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Quick introduction to PDF 

• Portable Document Format 

– Extremely liberal file format!!! 

• Powerful scripting language 

• Adobe Reader 

– 82% market share 

– Multiple vulnerabilities 

– Ideal channel for spreading? 
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Prevalence 
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Adobe Reader X 

• 18. November 2010 

• Sandboxing 

– Escape presented on BlackHat 2011  
http://bit.ly/nP9Fw9 (already patched) 

– Solution to the buggy reader? 

– Could be for those who have „X‟ 

• About 42% of all users run old & buggy 
versions (more than 50% of Adobe users)! 

– Let‟s see -> 
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Format-based heuristics 

• Challenge is to highlight obscure issues 

– But what‟s really strange? 

• Weak PDF specification 

– Manipulation is possible even if PDF 

specification says “impossible” 

– Undocumented features 

• Rich PDF specification 

– Many different ways to obtain the same result 
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How do we parse a PDF? 

• Parse in the same way as does the 

Reader 

– These attempts are not always successful! 

• Accept only valid PDF files  

– „Repair‟ reimplementation 

• Ability to discover and highlight obscure 

issues 

– Collect metainfo while parsing 
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Our dataset 
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Our dataset #2 

NON-MALWARE UNKNOWN MALWARE 

TOTAL 116,488 32,890 164,965 

HDR SHIFT 16 (0.01%) 169 (0.51%) 1,913 (1.16%) 

HDR WRONG 0 (0.00%) 70 (0.21%) 5,837 (3.54%) 

1 PAGE 35,294 (30.30%) 11,246 (34.19%) 130,108 (78.87%) 

1 PG. NO CONT. 245 (0.21%) 465 (1.41%) 54,376 (32.96%) 

BROKEN XREF 178 (0.15%) 2,575 (7.83%) 146,501 (88.81%) 

BIG DATA 1,037 (0.89%) 1,502 (4.57%) 40,156 (24.34%) 
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/XFA 
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• XFA = XML Adobe Forms 

• CVE-2010-0188 (TIF) 

The value of this entry must be either a stream 

representing the entire contents of the XML 

Data Package or an array of text string and 

stream pairs representing the individual 

packets comprising the XML Data Package.  

 

PDF reference, version 1.7 – 8.6.1, page 673 



/XFA Array 
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• MUST be an array of pairs (spec.) 

– String representing packet name  

– Stream representing packet data 

1 0 obj 

<< /XFA [(xdp:xdp) 10 0 R  

         (template) 11 0 R 

         (config) 12 0 R 

         (/xdp:xdp) 13 0 R 

]>> 

endobj 

Packet name 

Packet stream 



/XFA Array #2 
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• MUST be an array of pairs (spec.) 

– O‟rly? What about this? 

1 0 obj 

<< /XFA [8 0 R  

         9 0 R  

        10 0 R  

        11 0 R  

        12 0 R]>> 

endobj 

Packet streams 

This works even 

if there‟s no 

name-stream pair 

(mixed works too) 



/XFA packet 
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• packets allow the split of logical form 

• template, data, config, etc… 

 
Each packet represents a complete XML 

element, with the exception of the first and last 

packet, which specify the beginning and end 

tags for the xdp:xdp element.   

 

PDF reference, version 1.7 – 8.6.7, page 772 



/XFA packet #2 
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<event activity="initialize” …> 

 <script …> 

  function evil(){ 

endstream endobj  

22 0 obj <</Length 45>>stream 

   app.alert(arguments.callee.toString());} 

endstream endobj  

23 0 obj <</Length 11>>stream 

  evil(); 

endstream endobj  

30 0 obj <</Length 142>>stream 

 </script> 

</event> 



/XFA – results 
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• Notice result for dataset limited to PDF 

files containing XFA  

 
NON-MALWARE UNKNOWN MALWARE 

TOTAL / XFA 116,488 / 2,787 32,890 / 3,128 164,965 / 66,816 

no NAME 0 (0.00% / 0.00%) 8 (0.02%/0.26%) 24,311 (14.74%/36.38%) 

split SCRIPT 0 (0.00% / 0.00%) 10 (0.03%/0.32%) 13,657 (8.28%/20.44%) 



/Filter – stream filters 
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• Indicate how streams are encoded 

• Evaluate only on valuable objects! 

