1+1!=2

in malware scanning

Taeil Goh

In this presentation

 Potentials and pitfalls of aggregating multiple antimalware products

- Overcoming the pitfalls
 - ✓ Drawing upon our experience (Metascan with 8 ~ 24 AVs)

Metascan/Metascan-Online

OPSWAT

Metascan

Why Multi-scanning

No AV shows 100% detection

On demand test results from AV comparatives from the 2010 August test and 2011 February test.

Threats missed by one may be found by others

Y axis is percentages of missing detections while 3 or more AVs among 9 AVs reports as threats.

Various response times to outbreak

Comparison of response time to outbreak with selected AVs, AV-Test.org. Y-axis represents delay time in hours.

Suspicious

Detection ratio

Heuristic scan increases detection rates

but also increases false positive

No easy way to determine false positive

No more black and white

Detection ratio (decision making factor)

www.metascan-online.com

www.virustotal.com

virusscan.jotti.org

Fallback/Redundancy

Software failure in race condition

Disable temporary proactively (e.g., catastrophic update)

During the regular maintenance of AV such as upgrade

Overcoming Challenge

1+1!=2

Challenge

Downside of more AVs

Scanning time

$$1+1 > 2$$

Potential failure due to an exploit

False positive

Combining downside of AVs:

$$1+1 >= 2$$

Performance optimization

Strategies to discuss

- Avoid redundant pre-scanning tasks
 Decompressing data
- Reduce scanning needs
 Filtering based on file type
- Avoid redundant scanning Caching scan results

Performance optimization

Utilizing File Type Analysis

- Detecting archive file
- Filtering based on file types
 Accept/Reject specific file types
- Multiple algorithms for file type analysis
 E.g., Linux File, TrID

Performance optimization

Pre-processing Archive File

Remember

Extracting archive files is very expensive

Improve detection rate of AV

Consider

Multiple archive libraries

Handling bad archive files such as archive bomb recursion level, file size, and file ratio

Caching

carefully

- Remove redundant scanning same data is usually seen over and over
- To consider

Rescan on demand to override cache Reset on update of definition database

Summary of performance optimization

For Example

Overcoming Challenge

Downside of more AVs

Scanning time

Potential failure due to an exploit

$$1+1=2$$

False positive

$$1+1 = 2$$

Software vulnerabilities

For 9 Advanced+ AVs

Number of secunia advisories on the selected AVs.

Robust integration

Resiliency from minimizing impact

- What we can do?
 - Minimize the impact of AV/components failure
- Multi-process (with Inter-Process Communication)
 E.g, web browser technology
- Handle DoS vulnerability
 - Timeout for scanning
 - ✓ RAMDISK

Robust integration

Watchdog

Robust integration

Negligible performance overhead or better

Comparison of scanning speeds between single process-based solution (marked as Single) and multi-process-based solutions (marked as Multi) for executables(marked as E) and 3788 files without differenciating the file types.

Overcoming Challenge

Downside of more AVs

Scanning time

Potential failure due to an exploit

False positive

$$1+1 = 2$$

Detecting False Positive

Not simple but possible

- No logical OR operation of the scan results
 Utilizing detection ratio
 (e.g., label data as "suspicious" if lower than 25%)
- Integration with comprehensive analysis tools such as sandbox solution.
- Further Manual inspection
- More AVs means
 higher confidence level based on detection ratio

Overcoming Challenge

Downside of more AVs

Scanning time

Potential failure due to an exploit

False positive

$$1+1 < 1$$

Combining downside of AVs:

$$1+1 < 1$$

Acknowledgement

Thanks To

AV-Compartives AV-TEST Secunia OPSWAT

for all the testing results and support of this research

QnA

For any question or feedback, please email

taeil@opswat.com

