
X is not enough!
Grab the PDF by the tail!

Jindrich Kubec

Jiri Sejtko

Agenda

VB2011 X is not enough! Grab the PDF by the tail! 2

Introduction

File format heuristics

JavaScript heuristics

Conclusion

Quick introduction to PDF

• Portable Document Format

– Extremely liberal file format!!!

• Powerful scripting language

• Adobe Reader

– 82% market share

– Multiple vulnerabilities

– Ideal channel for spreading?

VB2011 3 X is not enough! Grab the PDF by the tail!

Prevalence

VB2011 4 X is not enough! Grab the PDF by the tail!

0

2500

5000

7500

10000

12500

15000

17500

SHAs (total 1832551 unique files)

hits (total 3682210 hits)

Adobe Reader X

• 18. November 2010

• Sandboxing

– Escape presented on BlackHat 2011
http://bit.ly/nP9Fw9 (already patched)

– Solution to the buggy reader?

– Could be for those who have „X‟

• About 42% of all users run old & buggy
versions (more than 50% of Adobe users)!

– Let‟s see ->

VB2011 5 X is not enough! Grab the PDF by the tail!

55.1% 53.1% 51.2% 49.7% 49.0% 48.4% 48.5% 47.0% 45.9% 45.7% 44.4% 44.0% 43.3% 43.4% 42.1%

19.6% 20.1% 20.4% 20.8% 20.9%
13.0%

8.2% 6.2% 5.2% 4.8% 4.3% 3.8% 3.2%

27.8% 29.2%

11.2% 12.1% 13.0% 12.7% 12.0%
21.6%

27.3% 29.1% 30.8% 31.7% 33.3% 34.0% 36.1%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Adobe (vuln.) Adobe 9.4.2 (vuln) Adobe (not vuln.) Foxit Other None

PDF Market share

VB2011 6 X is not enough! Grab the PDF by the tail!

CVE-2011-0609/0611

Format-based heuristics

• Challenge is to highlight obscure issues

– But what‟s really strange?

• Weak PDF specification

– Manipulation is possible even if PDF

specification says “impossible”

– Undocumented features

• Rich PDF specification

– Many different ways to obtain the same result

VB2011 7 X is not enough! Grab the PDF by the tail!

How do we parse a PDF?

• Parse in the same way as does the

Reader

– These attempts are not always successful!

• Accept only valid PDF files

– „Repair‟ reimplementation

• Ability to discover and highlight obscure

issues

– Collect metainfo while parsing

VB2011 8 X is not enough! Grab the PDF by the tail!

Our dataset

VB2011 9 X is not enough! Grab the PDF by the tail!

NON-
MALWARE

116,488
37%

UNKNOWN
32,890
10%

MALWARE
164,965

53%

Our dataset #2

NON-MALWARE UNKNOWN MALWARE

TOTAL 116,488 32,890 164,965

HDR SHIFT 16 (0.01%) 169 (0.51%) 1,913 (1.16%)

HDR WRONG 0 (0.00%) 70 (0.21%) 5,837 (3.54%)

1 PAGE 35,294 (30.30%) 11,246 (34.19%) 130,108 (78.87%)

1 PG. NO CONT. 245 (0.21%) 465 (1.41%) 54,376 (32.96%)

BROKEN XREF 178 (0.15%) 2,575 (7.83%) 146,501 (88.81%)

BIG DATA 1,037 (0.89%) 1,502 (4.57%) 40,156 (24.34%)

VB2011 10 X is not enough! Grab the PDF by the tail!

/XFA

VB2011 11 X is not enough! Grab the PDF by the tail!

• XFA = XML Adobe Forms

• CVE-2010-0188 (TIF)

The value of this entry must be either a stream

representing the entire contents of the XML

Data Package or an array of text string and

stream pairs representing the individual

packets comprising the XML Data Package.

PDF reference, version 1.7 – 8.6.1, page 673

/XFA Array

VB2011 12 X is not enough! Grab the PDF by the tail!

• MUST be an array of pairs (spec.)

– String representing packet name

– Stream representing packet data

1 0 obj

<< /XFA [(xdp:xdp) 10 0 R

 (template) 11 0 R

 (config) 12 0 R

 (/xdp:xdp) 13 0 R

]>>

endobj

Packet name

Packet stream

/XFA Array #2

VB2011 13 X is not enough! Grab the PDF by the tail!

• MUST be an array of pairs (spec.)

– O‟rly? What about this?

1 0 obj

<< /XFA [8 0 R

 9 0 R

 10 0 R

 11 0 R

 12 0 R]>>

endobj

Packet streams

This works even

if there‟s no

name-stream pair

(mixed works too)

/XFA packet

VB2011 14 X is not enough! Grab the PDF by the tail!

