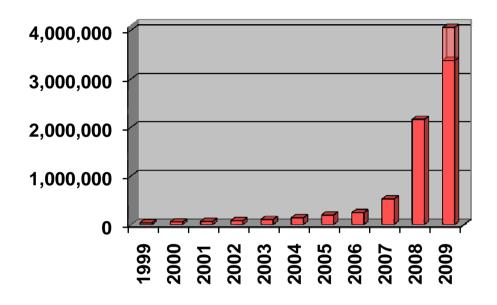
Connecting the AV industry

Igor Muttik, McAfee Avert Labs

IEEE, Industry Connections Security Group

Agenda


- The problem
- Re-inventing the wheel?
- Introducing ICSG
- Malware Working Group
- XML meta-data sharing format
- Main concepts
- Details of XML standard proposal
- Questions

The Problem

- Attackers have shifted away from mass distribution of a small number of threats to micro distribution of millions of distinct threats
- The security industry still by and large responds to threats in their individual silo's with 'limited' operational & cross industry co-operation
- Many in the security industry want to pool their experience and resources in response to this systematic and rapid rise in new malware

Re-Inventing the Wheel?

Lots of great examples of working groups focused on specific aspects of security intelligence, incident response, testing, best practices & policies

- *APWG
- *ASC
- *****AMTSO
- *CARO
- *****Others

Anti-Phishing Intelligence & Best Practices

Anti-Spyware Intelligence and Best Practices

Anti-Malware Testing Standards and Best Practices

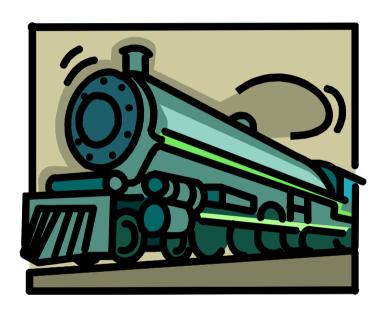
Computer Anti-Virus Research Organization

AVAR, EICAR, AVPD, MWAAG, FIRST, CWG, etc

Re-Inventing the Wheel?

Lots of great examples of working groups focused on specific aspects of security intelligence, incident response, testing, best practices & policies

However, this co-operation typically has not been **standardized** or **documented** in a format that lends itself to **systematic improvement** in operational efficiency, or **visibility and review** by people **outside the vertical industries** and in many cases that was not their mandate



Introducing

ICSG

Industry Connections Security Group Google for: "IEEE ICSG" joinicsg@ieee.org

ICSG Goal & Structure

Established under the umbrella of the the IEEE-SA Standards Association

- Facilitate the pooling of industry experience and resources
- A forum for development of proposed standards and best practices related to computer security
- ISCG was started by AVG, McAfee, Microsoft, Sophos, Symantec and Trend Micro, but open to others
- Goes beyond Malware Issues !

Why the IEEE?

- Need to reach outside the traditional groups to pool as many different contributors as possible
- IEEE is a recognized brand known to deliver standards
- The existing infrastructure of the IEEE allowed us to start working on the crux of the issues, instead of wasting time on the org side
- We leverage the brand to attract the non-traditional players into the pool

What to focus on?

How do we improve the efficiency of the collection & processing of the millions of malware file samples we all handle each and every month?

Malware Working Group

- Focused on development of a XML based metadata sharing standard to augment existing malware sample sharing
- Website & Wiki located at http://ieee.sanasecurity.com
- Home for the schema for validation purposes http://ieee.sanasecurity.com/schema/1.0/metadataSharing. xsd

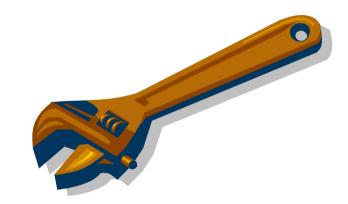
Additional Contributors

Support Intelligence
Immunet
Team Cymru
ShadowServer
Arbor Networks
Cisco
WebSense

AV-Test

SonicWall

Avira


and many others..

The Use Cases (1)

- Prioritize samples in a queue
 - E.g. by commonality
 - By geography
- Sharing clean files is problematic but meta-data is OK

- Weed out improper samples
 - Corrupt
 - Clean from malware test set
 - Malicious or unwanted from a clean set
- Build knowledge about a sample (or a collection) before you get it

The Use Cases (2)

- Grouping non-static malware
 - Polymorphic
 - Server-side polymorphics

- E.g. with old malware excluded
- With more common malware

- "fast-flux" URLs
- domains operated by entities (malware-writing groups)
- URLs <-> IPs

XML schema

- Why XML?
 - XML is friendly for RDBMS
 - Friendly for humans too
 - Extendable
 - Common and supported everywhere

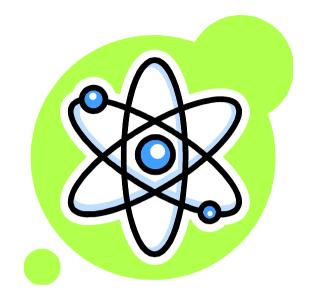
How?

