
Challenges in Kernel-Mode Memory g y
Scanning

October 2, 2009
Rachit Mathur
Research Scientist

Aditya Kapoor
Research Scientist Research Scientist

McAfee
Research Scientist
McAfee

Virus Bulletin ConferenceVirus Bulletin Conference
23rd – 25th September, 2009
Geneva, Switzerland

AgendaAgenda

IntroductionIntroduction

Trends

Techniques

ConceptConcept

Workings and discussion

Real world examples

Conclusion & QuestionsConclusion & Questions

Trends and Techniques

• Exponential growth of malware with rootkit capabilities.

300000

200000

250000

150000

50000

100000

0
2001 2003 2004 2005 2006 2007 2008 2009 (Q3)

Trends and Techniques

• Exponential growth of malware with rootkit capabilities.

• Popular kernel mode techniques growth.

70%

80%

90%

100%

20%

30%

40%

50%

60%

0%

10%

2001 2003 2004 2005 2006 2007 2008 2009

MBR Kernel IRPMBR
Kernel_SysEnter
Kernel_IDT
Kernel_Filter
Kernel SSDT

Kernel_IRP
Kernel_Inline
Kernel_DKOM
User_Inline
U i tKernel_SSDT User_import

Techniques employed by various rootkitsq p y y

IDT hook
– Apropos

DKOM
– Backdoor-AWQ

F Rootkit

Inline hooks
– HackerDefender

Sysenter hook
– Spam-mailbot.c

– FuRootkit
– Vanti

Inline hook (Kernel)

– PWS-progent
– W32/feebs
– NTIllusion

Filter driver
– SearchNet
– PigSearch

()
– Apropos

IRP hook
PWS-Gogo

– Vanquish

Import Table hooks PigSearch

MBR
– StealthMBR

– PWS-Gogo
– Spam-mailbot.c

SSDT hook

Import Table hooks
– Adcliker-BA
– Qoolaid

– Backdoor-CKB
– Backdoor-DKD

Revisiting Kernel Memory Scanners?

• Memory scanners have been talked about previously, this
presentation covers:presentation covers:

� Advances in kernel memory manipulation by malware.
� Few ideas of efficient logic to pinpoint the suspicious

objects.
� Few ideas of how the scanner can help in correlation of� Few ideas of how the scanner can help in correlation of

suspicious data to aid in detection, cleaning and
classification.

• Usually only interested in techniques that hinders detection
or cleaning.

• Ironically memory manipulation techniques may aid in• Ironically memory manipulation techniques may aid in
creating generic memory based detections.

Revisiting Memory Scanners?

• For an AV solution we need something more than an
l d h i ti d t tanalyzer and heuristic detector.

� Analyzers include tools like GMER RKUnhooker Rootkit� Analyzers include tools like GMER, RKUnhooker, Rootkit
Detective, IceSword etc.
� Analogy can be hijackthis logs. ☺gy j g

• The role of a kernel mode scanner is to help in detection,
l ifi ti d ll ti d t il t l th t dclassification and collating details, to clean the system and

restoring the memory.

Concept p

• Kernel mode manipulation categories
DKOM DKOH– DKOM or DKOH

– Detour based
– Filter based

• Kernel memory scanner working
M d l i– Module parsing

– Detour Traversal
– Hidden File/Process discoveryy

Concept (Module parsing)p (p g)

• Enumerate listed modules
Scan the corresponding files or parse the memory structure to– Scan the corresponding files or parse the memory structure to
detect in memory

Ad tAdvantages:
a) Simple implementation
b) No major changes required when new or unknown techniques) j g q q
of hooking are discovered

Disadvantages:Disadvantages:
a) Ineffective when modules are hidden or not present.
b) Performance intensive due to parsing the header of modules to

thscan the memory.
c) Costly to find relevant code patterns for detection.
d) Does not provide information that can aid in cleaning.) p g

Concept (Detour Traversal)p ()

– Identify detour logics in memory
– Traverse the detour to a memory region or a module’s memoryTraverse the detour to a memory region or a module s memory.
– Detect on the most relevant code.
– Restore Detours.