• packets allow the split of logical form

• template, data, config, etc…

Each packet represents a complete XML

element, with the exception of the first and last

packet, which specify the beginning and end

tags for the xdp:xdp element.

PDF reference, version 1.7 – 8.6.7, page 772

/XFA packet #2

VB2011 15 X is not enough! Grab the PDF by the tail!

<event activity="initialize” …>

 <script …>

 function evil(){

endstream endobj

22 0 obj <</Length 45>>stream

 app.alert(arguments.callee.toString());}

endstream endobj

23 0 obj <</Length 11>>stream

 evil();

endstream endobj

30 0 obj <</Length 142>>stream

 </script>

</event>

/XFA – results

VB2011 16 X is not enough! Grab the PDF by the tail!

• Notice result for dataset limited to PDF

files containing XFA

NON-MALWARE UNKNOWN MALWARE

TOTAL / XFA 116,488 / 2,787 32,890 / 3,128 164,965 / 66,816

no NAME 0 (0.00% / 0.00%) 8 (0.02%/0.26%) 24,311 (14.74%/36.38%)

split SCRIPT 0 (0.00% / 0.00%) 10 (0.03%/0.32%) 13,657 (8.28%/20.44%)

/Filter – stream filters

VB2011 17 X is not enough! Grab the PDF by the tail!

• Indicate how streams are encoded

• Evaluate only on valuable objects!

• Multiple different filters

– /ASCIIHexDecode /FlateDecode …

• Filter repetition

– /ASCIIHexDecode … /ASCIIHexDecode

• Unexpected filters

– Text under JBig2Decode, JPXDecode, …

• Maximum of 5 filters encountered ITW

– More than 20 work! We tested them.

/Filter – different / duplicate

VB2011 18 X is not enough! Grab the PDF by the tail!

NON-MALWARE UNKNOWN MALWARE

TOTAL 116,488 32,890 164,965

1 filter 17,298 (14.85%) 6,207 (18.87%) 78,904 (47.83%)

2 filters 0 (0.00%) 73 (0.22%) 11,615 (7.04%)

3 filters 0 (0.00%) 9 (0.03%) 979 (0.59%)

4 filters 0 (0.00%) 1 (0.00%) 175 (0.11%)

5 filters 0 (0.00%) 11 (0.03%) 405 (0.25%)

Dupl. filters 0 (0.00%) 5 (0.02%) 116 (0.07%)

/Filter – JBIG2Decode

VB2011 19 X is not enough! Grab the PDF by the tail!

• Pure image encoding algorithm

– Monochrome (1 bit per pixel)

– Both lossy and lossless (text encode)

Also note that JBIG2Decode and JPXDecode

are not listed in Table 4.44 because those

filters can be applied only to image XObjects.

PDF reference, version 1.7 – 4.8.6, page 353

/Filter – JBIG2Decode #2

VB2011 20 X is not enough! Grab the PDF by the tail!

• Would you expect it in text streams?

– We didn‟t, due to the specifications!

200 0 obj <<

/XFA [(template) 201 0 R (dataset) 301 0 R]

>> endobj

...

201 0 obj <<

/Length 3125

/Filter [/FlateDecode /JBIG2Decode]

>>

stream ...

/Filter – Unexpected filters |

parameters

VB2011 21 X is not enough! Grab the PDF by the tail!

• Unexpected on non-image data

– JS, XFA, font

• Any data might be declared as an image

• Encoding needs to be lossless

– RunLengthDecode, CCITTFaxDecode,

JBig2Decode

• Parameter /Predictor in LZW and Flate

– for TIFF and PNG images

/Filter – overview

VB2011 22 X is not enough! Grab the PDF by the tail!

NON-MALWARE UNKNOWN MALWARE

TOTAL 116,488 32,890 164,965

PLAINTEXT 17,298 (14.85%) 6,221 (18.91%) 88,048 (53.37%)

DEFLATE 13,227 (11.35%) 2,748 (8.36%) 71,052 (43.07%)

ASCII85 0 (0.00%) 133 (0.40%) 15,140 (9.18%)

ASCIIHEX 0 (0.00%) 33 (0.10%) 3,138 (1.90%)

RLE 0 (0.00%) 19 (0.06%) 724 (0.44%)

LZW 0 (0.00%) 14 (0.04%) 624 (0.38%)

PREDICTOR 0 (0.00%) 0 (0.00%) 491 (0.30%)

CCITTFAX 0 (0.00%) 0 (0.00%) 92 (0.06%)

JBIG2 0 (0.00%) 0 (0.00%) 45 (0.03%)

UNHANDLED 0 (0.00%) 0 (0.00%) 0 (0.00%)

Format-based heuristics - review

VB2011 23 X is not enough! Grab the PDF by the tail!