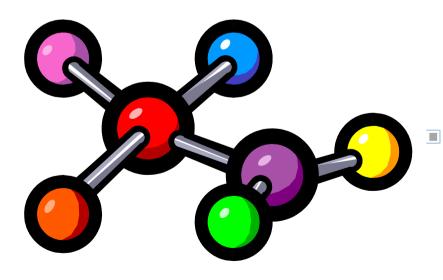
Outgoing XMLs

- Along with collection distribution (daily or ad-hoc)
- RAR-archived (for integrity checking)
- PGP-encrypted (for authenticated access)
- Distributed via FTP/SFTP/HTTP/HTTPS
 (same as already used for collection distribution)
- At least four companies already started

Incoming XMLs

- Level of details will depend on the source
- Several entities already consume XML feeds





Atomic

Simple basic elements

To cleanly link "atomic" elements with "relationships"

Main concepts (1)

- Header
 - Source of meta-data
 - Author
 - Timestamp
- Object1..ObjectNN
 - File
 - URI, domain, service (protocol:port)
 - Environment
 - Registry
 - Entity
- Classification1.. ClassificationMM
 - Clean/dirty/unwanted
 - Malware category
 - Detection name, product, company

Example (minimal)

```
<comment>This is minimal - just some files</comment>
    <timeStamp>2008-11-25T21:34:56</timeStamp>
    <objects>
        <!-- files -->
        <file id="2f437c1c8f73c2d6ffbb6214d3f1ccfe994151b3bd80fe2b3934a1bc89384599">
            <!--<attribute type="filename">116.exe</attribute>-->
            <md5>8b31da6402d850ce94e7c19bc97effe1</md5>
<sha1>850e5b037c799f86f04ee63da786f9ee139ebf57</sha1>
            <sha256>2f437c1c8f73c2d6ffbb6214d3f1ccfe994151b3bd80fe2b3934a1bc89384599</sha256>
            <size>32769</size>
            <crc32>34efdbca</crc32>
        </file>
        <file id="3a437c1c8f73c2d6ffbb6214d3f1ccfe994151b3bd80fe2b3934a1bc89384599">
            <!--<attribute type="filename">116.exe</attribute>-->
            <md5>aa31da6402d850ce94e7c19bc97effe1</md5>
<sha1>990e5b037c799f86f04ee63da786f9ee139ebf57</sha1>
            <sha256>22437c1c8f73c2d6ffbb6214d3f1ccfe994151b3bd80fe2b3934a1bc89384599</sha256>
        </file>
    </objects>
</malwareMetaData>
```


Main concepts (2)

- Relationships1.. RelationshipsXX
 - Child
 - Parent
 - isClassifiedAs, droppedBy, hosts, installed, runs, exploits, downloads, resolvesTo, verifiedBy, usesCNC, contactedBy, operatedByEntity, isnameServerOf, causesToInstall, ...
- fieldData1..fieldDataYY
 - firstSeen
 - Origin (e.g. country/collection/honeypot/...)
 - Commonality, priority
- Reference file[@id="12345"].

Example (file+ref+classification)

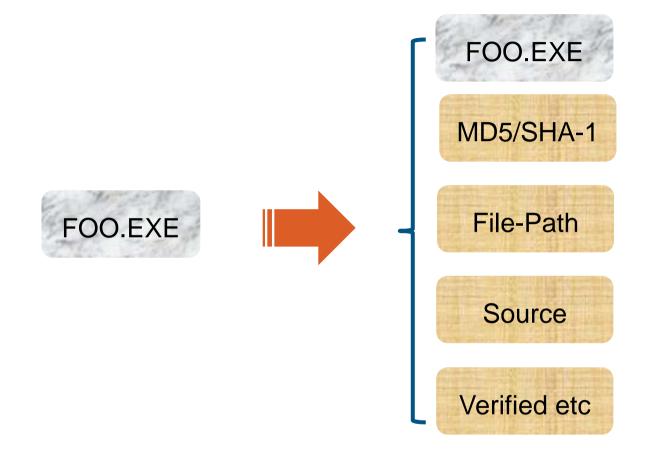
```
<objects>
    <!-- one file -->
    <file id="2f437c1c8f73c2d6ffbb6214d3f1ccfe994151b3bd80fe2b3934a1bc89384599">
        <!--<attribute type="Tilename">116.exe</attribute>-->
        <md5>8b31da6402d850ce94e7c19bc97effe1</md5>
        <sha1>850e5b037c799f86f04ee63da786f9ee139ebf57</sha1>
<sha256>2f437c1c8f73c2d6ffbb6214d3f1ccfe994151b3bd80fe2b3934a1bc89384599</sha256>
        <size>32768</size>
    </file>
<!-- one classification -->
    <classification id="AVG:Virut.BK" type="dirty">
        <classificationName>Virut.BK</classificationName>
        <companyName>AVG</companyName>
    </classification>
</objects>
<!-- this file is Virut -->
<relationships>
    <relationship type="isClassifiedAs">
        <parents>
             <ref>file[@id = '2f437c1c8f73c2d6ffbb6214d3f1ccfe994151b3bd80fe2b3934a1bc89384599']
        </parents>
        <children>
            <ref>classification[@id='AVG:Virut.BK']</ref>
        </children>
    </relationship>
</relationships>
```


