

The Dangers of Per-User COM
Objects

Virus Bulletin 2011 - Barcelona
Jon Larimer

jlarimer@gmail.com

About Me

● Security researcher / software developer /
reverse engineer

● 1998-2004: ISS X-Force
● 2004-2009: nCircle Network Security
● 2009-2011: IBM X-Force
● Currently at Google on the Android Security

Team
● Live in Atlanta, GA, USA

Agenda

● Component Object Model (COM)
● Why per-user COM objects are dangerous
● Windows integrity levels, access tokens, User

Account Control (UAC)
● Privilege elevation attacks with per-user COM

objects
● Detecting and preventing attacks
● Q&A

COM: Component Object Model

● From the MSDN Library: COM is a platform-independent,
distributed, object-oriented system for creating binary software
components that can interact.

● Technology behind OLE (object linking and embedding), OLE
Automation, DCOM (Distributed COM), COM+ (pre-curser
to .NET), and ActiveX

● COM components can be accessed by a variety of languages:
C/C++, C# and other .NET languages, JScript/VBScript

● Much of the Windows Shell is built on COM and uses COM
components

How COM objects are used

● COM objects are registered in system registry
● Objects are referenced through a Class ID

(CLSID) and an Interface ID (IID)
● CoCreateInstance() uses the CLSID and IID to

locate the executable code and load it into
memory, then provides the client with a pointer
to access class members

● In-process COM objects are DLLs that get
loaded into the same process

Per-user COM objects

● Machine-wide COM objects are registered in
HKEY_LOCAL_MACHINE\Software\Classes

● Per-user COM objects are registered in
HKEY_CURRENT_USER\Software\Classes

● Per-user COM objects:
● Can be registered by any process at Medium

integrity level
● Are only visible to the user that installs them
● Take precedence over machine-wide objects in the

COM subsystem

Abusing precedence

● Most Windows software uses many COM objects,
intentional or not

● Windows looks for per-user COM objects before
loading a machine-wide one

● Malicious software could install a per-user COM
object with the same CLSID as a machine-wide object

● COM object hijacking: Malware can replace a
benign system-wide COM object with a malicious per-
user object that gets loaded in it's place

More on precedence attacks

● Malware persistence - Explorer loads COM
objects when a user logs on

● Process injection - Some programs can be
convinced to load a COM object after they're
already running (Explorer, web browsers)

● User mode rootkits - Inject into a process, hook
API calls

● Can be hard to detect - no extra running process
● What about privilege elevation attacks?

Access Tokens

● Contain information on privileges, group
membership, and integrity level

● Used to control access to files, registry keys,
named pipes, and other objects

● Every process has an access token
● Administrative users get two access tokens -

one for normal use, one for elevated privileges

Windows Integrity Levels

● Introduced in Vista

● Designed to restrict the access of less-than-trustworthy
applications

● Blocks processes with a lower integrity level from accessing
objects with a higher integrity level

● Example: Notepad can't save a file in C:\Windows\System32.

● Five integrity levels: Untrusted, Low, Medium, High, System
● Sandboxed apps: Low
● Regular user processes: Medium
● Elevated (UAC) processes: High

User Account Control (UAC)

● Introduced in Vista

● Used to elevate the integrity level of a process

● Can provide the Administrator token to members of the
Administrators group

● Four levels available in Windows 7:
● Always notify
● Notify only when programs try to change computer (default)
● Notify only when programs try to change computer, don't dim desktop
● Never notify

● Privilege elevation also available through “Run as
Administrator...” option

Back to privilege elevation...

● MSDN says: Beginning with Windows Vista® and
Windows Server® 2008, if the integrity level of a process
is higher than Medium, the COM runtime ignores per-
user COM configuration and accesses only per-machine
COM configuration. This action reduces the surface area
for elevation of privilege attacks, preventing a process
with standard user privileges from configuring a COM
object with arbitrary code and having this code called
from an elevated process.

● This is mostly true
● What about custom COM object loaders?

Per-user COM object privilege
elevation in shell32.dll

● There is a vulnerability in shell32.dll's
SHCoCreateInstance() call

● If a high integrity level process uses this API call, it can
be tricked into loading a per-user COM object
● Medium → High integrity level privilege elevation

● Reported to MSRC in March 2011. They
acknowledged the vulnerability but declined to fix it
● Why? It's an elevation of privilege attack that requires

administrator rights

● The bug is still useful in a couple of different attack
scenarios..

UAC hijack attack

● Find an app that requires UAC and makes use of
SHCoCreateInstance()
● Many software installers use this...

● Register a per-user COM object for the requested
CLSID

● Wait for the user to launch the app and approve
the UAC dialog

● Your per-user COM object, registered with a
Medium integrity process, now runs at High
integrity

UAC hijack demo

UAC bypass attack

● There's a “UAC Whitelist” with 80+ applications
● This was new in Windows 7

● These programs, digitally signed by Microsoft, are
allowed to elevate to High integrity without UAC by
default

● Some of these applications might call
SHCoCreateInstance() while running at High
integrity...

● Also see the research by Leo Davidson - he found a
UAC bypass attack in the Windows 7 beta that's still
not fixed

UAC bypass demo

Protecting yourself

● Don't use your PC as Administrator
● Easier said than done

● Crank up UAC settings to “Always Notify”
● Treat per-user COM objects the same as

anything in the registry's Run keys - be
suspicious of anything there

● Be wary of processes with mapped DLLs that
are in your home directory

Protecting your customers

● Scan registry for suspicious entries - a per-user COM object
registered for a CLSID that also has a machine-wide entry

● Intercept registry access in high integrity processes, don't allow
them access to per-user COM objects

● Run as much code as possible with Low integrity level, which
doesn't have access to register per-user COM objects

● Audit your code to make sure it can't be targeted by malware for
privilege elevations
● Run Sysinternals Process Monitor to watch for High integrity level

processes accessing per-user COM registrations

Protecting your employees

● Don't give users local Administrator access
● Implement application whitelisting

● Ensure the solution allows whitelisting of DLLs
● This can be painful to implement

● Periodically scan systems for suspicious per-
user COM objects

Questions?

● Contact info:
● Email: jlarimer@gmail.com
● Twitter: @shydemeanor
● LinkedIn, Google+, etc

