
Static shellcode analysis and
classification

Aleksander P. Czarnowski
AVET Information and Network Security Sp. z o.o.

Virus Bulletin Conference 2011 Barcelona

Taxonomy proposal

Taxonomy field Field description / content

Shellcode execution  Kernel address space

 User address space

 Mixed

Target  Native

 Bytecode

Multistage  Yes

 No

ROP  Yes

 No

Executes code  Yes

 No

Required privileges Describes list of required privileges in order for shellcode to execute

correctly

Target resource List of targets on which shellcode can be executed

API calls sequence List of API calls made by shellcode – this is used to detect family members

of the same shellcode

Description Describes shellcode characteristic in details.

Shellcode size Shellcode size without no slide and encryption loop

Why invent another taxonomy
anyway?

Is the number of taxonomies to
low?

• Taxonomy for attack
patterns

• Taxonomy for
vulnerabilities

• Taxonomy for malware

• …

• Some parts already overlap.

Rationale behind dedicated
taxonomy and metrics:

• We need deep understanding
of threats that surrounds us in
order to address them
properly

• It is hard to notice important
changes in threat landscape if
it is not being monitored
closely enough

• It is cool to be on VB
Conference ;)

Problem definition

Given any shellcode A and B:

– Is shellcode B a member of the same family as
shellcode A or they are completely different?

– What is the functionality of shellcode A and B, and
if they differ, how do they differ?

And given any arbitrary byte stream block:

– Is this a shellcode or arbitrary data?

– If this is a shellcode is this byte is executable code
or data?

EXAMPLES

Example #1: which shellcode is
different?

setuid(0)
setgid(0)
execve(‘/bin/ls’, (‘ls’,’-la’)

setgid(0)
setuid(0)
execve(‘/bin/ls’, (‘ls’,’-la’)

dup2(client, 0)
dup2(client, 1)
dup2(client, 2)
execve(‘/bin/sh’,
(‘bash,’-i’)

NOP slide

Trampoline code

Trampoline code

Data section

Return address

Trampoline code

Data section

Return address

Trampoline code

Data section

Return address

NOP slide

Trampoline code

NOP slide

Trampoline code

Same API calls
different order

Example #2: which shellcode is
different?

setuid(0)
setgid(0)
execve(‘/bin/ls’, (‘ls’,’-la’)

NOP slide

Trampoline code

Trampoline code

Data section

Return address

setuid(0)
setgid(0)
execve(‘/bin/ls’, (‘ls’,’-la’)

n0P s1iD3

Trampoline code

Decryption loop

Data section

Return address

Decryption is
required to do

comparison

Polymorphic nop
slide – still has the
same funcionality

Example #3 & #4

Return-to-glibc like example Return Oriented Programming

Function address

Return address

Argument 1
Argument n

Function address

Return address

pop register

ret [n]

pop register

ret [n]

add eax, x
ret [n]

Why this is a problem?

• Shellcodes are not written by hand in
assembly language any more
– Runtime creation based on components database

– Parameters can be customized for every single use

• At CPU level shellcode can look differently
than in exploit
– ROP

• Is it possible to execute native code without
any code injection

How easy it was in 2004?

Dynamic analysis problems /
disadvantages

• Disadvantages:
– You have to run code

– Provide proper execution environment in first place to
be able to run the code

– Hard to monitor unless you use hypervisor
• Still can be tricky

• Advantages:
– Once you overcome the problems you don’t have to

work hard on emulation

– Is this shellcode really works?

Debugging manually

Possible generic approach

• Start process with debug flag
enable / attach to running
process

• Enable exception interception

• Catch the exception

• Single step & control address
of next instruction

• If differs from proper address
enter debugger
– Can use breakpoints on stack

checking code

Static analysis

• Advantages
– Works even without target environment
– Better automation
– A lot of components already out there in the internet

• Disadvantages
– Can be slow (not real issue since shellcodes are rather small)
– To get better result you need to know the target behavior and

emulate:
• Memory areas and system structures
• API results
• Execution flow events like SEH etc.

– Userland / Kernel rings behaves differently, must be emulated to
in some cases

SHELLCODE BUILDING BLOCKS
EXAMPLES

Just like LEGO bricks – you take one piece and attach it to another

Some challenges

• Detecting data and code segments and
marking them appropriately for further
analysis

– Detecting where certain parts starts and ends
within the section

• Feeding proper data to memory scanning
functions

Different ways to get (R/E)IP

Traditional trampoline

jmp trampoline

shellcode:

pop ebx ;ebx holds EIP

*…+

trampoline:

call shellcode

Pure ASCII shellcode

Loops

End marker in decryption loop

Memory scanning

Multistage: egghunter (1/3)

Multistage: egghunter (2/3)

Multistage: egghuner (3/3)

Manual extraction / analysis

Possible approach

• Load into IDA

• Set base address

• Convert to code

• Find entry point

• Decrypt if needed
(IDC/Python/x86emu/pyemu/…)

• Save the database

Manual extraction: final result

PROOF OF CONCEPT: STATIC
SHELLCODE ANALYZER

Demo

High level architecture

Extraction scripts

CPU Emulator

Meta CPU
translator

API Emulator

Final
classification

Shellcode blocks
library

Abstraction
repesentation

Byte patterns

metacpu

Objective
• Abstracts real CPU code into more comparable

form

• Translates API into generic call list that applies
to high level functionality across all targets

– Removes problems of differences between
security models like tokens in Windows or
different threads implementations

– Recognizes some instruction streams to
categorize whole blocks of code

• Deals well with short and long
shellcodes

• Good in detecting some nop slides

Current instruction list

• Ret [n]

• Push

• Pop

• Syscall

• Call

• Branch

• CriticalStructureAccess

• SomeOperation

Further development?

• Move from pattern detection towards more
advance metacpu

• Database backend to enable comparison

• Better analysis based on execution flow

• Better acquisition process

Taxonomy proposal

Taxonomy field Field description / content

Shellcode execution  Kernel address space

 User address space

 Mixed

Target  Native

 Bytecode

Multistage  Yes

 No

ROP  Yes

 No

Executes code  Yes

 No

Required privileges Describes list of required privileges in order for shellcode to execute

correctly

Target resource List of targets on which shellcode can be executed

API calls sequence List of API calls made by shellcode – this is used to detect family members

of the same shellcode

Description Describes shellcode characteristic in details.

Shellcode size Shellcode size without no slide and encryption loop

Thank you!

• Questions?

aleksander.czarnowski@avet.com.pl

