory,
bandwidth for updates etc)bandwidth for updates, etc)

– Query the server only when we have a
h k “hit”checksum “hit”

• …Can be a solution in case malware
numbers continue to grow at this rate…

Problems

• Disconnected operation
• Client-server approach needs specializedClient server approach needs specialized

content-delivery systems
St d d th d ’t k– Standard methods won’t work

• Privacyy
– Only checksums, but they’re enough to

identify filesidentify files

Conclusion

• Same detection rate, ~20% DB size (with
local hash table))

• …but if we only scan a few files we don’t
need the local hash table!! ☺need the local hash table!! ☺

• Less than 20% bandwidth for DB updates
• Several issues need to be addressed

It’s a possible sol tion for the f t re• It’s a possible solution for the future

Implementation

• We’re scanning “a normal system”, and
not a “virus collection”

• Scan only the system’s “sensitive areas”
Th t j it f l i d t t d!• The vast majority of malware is detected!

Sensitive areas - 1

• All executable modules from all processes
(on-disk and in-memory)(y)

• All kernel modules
All t i (dl f th i• All system services (regardless of their
execution state)

• All system entry points
All BHOs bro ser add ons etc (e en if the• All BHOs, browser add-ons etc (even if the
browser is not loaded)

Sensitive areas - 2

• All sensitive registry keys
& associations

• All modules registered as
LSPs Winlogon notifyLSPs, Winlogon notify
DLLs…

• All files present in
sensitive folderssensitive folders

• …

First statistics

• An average of 685 “sensitive” files to scan
• 675 for Windows® XP machines675 for Windows® XP machines
• 755 for Windows® Vista machines
• The majority are known-clean files…

– identify them (on disk & in memory) andidentify them (on disk & in memory) and
exclude them…
continuously scan these files server side– continuously scan these files server-side

• What about the files that are unknown?

“Unknown files” - 1

• Static malware – client/server scanning
• Non-static malware:Non static malware:

– 1. “Force” static detection
2 D l d t ti d t ti i– 2. Download non-static detection engines +
signatures

– 3. Upload all unknown files (or file chunks)
– 4. Upload only “suspicious” filesp y p

“Unknown files” - 2

160000

140000

160000

100000

120000

60000

80000 Unique 1st Scans
Unknown files

20000

40000

0
1 2 3 4 5 6 7 8 9 10 11

“Unknown files” - 3

9

7

8

9

5

6

7

3

4

5

Series1

1

2

0
1 2 3 4 5 6 7 8 9 10 11

“Unknown files” - 4

60%
No unknown files @ 1st scan

40%

50%

20%

30%
No unknown files @ 1st
scan

0%

10%
scan

“Unknown files” - 5

• Average file size – 220 KB
• The average user can upload ~660 KB orThe average user can upload 660 KB or

download ~5 MB
U l d• Upload:
– Only once, other users will benefity
– Less bandwidth (although upload may be

slower than download on some connections)slower than download on some connections)
– Some privacy issues

“Unknown files” - 6

• Upload the entire file
– We can continuously rescan it server-sidey
– We can use the file in our collections (both

white and black lists) and testswhite and black lists) and tests
• Upload only file chunks

– We only need an average of 18 KB from each
file!

– New detection routines will possibly need new
file content

Results - 1

• Average 1st scan took 59sAverage 1 scan took 59s
• Average 2nd scan took 29s
• Quick diagnostic tool?
• NAC device?• NAC device?
• Etc…

Results - 2

• ~20% of users were
infected

• Non-static malware
10% f ll d t t d– 10% of all detected
malware!

– Samples seen only once!
– “Forced” static detection

won’t work

Forensics analysis

• Thousands of new
computers per dayp p y

• At least 1 in 5 is
infected!infected!

• We can extract info
from the possibly
compromised PCs!compromised PCs!

In theory…

• We’ve already lost the gameWe ve already lost the game
• The machine is compromised
• Malware is already running!
• We only “see” what it allows• We only see what it allows

us to see!

In practice…

• No such thing as “perfect stealth”
• Non-perfect stealth is a dead giveaway!!Non perfect stealth is a dead giveaway!!
• Many useful informations
• Simple process (I.M.D.)

– Collect intelligenceCollect intelligence
– Send it to the cloud

P th d t i l– Parse the data using rules
– Use the result for prioritization

File informations

• BitDefender “SimFS” raw file system
parserp
– Allows access to locked files

Detects hidden files– Detects hidden files
• File content analyzer

– PE structure, imports
– EntropyEntropy
– Digital signature

Module informations

• Already running
– Probably already decrypted!y y yp

• We can search for “clues”
E l it d h ll d– Exploits and shellcode

– Embedded PE files (device drivers?)
– Strings used by interesting protocols, etc

• On-disk vs in-memory image• On-disk vs. in-memory image
– Packed module?

System informations - 1

• Hidden process detection
– A “detected” hidden process is a dead p

giveaway!
• Hidden module detection• Hidden module detection

– Legally loaded module, but removed from
PEB I *O d li tPEB In*Order lists

– Manually mapped module (orphan code)
– Very strong flags!

System informations - 2

• Open ports
– Process connected to server, port?, p
– Process listening on a specific port?

API H ki• API Hooking
– Target of an API hook?

• Keystroke logging?
• (Auto)execution method• (Auto)execution method

– Parent process?

System informations - 3

• “Sensitive” registry keys
– AppInit DLLs? Winsock LSP?pp _
– Hidden? Even better ☺

“S iti ” fil t• “Sensitive” file system areas
– StartUp? Autorun.inf? Streams?

• “Sensitive” processes
Hidden/packed/unsigned module loaded– Hidden/packed/unsigned module loaded
inside a system process?

Data processing

• “IMD Packets”
• A packet contains file module “system”A packet contains file, module, system

informations
P d b i f “IMD R l ”• Processed by a series of “IMD Rules”
– Manually added, for nowy
– To be automated…

• Helps in sample prioritization• Helps in sample prioritization
– …and maybe more?

Automatic blacklisting - 1

• Any single rule is not enough
• File infoFile info

– Any file may be locked
20% f t bl k d– ~20% of executables are packed…

• Memory infoy
– Shellcode in memory image of any

vulnerability scanner AV etcvulnerability scanner, AV, etc…
• System info

Automatic blacklisting - 2

• We use a combination of
rules
– Distribution, spreading info

Geographic data– Geographic data
• Sets of “IMD Flags” can be

seen as a pseudo-signature
– Group malware into familiesGroup malware into families
– Blacklist sets of flags

Future ideas

• Add more flags
– From AVC (behaviour-based analyzer)(y)
– From B-HAVE (sandbox)

A t t d t ti l• Automate detection rules
– Neural network?

• New idea: file “similarity”
Still to be analyzed– Still to be analyzed…

Conclusions

• Right now, local scanning still works best
for the general caseg

• A “best of both worlds” solution can be
employed in the futureemployed in the future

• Specific instances where cloud-scanning
is more efficient

• Cloud intelligence can be extremely• Cloud intelligence can be extremely
helpful ☺

Q&AQ&A
mchiriac@bitdefender.com