Srizbi

Bagle

Index of IRPTable

Index of SSDTNtosKrnl.exe
Exported function
(NtQuerySystemInfo)

Rootkit.sys

Kernel
Memory

Legitimate

Srizbi

S M ilb t

AproposIndex of IDT

of a device driver(NtQuerySystemInfo)

Jmp “rootkit.sys”

Legitimate
Device Driver

Spam-Mailbot
aka: RustockSysEnter/Int2E (MSR)

Traverse Detour
Kernel memory

scanner

Traverse Detour

Detour traversal

Advantages: g

a) Improves scanning performance
b) Less likely to false due to context of scan objectb) Less likely to false due to context of scan object.
c) Detection tends to last longer.
d) Not dependent on module enumeration
e) Scalable once the framework is developed.

Disadvantages:Disadvantages:

a) Needs to be updated when a new or unknown
d t t h i i t ddetour technique is encountered.

DKOM & DKOH.

• Direct kernel manipulation and Direct kernel object hooking

� The memory manipulation can be done via
‘\device\physicalmemory’ access.\device\physicalmemory access.

� Or, using a kernel a component.

� Example targets are EPROCESS list, module list and
object_type structure.

� DKOH is still detour based, so apply detour parsing.

� In DKOM , there is no notion of kernel memory or module.
Kernel scanner however can scan the hidden file or process
memorymemory.

Kernel scanning must haves.

1. Logic to determine that pointers are out of the ordinary Location.

2. Capability to disassemble and analyze portions of kernel memory.

3 C bilit t d d l th t k l t t3. Capability to read and analyze the most common kernel structures.

4. Capability to follow the jumps and detours.

5. Capability to scan and analyze any given kernel module.

6. Capability to write safely into kernel memory
a) A rootkit can attack by watching for writes and taking action.

7. A static or runtime database of common pointer locations.

8 A programmable interface which provides access to low level APIs8. A programmable interface which provides access to low-level APIs.

Workings and discussiong

• It is desirable that the signature
be accurate classify into families with no false positives– be accurate, classify into families with no false positives

– be quick, aid in repair and be generic
• Use combination of how we identify a rootkit module andUse combination of how we identify a rootkit module and

fingerprint of the module.

NtDeleteKey

Ntoskrnl.exeOriginal PathSSDT

e e e ey

Rootkit.sys NtDeleteKey

Detour

NtDeleteValueKey

Detour.
.
.

Follow all detours

• Eventually lead to the rootkit module
Ch ll i C bilit t f ll th j d d t t– Challenge in : Capability to follow the jumps and detours to
eventually lead to the malicious kernel module

Ntoskrnl.exe
SSDT

NtDeleteKey

W32/Al h

Detour

N D l V l K

SSDT

Push addr
ret

W32/Almanahe.sys

NtDeleteKey

NtDeleteValueKey

.

Original Path
.
.

When in doubt

• If it is complex to follow the detour?
Ch ll i L i t d t i th t i t t f th– Challenge in : Logic to determine that pointers are out of the
ordinary location

NtQuerySystemInformation (Original) NtQuerySystemInformation (Apropos
Hook)

68 10 02 00 00 push 210h 68 10 02 00 00 push 210h68 10 02 00 00 push 210h
68 58 6E 41 00 push 416E58
E8 95 D9 F5 FF call sub_40BE73

68 10 02 00 00 push 210h
50 push eax
8BC3 mov eax, ebx
2BC3 sub eax ebx2BC3 sub eax, ebx
48 dec eax
8B38 mov edi, ptr:[eax]

Raise exception

Apropos trojanApropos trojan

Case Studies

• Once the malware has infected and is active
D t t– Detect

– Classify
– Aid in cleaningAid in cleaning

• Cutwail

• MBR rootkit

Cutwail rootkit

• Drops a sys file and prevents access to it
– %system%\drivers\Jjg44.sys

• File not hidden but cannot read to detect or delete this file• File not hidden but cannot read to detect or delete this file.

Cutwail detection

• File access is denied using hook on IRP_MJ_CREATE on
NTFS.