• Multiple different filters 

– /ASCIIHexDecode /FlateDecode … 

• Filter repetition 

– /ASCIIHexDecode … /ASCIIHexDecode 

• Unexpected filters 

– Text under JBig2Decode, JPXDecode, …  



 

 

 

 
 

• Maximum of 5 filters encountered ITW 

– More than 20 work! We tested them. 

 

/Filter – different / duplicate 
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NON-MALWARE UNKNOWN MALWARE 

TOTAL 116,488 32,890 164,965 

1 filter 17,298 (14.85%) 6,207 (18.87%) 78,904 (47.83%) 

2 filters 0 (0.00%) 73 (0.22%) 11,615 (7.04%) 

3 filters 0 (0.00%) 9 (0.03%) 979 (0.59%) 

4 filters 0 (0.00%) 1 (0.00%) 175 (0.11%) 

5 filters 0 (0.00%) 11 (0.03%) 405 (0.25%) 

Dupl. filters 0 (0.00%) 5 (0.02%) 116 (0.07%) 



/Filter – JBIG2Decode 
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• Pure image encoding algorithm 

– Monochrome (1 bit per pixel) 

– Both lossy and lossless (text encode) 

Also note that JBIG2Decode and JPXDecode 

are not listed in Table 4.44 because those 

filters can be applied only to image XObjects.   

 

PDF reference, version 1.7 – 4.8.6, page 353 



/Filter – JBIG2Decode #2 
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• Would you expect it in text streams? 

– We didn‟t, due to the specifications! 

 
200 0 obj << 

/XFA [(template) 201 0 R (dataset) 301 0 R] 

>> endobj 

... 

201 0 obj << 

/Length 3125  

/Filter [ /FlateDecode /JBIG2Decode ] 

>> 

stream ... 



/Filter – Unexpected filters | 

parameters 
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• Unexpected on non-image data 

– JS, XFA, font 

• Any data might be declared as an image 

• Encoding needs to be lossless 

– RunLengthDecode, CCITTFaxDecode, 

JBig2Decode 

• Parameter /Predictor in LZW and Flate 

– for TIFF and PNG images 



/Filter – overview 
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NON-MALWARE UNKNOWN MALWARE 

TOTAL 116,488 32,890 164,965 

PLAINTEXT 17,298 ( 14.85% ) 6,221 ( 18.91% ) 88,048 ( 53.37% ) 

DEFLATE 13,227 ( 11.35% ) 2,748 ( 8.36% ) 71,052 ( 43.07% ) 

ASCII85 0 ( 0.00% ) 133 ( 0.40% ) 15,140 ( 9.18% ) 

ASCIIHEX 0 ( 0.00% ) 33 ( 0.10% ) 3,138 ( 1.90% ) 

RLE 0 ( 0.00% ) 19 ( 0.06% ) 724 ( 0.44% ) 

LZW 0 ( 0.00% ) 14 ( 0.04% ) 624 ( 0.38% ) 

PREDICTOR 0 ( 0.00% ) 0 ( 0.00% ) 491 ( 0.30% ) 

CCITTFAX 0 ( 0.00% ) 0 ( 0.00% ) 92 ( 0.06% ) 

JBIG2 0 ( 0.00% ) 0 ( 0.00% ) 45 ( 0.03% ) 

UNHANDLED 0 ( 0.00% ) 0 ( 0.00% ) 0 ( 0.00% ) 



Format-based heuristics - review 
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• Many strange attributes 

– Allows well-balanced heuristics 

NON-MALWARE UNKNOWN MALWARE 

TOTAL 116,488 32,890 164,965 

“Normal”  116,251 (99.80%) 32,043 (97.42%) 51,232 (31.06%) 

Sth. “abnormal” 237 (0.20%) 847 (2.58%) 113,733 (68.94%) 



PDF JavaScript 
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• The engine of malicious PDFs 

• Powerful control 

• Various usage 

– Main exploitation (printd, getIcon, ….) 

