

# **Malware mining**

Dr. Igor Muttik – McAfee Labs™



#### Agenda



- What makes a great AV product
- What is data-mining?
- Data-mining methods
  - Decision trees
  - Support Vector Machines
  - ROCs



- Data-mining as a heuristic/generic method
- Extracting features
- Practical uses of malware data-mining
- Conclusions and questions

#### What would make a great AV product?

- Proactively detects as many threats as possible
- Creates a very low number of false alarms
- Requires as little maintenance as possible
- Runs quickly and introduces little overhead



**McAfee** 

#### But how can this be done?

- Traditional (specific) detection methods (strings, hashes)
- Generic detection methods
- Heuristic detection methods
- Cloud-based methods
- Reputation methods
- Behavioural methods

| Detection method      | Proactive capability | Cost to<br>update | Available for |
|-----------------------|----------------------|-------------------|---------------|
| Specific (manual)     | None                 | Medium            | Many years    |
| Specific (automated)  | None                 | Low               | Many years    |
| Generic (manual)      | High                 | High              | Many years    |
| Generic (automated)   | Medium               | Medium            | Many years    |
| Heuristic (manual)    | Medium               | High              | Many years    |
| Heuristic (automated) | Medium               | Low               | ???           |







# What is data-mining?

#### Data Mining—An Example

#### **McAfee**<sup>•</sup>



Source: http://mreed.umtri.umich.edu/mreed/downloads.html#anthro, http://www.dtic.mil/dticasd/docs-a/anthro\_military.html

#### Measurements





## Height Versus Weight





#### Height Versus Weight + 1 Boolean feature





## One Dimension Only (1 feature)



## Putting Weight and Height Into Perspective





#### **Best Guess for Gender**



#### **Better Features**





#### **Best Guess for Revised Features**



#### Further Improving the Separation

#### **McAfee**<sup>•</sup>

## Signal to Noise

Features with very different distribution per class

# Correlation

Features with low correlation

# **Dimensionality**

Consider more features at the same time







# Data-mining methods

#### **Classification Algorithms**











ROCs graphically represent the quality of separation achieved by data-mining



#### Primitive decision tree



#### Manually-constructed decision tree (logic)





#### Feature extraction for PE files

- Is file packed = Boolean
- Is file a DLL = Boolean
- HLL language = Integer {1=VB, 2=MSVC, 3=Delphi, 4=.NET, 5=...}
- How many PE sections = Integer
- Are section names standard = Boolean
- Are characteristics of sections standard = Boolean
- Is entry point in the 1<sup>st</sup> section = Boolean
- Is file digitally signed = Boolean
- Is DOS header standard = Boolean
- Is PE timestamp old = Boolean
- How many resources = Integer
- How many languages in resources = Integer
- Do timestamps in PE header/resources/digisig match = Boolean
- Number of imports = Integer
- Number of exports = Integer
- Number of bound imports = Integer
- Number of imports from WSOCK32.DLL

#### Steps to build a decision tree

#### **McAfee**

#### **Build collections**

- Build two TP and FP sets (training sets)
- Setting aside collections for testing (e.g. 10-25%)

#### **Extract features**

- From TP set
- From FP set

#### Model

- Can be expensive for large collections and lots of features
- Pruning (if there is overfitting)

#### Test

- If the result is not good – make changes and repeat

#### Convert into usable form

Decision tree logic into C or C++

Decision tree (DT) for PE files with 20 features



#### Converting logic into code

Tree View

DT visualized in Weka

- Ieaf 1 (1)
   Ieaf 2 (1)
   Ieaf 3 (1)
   Ieaf 4 (1)
   Ieaf 5 (1)
   node 6 (13)
   node
   node</
- DT as C code

```
if (LSEX <= 0) {
if (PACK \leq 0) {
  if (TIME <= 1174454487) {
    if (TIME <= 708992669) {
       if (DLLB <= 0) {
         if (SIZE <= 1043955) {
           if (CONS <= 0) {
             if (RESD <= 40) {confidence=9892; }
             else {
                if (URLD <= 0) {
                  if (WNET <= 0) {
                    if (OVLY <= 905728) {
                       if (SECS <= 8) {
                         if (WSCK \leq 0) {
                           if (IMSZ <= 212)
                             if (OVLY <= 399050) {
  if (SIZE <= 66240) {confidence=-5500;}</pre>
                               else { confidence=9255;}
                                • • •
```

👙 Weka Classifier Tree Visualizer: 04:27:00 - Cobweb (departments\_string-weka.filters.unsupervised.attribute.StringToNominal-C1-weka.filters.unsup... 📃 🗖 🗙

eaf 23 (1)

leaf 20 (1)



**McAfee**<sup>•</sup>

# Practical uses of malware data-mining

#### **Practical uses**

- To prioritize and de-prioritize samples in research queues
- To drive the depth of the sample analysis on the endpoint, gateway or a server
- To check the most suspicious samples using cloudbased security
- To exclude less suspicious samples from cloud communication
- Applies to anti-malware, anti-spam
- It is an automatic heuristic!

#### Conclusions

- Data-mining is very useful in malware analysis
- Easy to automate
- Can be used for both "strong" and "weak" heuristic verdicts
  - Detections
  - Limiting
  - Prioritization



## Questions