Example (field data)

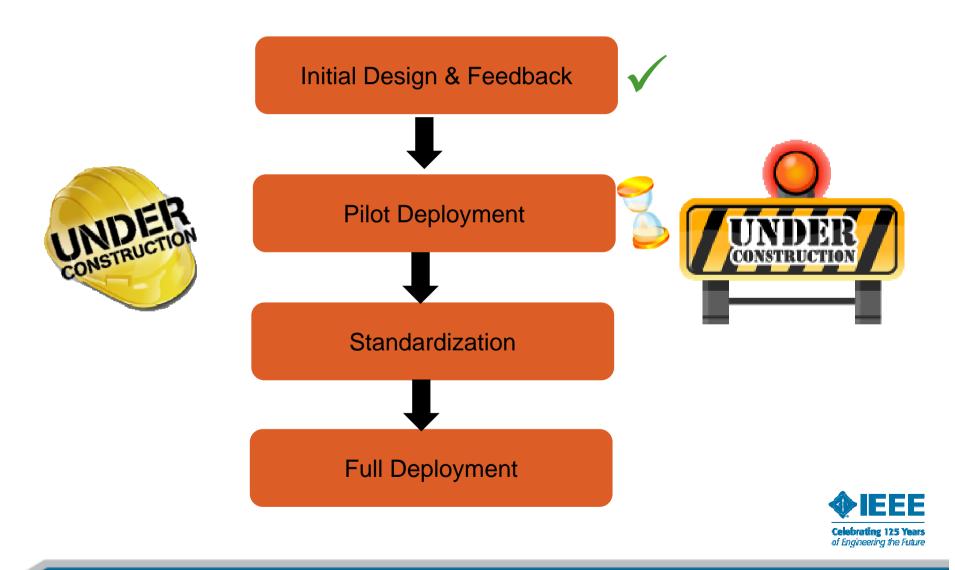
```
<!-- this is the prevalence data -->
<fieldData>
   <!-- by file -->
   <fieldDataEntry>
        <references>
        <ref>file[@id = '2f437c1c8f73c2d6ffbb6214d3f1ccfe994151b3bd80fe2b3934a1bc89384599']</ref>
        </references>
        <startDate>-1999-11-25T00:00:00</startDate>
        <endDate>2008-11-26T00:00:00 </endDate>
        <origin>user</origin>
        <commonality>8</commonality>
<location type="countryCodeISO3166-2">US</location>
    </fieldDataEntry>
    <fieldDataEntry>
        <references>
        <ref>file[@id = '2f437c1c8f73c2d6ffbb6214d3f1ccfe994151b3bd80fe2b3934a1bc89384599']
        </references>
        <startDate>2008-11-26T00:00:00</startDate>
        <endDate>2008-11-27T00:00:00</endDate>
        <origin>user</origin>
        <commonality>5</commonality>
        <location type="countryCodeIS03166-2">US</location>
    </fieldDataEntry>
    <fieldDataEntry>
        <references>
        <ref>file[@id = '2f437c1c8f73c2d6ffbb6214d3f1ccfe994151b3bd80fe2b3934a1bc89384599']</ref>
        </references>
        <startDate>2008-11-27T00:00:00</startDate>
        <endDate>2008-11-28T00:00:00</endDate>
        <origin>user</origin>
        <commonality>1</commonality>
    </fieldDataEntry>
```


Next Steps

- We're looking for active members of the Malware Working Group
- We need more participants in the pilot
- We need ideas on critical areas we should focus on
 - Blacklisting of malicious packers
 - Improving sample exchange mechanisms


Questions

Emails: joinicsg@ieee.org, mig@mcafee.com


How it works

We add available metadata to file sample during transfer (XML format)

Development Phases

Key Milestones

Deliverables	Date
Malware Meta-Data Exchange Format (MMDEF) V1 XML Schema document ready for Beta testing by initial WG Participants	9 th April 2009
Final XML Review Meeting by initial WG Participants	17 th April 2009
MMDEF V1 XML Schema document (draft) complete and ready for review with Invitees	22 nd April 2009
MMDEF V1 Review 1	1st May 2009
MMDEF V1 Review 2	8 th May 2009
MMDEF V1 Review 3	15 th May 2009
MMDEF V1 Review 4	22 nd May 2009
MMDEF V1 XML Schema document (final) complete and sent for informal WG ballot of readiness for piloting	29 th May 2009
Approval of MMDEF V1 XML Schema document for piloting	17 th June 2009
Piloting of Schema begins	18 th June 2009
TargetPiloting concludes	31st July 2009
MMDEF V1.1 Schema final edits and review complete (if needed)	August 2009
MMDEF V1.1 Schema balloted	Late August 2009

The next section of the presentation gives a brief outline of the XML schema

