Challenges in Kernel-Mode Memory McAfee
Scanning
o Aditya Kapoor Rachit Mathur

ctober2, 2009 Research Scientist Research Scientist

McAfee McAfee

virus Bulletin Conf’arence
23rd — 25th September, 2009 *
Genev;a, Switzerlar]d

Introduction

Trends

Techniques

Concept

Workings and discussion
Real world examples

Conclusion & Questions

Trends and Techniques

« Exponential growth of malware with rootkit capabilities.

300000

250000 —

200000 —

150000 — —

100000 —

0 T T T T T T T

2001 2003 2004 2005 2006 2007 2008 2009 (Q3)

Trends and Techniques

« Exponential growth of malware with rootkit capabilities.

* Popular kernel mode techniques growth.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

o

-

2001 2003 2004 2005
Il MBR
Il Kernel_SysEnter
Kernel _IDT

M Kernel Filter
M Kernel _SSDT

2006 2007 2008 2009

I Kernel_IRP
Kernel _Inline
Kernel DKOM

M User_Inline

M User_import

Techniques employed by various rootkits

Inline hooks
— HackerDefender
— PWS-progent
—W32/feebs
— NTlllusion
— Vanquish

Import
— Adcliker-BA
— Qoolaid

DKOM
— Backdoor-AWQ
— FuRootkit
— Vanti

Inline hook (Kernel)
— Apropos
IRP hook

_DW/IC_hnn
VvV O \SUYu

— Spam-mailbot.c

SSDT hook
— Backdoor-CKB
— Backdoor-DKD

IDT hook
— Apropos

Sysenter hook
— Spam-mailbot.c

Filter driver
— SearchNet

— PigSearch

— StealthMBR

Revisiting Kernel Memory Scanners?

 Memory scanners have been talked about previously, this
presentation covers:

= Advances in kernel memory manipulation by malware.

= Few ideas of efficient logic to pinpoint the suspicious
objects.

* Few ideas of how the scanner can help in correlation of
suspicious data to aid in detection, cleaning and
classification.

o Usually only interested in techniques that hinders detection
or cleaning.

e [ronically memory manipulation techniques may aid in
creating generic memory based detections.

Revisiting Memory Scanners?

 For an AV solution we need something more than an
analyzer and heuristic detector.

* Analyzers include tools like GMER, RKUnhooker, Rootkit
Detective, IceSword etc.
= Analogy can be hijackthis logs. ©

 The role of a kernel mode scanner is to help in detection,
classification and collating details, to clean the system and
restoring the memory.

Concept

« Kernel mode manipulation categories

— DKOM or DKOH
— Detour based
— Filter based

« Kernel memory scanner working

— Module parsing
— Detour Traversal
— Hidden File/Process discovery

3
"
]

¢

®

Concept (Module parsing)

 Enumerate listed modules
— Scan the corresponding files or parse the memory structure to

detect in memory

Advantages:

a) Simple implementation
b) No major changes required when new or unknown techniques

of hooking are discovered

Disadvantages:
a) Ineffective when modules are hidden or not present.

b) Performance intensive due to parsing the header of modules to
scan the memory.

c) Costly to find relevant code patterns for detection.

d) Does not provide information that can aid in cleaning.

Concept (Detour Traversal)

— Identify detour logics in memory
— Traverse the detour to a memory region or a module’s memory.

— Detect on the most relevant code.
— Restore Detours.

Index of SSDT Bagle

NtosKrnl.exe "
Exported function Index of IRPTable o
(NtQuerySystemInfo) I---- - > o & e CIfver Srizbi

Kernel Jmp “rootkit.sys” <
Memory PR _ Index of IDT Apropos

Legitimate poptitiele > <
: o N —_~F pam-Mailbot
Device Driver it 2= SysEnter/Int2E (MSR) aka: Rustock

Traverse Detour

Kernel memory
scanner

Detour traversal McAfoe

Advantages:

a) Improves scanning performance

b) Less likely to false due to context of scan object.
c) Detection tends to last longer.

d) Not dependent on module enumeration

e) Scalable once the framework is developed.

Disadvantages:

a) Needs to be updated when a new or unknown
detour technique is encountered.

DKOM & DKOH. Mc

» Direct kernel manipulation and Direct kernel object hooking

= The memory manipulation can be done via
“‘\device\physicalmemory’ access.

= Or, using a kernel a component.

= Example targets are EPROCESS list, module list and
object_type structure.

= DKOH is still detour based, so apply detour parsing.

= I[n DKOM , there is no notion of kernel memory or module.
Kernel scanner however can scan the hidden file or process
memory.