• Many strange attributes

– Allows well-balanced heuristics

NON-MALWARE UNKNOWN MALWARE

TOTAL 116,488 32,890 164,965

“Normal” 116,251 (99.80%) 32,043 (97.42%) 51,232 (31.06%)

Sth. “abnormal” 237 (0.20%) 847 (2.58%) 113,733 (68.94%)

PDF JavaScript

VB2011 24 X is not enough! Grab the PDF by the tail!

• The engine of malicious PDFs

• Powerful control

• Various usage

– Main exploitation (printd, getIcon, ….)

– Heap spraying

– Obfuscation

• Our nightmare!

Our dataset – XFA/JavaScript

VB2011 25 X is not enough! Grab the PDF by the tail!

• Limit samples in all categories

– Including XFA or JS

NON-MALWARE UNKNOWN MALWARE

TOTAL 116,488 32,890 164,965

JS 30,504 (26.19%) 8,754 (26.62%) 102,271 (62.00%)

XFA 2,787 (2.39%) 3,128 (9.51%) 66,816 (40.50%)

JS or XFA 30,525 (26.20%) 9,049 (27.51%) 163,130 (98.89%)

PDF JS use in malware

VB2011 26 X is not enough! Grab the PDF by the tail!

var l = 'dsjnk'['su'+('qwe','bstr')];

var g = l();

t='le';

a=["e","a","n","b","w"];

e=g[a[0]+'v'+a[1]+'l'];

...

l = function substr(){...};

g = String; // Object String

e = Object["eval"]; // method eval

e = eval; // Run anything - e(expl);

PDF JavaScript – Light Side

VB2011 27 X is not enough! Grab the PDF by the tail!

• Non-malware JS in PDF is conservative

– Usually clean & readable code

– Low use of public obfuscators

– Nearly no custom obfuscations

• Allows us to be strict!

– Penalize everything abnormal

PDF JS – Group rules

VB2011 28 X is not enough! Grab the PDF by the tail!

• Groups targeting abnormality

– Minimal script patterns (strings, regexp, ...)

– Group made of many patterns (based on
similarity)

– Sum „chunk hits‟ inside groups

• Simple detection rules between groups

– A [&& B [&& C […]]] (rule: A && B)

– Negation of group (rule: A && !B)

– <,<=,==,>=,> (rule: A && !B && sum C > 4)

PDF JS – Group rules #2

VB2011 29 X is not enough! Grab the PDF by the tail!

SET SAMPLES group APP

NON-MAL 116,488 1 (0.00%)

UNKNOWN 32,890 80 (0.24%)

MALWARE 164,965 28,685 (17.39%)

 =APP; =‘INFO’;

APP && DOM

0 (0.00%)

0 (0.00%)

9,456 (5.73%)

group DOM

869 (0.75%)

540 (1.64%)

34,184 (20.72%)

&&

PDF JS – Group rules #3

VB2011 30 X is not enough! Grab the PDF by the tail!

• 88 groups

• 137 detection rules (13 submission)

• 2,700 patterns

• >1,800,000 combinations

• The rest is detected using other methods

SET ALL / JS or XFA DETECTION

NON-MALWARE 116,488 / 30,525 0 (0.00% / 0.00%)

UNKNOWN 32,890 / 9,049 0 (0.00% / 0.00%)

MALWARE 164,965 / 163,130 147,941 (89.68% / 90.69%)

QA against QA – quick review

VB2011 31 X is not enough! Grab the PDF by the tail!

• Most Malware authors have QA

– Processes to avoid AV detections (at least)

• Avoiding basic detections is easy

– Services similar to virustotal.com,…

• How about detections they don‟t see!?!

– Based on additional triggers (source,

structure, data flow, …)

– Avoiding is not so easy ;-)

Conclusion

VB2011 32 X is not enough! Grab the PDF by the tail!

• PDF format is very complex, easy to misuse

• Reader is very widespread and not upgraded

consistently

• Structural heuristics work, but only on a

limited subset of files

• JavaScript heuristics rules have almost

complete coverage

• But the bad guys aren‟t sleeping, so

combining techniques is the way to go.

Thank you, now wake up!

VB2011 33 X is not enough! Grab the PDF by the tail!

• Any Questions?

• Contacts

– Jindrich Kubec (kubec@avast.com)

– Jiri Sejtko (sejtko@avast.com)

– http://blog.avast.com

mailto:kubec@avast.com
mailto:sejtko@avast.com
http://blog.avast.com/

