Malware mining

Dr. Igor Muttik – McAfee Labs™
• What makes a great AV product
• What is data-mining?
• Data-mining methods
 – Decision trees
 – Support Vector Machines
 – ROCs
• Data-mining as a heuristic/generic method
• Extracting features
• Practical uses of malware data-mining
• Conclusions and questions
What would make a great AV product?

• Proactively detects as many threats as possible
• Creates a very low number of false alarms
• Requires as little maintenance as possible
• Runs quickly and introduces little overhead
But how can this be done?

- Traditional (specific) detection methods (strings, hashes)
- Generic detection methods
- Heuristic detection methods
- Cloud-based methods
- Reputation methods
- Behavioural methods

<table>
<thead>
<tr>
<th>Detection method</th>
<th>Proactive capability</th>
<th>Cost to update</th>
<th>Available for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific (manual)</td>
<td>None</td>
<td>Medium</td>
<td>Many years</td>
</tr>
<tr>
<td>Specific (automated)</td>
<td>None</td>
<td>Low</td>
<td>Many years</td>
</tr>
<tr>
<td>Generic (manual)</td>
<td>High</td>
<td>High</td>
<td>Many years</td>
</tr>
<tr>
<td>Generic (automated)</td>
<td>Medium</td>
<td>Medium</td>
<td>Many years</td>
</tr>
<tr>
<td>Heuristic (manual)</td>
<td>Medium</td>
<td>High</td>
<td>Many years</td>
</tr>
<tr>
<td>Heuristic (automated)</td>
<td>Medium</td>
<td>Low</td>
<td>???</td>
</tr>
</tbody>
</table>
What is data-mining?
Data Mining—An Example

Measurements
Height Versus Weight

<table>
<thead>
<tr>
<th>Height (in inches)</th>
<th>Weight (in pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>65</td>
<td>150</td>
</tr>
<tr>
<td>70</td>
<td>200</td>
</tr>
<tr>
<td>75</td>
<td>250</td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>
Height Versus Weight + 1 Boolean feature

Weight (in pounds)

60 65 70 75 80

Women

Men
One Dimension Only (1 feature)
Putting Weight and Height Into Perspective
Best Guess for Gender

- 100% male
- 0% female
- 50% male
- 50% female
- 0% male
- 100% female

Height (in inches)
Weight (in pounds)

Best Guess
Buttock Circumference: The circumference of the body measured at the level of the maximum posterior protuberance of the buttocks.
Buttock Circumference: The circumference of the body measured at the level of the maximum posterior protuberance of the buttocks.
Further Improving the Separation

Signal to Noise
Features with very different distribution per class

Correlation
Features with low correlation

Dimensionality
Consider more features at the same time
Data-mining methods
Classification Algorithms

- Decision Trees
- Decision Forests
- Neural Networks
- Support Vector Machines

Final Verdict
ROCs graphically represent the quality of separation achieved by data-mining.
Primitive decision tree

Is the file packed?

- Yes: Emulate to unpack
- No: Scan without emulation
Manually-constructed decision tree (logic)

Is the file packed?

Yes:
- Does the file have a trusted digital signature?
 - No: Emulate to unpack
 - Yes: Do not scan

No: Scan without emulation
Feature extraction for PE files

- Is file packed = Boolean
- Is file a DLL = Boolean
- HLL language = Integer {1=VB, 2=MSVC, 3=Delphi, 4=.NET, 5=…}
- How many PE sections = Integer
- Are section names standard = Boolean
- Are characteristics of sections standard = Boolean
- Is entry point in the 1st section = Boolean
- Is file digitally signed = Boolean
- Is DOS header standard = Boolean
- Is PE timestamp old = Boolean
- How many resources = Integer
- How many languages in resources = Integer
- Do timestamps in PE header/resources/digisig match = Boolean
- Number of imports = Integer
- Number of exports = Integer
- Number of bound imports = Integer
- Number of imports from WSOCK32.DLL
Steps to build a decision tree

Build collections
- Build two TP and FP sets (training sets)
- Setting aside collections for testing (e.g. 10-25%)

Extract features
- From TP set
- From FP set

Model
- Can be expensive for large collections and lots of features
- Pruning (if there is overfitting)

Test
- If the result is not good – make changes and repeat

Convert into usable form
- Decision tree logic into C or C++
ROC for a decision trees we use

- Decision tree (DT) for PE files with 20 features

When built

In 6 months
Converting logic into code

- DT visualized in Weka

- DT as C code

```c
if (LSEX <= 0) {
    if (PACK <= 0) {
        if (TIME <= 1174454487) {
            if (TIME <= 708992669) {
                if (TIME <= 708992669) {
                    if (DLLB <= 0) {
                        if (SIZE <= 1043955) {
                            if (CONS <= 0) {
                                if (RESD <= 40) {confidence=9892; }
                            } else {
                                if (URLD <= 0) {
                                    if (WNET <= 0) {
                                        if (OVLY <= 905728) {
                                            if (SECS <= 8) {
                                                if (WSCK <= 0) {
                                                    if (IMSZ <= 212) {
                                                        if (OVLY <= 399050) {
                                                            if (SIZE <= 66240) {confidence=-5500;}
                                                        } else { confidence=9255;}
                                                    ...
```
Practical uses of malware data-mining
Practical uses

- To prioritize and de-prioritize samples in research queues
- To drive the depth of the sample analysis on the endpoint, gateway or a server
- To check the most suspicious samples using cloud-based security
- To exclude less suspicious samples from cloud communication
- Applies to anti-malware, anti-spam
- It is an automatic heuristic!
Conclusions

• Data-mining is very useful in malware analysis

• Easy to automate

• Can be used for both “strong” and “weak” heuristic verdicts
 – Detections
 – Limiting
 – Prioritization