– Heap spraying 

– Obfuscation 

• Our nightmare! 

 



Our dataset – XFA/JavaScript 
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• Limit samples in all categories 

– Including XFA or JS 

 

 

 

 

NON-MALWARE UNKNOWN MALWARE 

TOTAL 116,488 32,890 164,965 

JS 30,504 (26.19%) 8,754 (26.62%) 102,271 (62.00%) 

XFA 2,787 (2.39%) 3,128 (9.51%) 66,816 (40.50%) 

JS or XFA 30,525 (26.20%) 9,049 (27.51%) 163,130 (98.89%) 



PDF JS use in malware 
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var l = 'dsjnk'['su'+('qwe','bstr')]; 

var g = l(); 

t='le'; 

a=["e","a","n","b","w"]; 

e=g[a[0]+'v'+a[1]+'l']; 

... 

l = function substr(){...}; 

g = String; // Object String 

e = Object["eval"]; // method eval 

e = eval; // Run anything - e(expl); 



PDF JavaScript – Light Side 
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• Non-malware JS in PDF is conservative 

– Usually clean & readable code 

– Low use of public obfuscators 

– Nearly no custom obfuscations 

 

• Allows us to be strict! 

– Penalize everything abnormal 

 



PDF JS – Group rules 
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• Groups targeting abnormality 

– Minimal script patterns (strings, regexp, ...) 

– Group made of many patterns (based on 
similarity) 

– Sum „chunk hits‟ inside groups 

• Simple detection rules between groups 

– A [&& B [&& C […]]]  (rule: A && B) 

– Negation of group (rule: A && !B) 

– <,<=,==,>=,> (rule: A && !B && sum C > 4) 

 



PDF JS – Group rules #2 
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SET SAMPLES group APP 

NON-MAL 116,488 1 ( 0.00% ) 

UNKNOWN 32,890 80 ( 0.24% ) 

MALWARE 164,965 28,685 ( 17.39% ) 

  =APP;   =‘INFO’; 

APP && DOM 

0 ( 0.00% ) 

0 ( 0.00% ) 

9,456 ( 5.73% ) 

group DOM 

869 ( 0.75% ) 

540 ( 1.64% ) 

34,184 ( 20.72% ) 

&& 



PDF JS – Group rules #3 
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• 88 groups 

• 137  detection rules (13 submission) 

• 2,700 patterns 

• >1,800,000 combinations 

 

 

 

• The rest is detected using other methods 

SET ALL / JS or XFA DETECTION 

NON-MALWARE 116,488 / 30,525 0 (0.00% / 0.00%) 

UNKNOWN 32,890 / 9,049 0 (0.00% / 0.00%) 

MALWARE 164,965 / 163,130 147,941 (89.68% / 90.69%) 



QA against QA – quick review  
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• Most Malware authors have QA 

– Processes to avoid AV detections (at least) 

• Avoiding basic detections is easy 

– Services similar to virustotal.com,… 

 

• How about detections they don‟t see!?!  

– Based on additional triggers (source, 

structure, data flow, … ) 

– Avoiding is not so easy ;-) 



Conclusion 
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• PDF format is very complex, easy to misuse 

• Reader is very widespread and not upgraded 

consistently 

• Structural heuristics work, but only on a 

limited subset of files 

• JavaScript heuristics rules have almost 

complete coverage 

• But the bad guys aren‟t sleeping, so 

combining techniques is the way to go. 

 



Thank you, now wake up! 
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• Any Questions? 

 

• Contacts 

– Jindrich Kubec (kubec@avast.com) 

– Jiri Sejtko (sejtko@avast.com) 

– http://blog.avast.com 
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