Cutwail detection

• Hook directly lands into the malicious module
• Detection signature can be written

– Detour path + byte fingerprint

Cutwail cleaning

• Obtain module name
Di bl t t d i t

g

– Disable unprotected registry
– Delete file during reboot

• Hook restoration• Hook restoration
– Can be tricky!
– Keep track of changes from early in boot processp g y p
– Extract original address from malware itself

• Challenge in: Capability to disassemble and analyze any
arbitrary portions of kernel memoryarbitrary portions of kernel memory

Driver Obj Orig Addr

Driver Obj Orig Addr

Driver Obj Orig Addrj g

Driver Obj Orig Addr

StealthMBR rootkit

• StealthMBR aka Mebroot infects MBR to gain control very
early in boot processearly in boot process

• Does not require any file or registry to sustain itself• Does not require any file or registry to sustain itself

• Prevents access to MBRPrevents access to MBR

• Primarily hooks IRP dispatch tabley p

• Challenge in : Logic to determine that pointers are out of
the ordinary location

StealthMBR detection

AV Process

Kernel memory Thread 1
Thread 2

Rootkit ThreadRootkit ThreadRootkit Thread
(Watcher)

….
Rootkit Thread

Rootkit Thread
(Watcher)CDROM:

IRP Dispatch Table

CDROM sys Thread 3
….

Rootkit module

CDROM.sys

Disk:
IRP Dispatch Table

Original
MBR

Filter
FunctionDisk.sys

Sector 0
Infected MBR

Sector 60
Sector 61

Rootkit Installer

Sector 62
Original

MBR

End Sectors
Rootkit
driver

H d Di kHard Disk

Dispatch routinesp

IRP_MJ_CREATE 8196687e
IRP_MJ_CREATE_NAMED_PIPE InvalidRequest
IRP_MJ_CLOSE 8196687e
IRP_MJ_READ 81961428
IRP MJ WRITE 81961428IRP_MJ_WRITE 81961428
IRP_MJ_QUERY_INFORMATION InvalidRequest
IRP_MJ_SET_INFORMATION InvalidRequest
IRP MJ QUERY EA I lidR tIRP_MJ_QUERY_EA InvalidRequest
IRP_MJ_SET_EA InvalidRequest
IRP_MJ_FLUSH_BUFFERS 81966890
IRP_MJ_QUERY_VOLUME_INFORMATION InvalidRequest
IRP_MJ_SET_VOLUME_INFORMATION InvalidRequest
IRP MJ DIRECTORY CONTROL InvalidRequestIRP_MJ_DIRECTORY_CONTROL InvalidRequest
IRP_MJ_FILE_SYSTEM_CONTROL InvalidRequest
IRP_MJ_DEVICE_CONTROL 8196688a
IRP MJ INTERNAL DEVICE CONTROL 81966884IRP_MJ_INTERNAL_DEVICE_CONTROL 81966884
IRP_MJ_SHUTDOWN 81966890

StealthMBR Cleaning

• Use watcher thread to repair MBR for you ☺

Are IRP_MJ_Read/Write
functions of disk still

infected?

NO

Yes

Re-infect IRP_MJ_REAd/WRITE of driver disk

Re-infect MBR,write loader code in sector 60-62 and
write rootkit module in later sectorswrite rootkit module in later sectors

StealthMBR Cleaning

• Use watcher thread to repair MBR for you ☺

• Create special IRP that can go through the rootkit filter

• Patch into areas that are not watched

H k t ti• Hook restoration

– Suspend or kill watcher threadp

– Restore IRP hooks

• Challenge in : A static or runtime database of common
pointer locations

– Repair MBR

StealthMBR Cleaning

• Finding original address?

– Hooks early so monitoring is difficult

– Look for areas that are still not patched

– Look inside malicious codeLook inside malicious code

jmp 8196147ej p
mov eax, [819D1F08h] ={CLASSPNP!ClassReadWrite}
mov dword ptr [ebp-28h],eax
t t b btest ebx,ebx
je 81961527
mov eax dword ptr [esi+40h]mov eax,dword ptr [esi+40h]

Other variants

• Use Direct Kernel Object Hijacking

– Hijack disk ‘Device’ _OBJECT_TYPE with ‘special’
ParseProcedure

O TObject
header

Device object of disk

D iObject DeviceO TObject
header

Device object of cdrom

O TObject
header Malicious Device

Device object of keyboard

Parse Procedure

* OT = Object Type

Other variants

• Use Direct Kernel Object Hijacking

– Hijack disk ‘Device’ _OBJECT_TYPE with ‘special’
ParseProcedure

• Install IRP hooks on-demand

• For detection to start we can check if keyboard and
mouse device have same OBJECT TYPEmouse device have same _OBJECT_TYPE

• Some directly hook IRP of driver below \Driver\Disk in
device stack of \\Device\\Harddisk0\\DR0

Thank You!Thank You!

Suggestions & Questions:
Email: Aditya Kapoor@avertlabs.comy _ p @
Email: Rachit_Mathur@avertlabs.com