Kernel scanning must haves. Adc

Logic to determine that pointers are out of the ordinary Location.
Capability to disassemble and analyze portions of kernel memory.
Capabillity to read and analyze the most common kernel structures.
Capability to follow the jJumps and detours.

Capability to scan and analyze any given kernel module.

Capability to write safely into kernel memory
a) Arootkit can attack by watching for writes and taking action.

A static or runtime database of common pointer locations.

A programmable interface which provides access to low-level APIs.

Workings and discussion

o It Is desirable that the signature
— be accurate, classify into families with no false positives

— be quick, aid in repair and be generic
« Use combination of how we identify a rootkit module and

fingerprint of the module.

SSDT Original Path

NtDeleteKey
v

NtDeleteValueKey Rootkit.sys

Detour

?| NtDeleteKey

Follow all detours

« Eventually lead to the rootkit module

— Challenge in : Capability to follow the jumps and detours to
eventually lead to the malicious kernel module

SSDT

NtDeleteKey

Detour

Ntoskrnl.exe

= Push addr

NtDeIeteVaIungi}

W32/Almanahe.sys

Original Path

ret

NtDeleteKey

When in doubt

o If it Is complex to follow the detour?

— Challenge in : Logic to determine that pointers are out of the
ordinary location

NtQuerySysteminformation (Original) NtQuerySystemInformation (Apropos
Hook)
68 10 02 00 00 push 210h 68 10 02 00 00 push 210h
68 58 6E 41 00 push 416E58 50 push eax
E8 95 D9 F5 FF call sub_40BE73 8BC3 mov eax, ebx
2BC3 sub eax, ebx
48 dec eax
8B38 mov edi, ptr:[eax]

©
Raise exception

Apropos trojan

-=

 Once the malware has infected and is active
— Detect
— Classify
— Aid in cleaning

e Cutwall

 MBR rootkit

Cutwall rootkit

e Drops a sys file and prevents access to it
— %system%%\drivers\Jjg44.sys

& O\ WINDOWS system32 . drivers

File Edit Wiew Favaorites Tools Help

o Back «~ £ - T | ' Search Folders | i X) | [
Address I.j CHWINDOW S system 32 drivers
Dake Modified

Size | Tvpe
15 KB Sywstem File /142009 11:49 4M

Mame =
Jjg44.5':.f5

o O3 WINDOWS System32h cmd.exe

CisHINDOWSssystemd2sdrivers more Jjgdd.svus
Cannot access file C:sWINDOWSs=zystem3d2sdriverssJjgdd.zys

C:sUHINDOWS systemd2hdrivers >

e File not hidden but cannot read to detect or delete this file.

Cutwall detection McAfee

kdy ldrvobj| ~filesy=ten~ntfis| 7
Driver object (dlbdedld) 1= for:
“FileSy=ten~Htf=

Driwver Exten=sion List: (1d . addr)

Device Object list:
B1bYb020 8lbdetfl

DriverEntrv: £99b5398 Htf=!DriverkEntry
DriwverStartIo: 00000000
DriwverlUnload: 00000000
addDevice: goooooon

Diﬂpﬂfﬁh o1t 1 hes

[00])IEF _MJ CREATE

[01] TRE _HJ CREEATE HAHEIN CIFE
[02] IRF MJ CLOSE

[03] IEF MJ EREAD

[04] IEF MJ WERITE

* File access is denied using hook on IRP_MJ_ CREATE on
NTFS.

Cutwall detection McAfee

« Hook directly lands into the malicious module

 Detection signature can be written
— Detour path + byte fingerprint

Memory
| virtual: [£82458e0 || Display Format: [45CT
fg24p9yY¢ .1 .1D.L.L.H. a.m.e. .. W L. E.
fg246%b5 ¢ . 5 . h . e .1 .1 W .1 .n.H. t 3 .2
f32469=d . . . winlogon . e X &) I m . a J e . P .a .t h)
fte?46a2d 2 . » .t~ _ R ._E . G I .5 . T FE . ¥ .~ . A Z . H
f824685b . E . M .~ . 2 . o . n . t . o 1 5 . B t o .o .1 . ~ 5 =
t824e6a92~ .RrR.E T | S T . F .Y .~ . H A . C
t82d468=9 . T . E . H . .~ . C . o . n . t T] l1 . 5 = t .0 .10 1 ™, Z
ta324eb00 a . £ . = B a .o t RS H . e t W (] r oo koo~ .o
t824e6b3? . I S . T FE . ¥ .~ H A Z . H I . H E . ~ . 8§ ¥ 5 T E

. iZ

f8246bee 1 . S

f8246bat . 1 .

f8246bde

fFR24Rm13 =)

fe2d6cda . . . L L. S

f8246cB8l e 0 . OB O . . 0 .

. T .o f

n

fo8246chi
foz2decef . S Lo . oo
fe2d4ed2e W .1 . H . . . N . . . N .5 N .
fte24¢d4 O Z . . H
fg246d94 d : ~“programns=s>~=1beria
FOTAC A~ - A -

el B
e
—rg. M
[uu]
o=
+
S Tal—E
e LE-
o
s

Cutwall cleaning

e Obtain module name
— Disable unprotected registry
— Delete file during reboot

* Hook restoration
— Can be tricky!
— Keep track of changes from early in boot process

— Extract original address from malware itself
» Challenge in: Capability to disassemble and analyze any
arbitrary portions of kernel memory

— Driver Obj Orig Addr
— Driver Obj Orig Addr
- Driver ODbj Orig Addr
— Driver Obj Orig Addr

Ll

StealthMBR rootkit McAfee

e StealthMBR aka Mebroot infects MBR to gain control very
early in boot process

e Does not require any file or registry to sustain itself
* Prevents access to MBR
 Primarily hooks IRP dispatch table

e Challenge in : Logic to determine that pointers are out of
the ordinary location

StealthMBR detection

~ ——— AV Process

Kernel memory Thread 1
Thread 2
_ — Reobkiit Tireead
CDROM: = @ '\@ | (Aaehesy)
IRP Dispatch Table
Hii Rootkit Thread
CDROM.sys 'Jacked Thread 3
IRP Dispatch Table \\ Rootkit module
—>
Disk.sys 2 — >
Original
MBR
' Sector 60 Sector 62 End Sectors
e 2 InfgffetngoBR ----- Sector 61 Ol c)inie] e Rootkit
Rootkit Installer MBR driver
Hard Disk

Dispatch routines

IRP_MJ_CREATE

IRP_MJ_CREATE_NAMED_PIPE “InvalidRequest
IRP_MJ_CLOSE 81966
IRP_MJ_READ

IRP_MJ_WRITE
IRP_MJ_QUERY_INFORMATION InvalidRequest
IRP_MJ_SET_INFORMATION InvalidRequest
IRP_MJ_QUERY_EA InvalidRequest
IRP_MJ_SET_EA i

IRP_MJ_FLUSH_BUFFERS ;5:
IRP_MJ_QUERY_VOLUME_INFORMATION
IRP_MJ_SET_VOLUME_INFORMATION InvalidRequest
IRP_MJ_DIRECTORY_CONTROL InvalidRequest
IRP_MJ_FILE_SYSTEM_CONTROL InvalidRequest
IRP_MJ_DEVICE_CONTROL
IRP_MJ_INTERNAL_DEVICE_CONTROL
IRP_MJ_SHUTDOWN

StealthMBR Cleaning

» Use watcher thread to repair MBR for you ©

Are IRP_MJ_Read/Write
functions of disk still
infected?

Yes

NO

Re-infect IRP_MJ_REAd/WRITE of driver disk

l

Re-infect MBR,write loader code in sector 60-62 and
write rootkit module in later sectors

StealthMBR Cleaning McAfoe

» Use watcher thread to repair MBR for you ©

 Create special IRP that can go through the rootkit filter
* Patch into areas that are not watched

* Hook restoration
— Suspend or kill watcher thread

— Restore IRP hooks

* Challenge in : A static or runtime database of common
pointer locations

— Repair MBR

™

3
i

StealthMBR Cleaning

 Finding original address?

— Hooks early so monitoring is difficult
— Look for areas that are still not patched

— Look inside malicious code

jmp 8196147e

mov eax, [819D1F08h] ={CLASSPNP!ClassReadWrite}
mov dword ptr [ebp-28h],eax

test ebx,ebx

je 81961527

mov eax,dword ptr [esi+40h]

®

Other variants

» Use Direct Kernel Object Hijacking

— Hijack disk ‘Device’ OBJECT_TYPE with ‘special’
ParseProcedure

Object
header

{ oT P/

Device object of disk
Device

A V4
~
\ 4

Object oT 4
header

Device object of cdrom

Malicious Device

Object oT
header

Parse Procedure

Device object of keyboard * OT = Object Type

Other variants RcAfon

» Use Direct Kernel Object Hijacking

— Hijack disk ‘Device’ _OBJECT_TYPE with ‘special’
ParseProcedure

 [nstall IRP hooks on-demand

 For detection to start we can check if keyboard and

e e o e e 0

 Some directly hook IRP of driver below \Driver\Disk in
device stack of \\Device\\HarddiskO\\DRO

Thank You!

Suggestions & Questions:
Email: Aditya Kapoor@avertlabs.com
Email: Rachit_Mathur@avertlabs.com

