Immunity from antimalware automation attacks

Dennis Batchelder
Hong Jia
October 2013
Call to action

A new bad guy is weaponizing our antimalware products

We’re getting thousands of incoming “crafted” files and suspect telemetry every month

- Probing our automation strategies and signature weak points
- Poisoning our data sources
- Exploiting how we share samples between ourselves

Our industry inadvertently assists the attackers

Let’s work together to fix things before we have a catastrophe
AGENDA

How we got here
The new attacks
The aftermath
Recommendations
How we got here
We automate for good reasons

High malware volume

Short malware lifecycle
Antimalware automation

Collection
- Industry and customers
- Automatic and on demand

Big Data
- Samples
- Map reduce
- Processed/Workflow

Analysis
- Dynamic and Static
- Vendor rescans/determinations
- Human-supplied patterns

Auto-classification
- Combine analysis with reputation
- Assign determination, family
- Feeds sig-gen and cloud protection

Signature Generation
- Best-fit signature
- Static and proactive
- Signature release pipeline

Telemetry Monitoring
- FP detection
- Never unknowns
- Sample requests

Big Data
samples, telemetry, reputation, determinations

Analysis
Auto-classification

Signature generation

Telemetry response

Industry
- Samples
- Meta-data
- Reputation
- Determinations

Customers
- Telemetry
- Samples

Map reduce
Processed/Workflow
We know how to handle risks of infrastructure attacks...
<table>
<thead>
<tr>
<th>Risk</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denial of Service blocking samples and telemetry</td>
<td>Collection network protection</td>
</tr>
<tr>
<td>Overload causing slow time to protect</td>
<td>Scale-out architectures</td>
</tr>
<tr>
<td>Analysis exploits taking down/infecting backend systems</td>
<td>Sandboxing, quotas</td>
</tr>
<tr>
<td>Staleness reducing effectiveness</td>
<td>Recency weighting, Curated samples</td>
</tr>
<tr>
<td>Outage</td>
<td>Georedundancy</td>
</tr>
<tr>
<td>FPs</td>
<td>Signature validation pipeline, large clean lists, live monitoring</td>
</tr>
<tr>
<td>Malware infections</td>
<td>Isolation, monitoring</td>
</tr>
<tr>
<td>Malware leakage</td>
<td>Sharing agreements, air gaps, physical security</td>
</tr>
<tr>
<td>PII disclosure</td>
<td>Data cleansing and auditing</td>
</tr>
</tbody>
</table>
But what if data itself is the attack vector?

-what if the sample isn’t sourced from the wild?
-what if incoming telemetry is lying?
-what if the sample is crafted to exploit us?
Risks of data vector attacks

Collection
- Samples
- Meta-data
- Reputation
- Determinations

Big Data
- samples, telemetry, reputation, determinations

Analysis
- Auto-classification

Signature generation

Telemetry response

Attack	Risk
Fake, probe samples	Signature bloat, inefficiency
Automation strategy leakage	Signature weakness leakage
Determination trust leakage	Determination trust leakage
Fake telemetry	Poisoning file reputation
Crafted samples	Signing trigger leakage
Wide-spread or targeted FPs	
Financial and brand damages	
Evil recipe for weaponizing AV products

Learn system weaknesses
- What causes us to accept samples
- How samples spread around the industry
- Which vendor determinations we trust
- What triggers us to use different kinds of signatures
- Holes in our signatures
- Holes in our automation

Launch the attack
- Craft a sample that:
 - Encourages target vendor to sign it
 - Exploits target vendors signature weakness
- Inject sample and telemetry into the system
- Wait, then watch the mess
And why should we care?

Nobody should be able to exploit our systems…

- It hurts our customers
- And damages our reputation

…no matter the motive

- No having fun at our expense
- No embarrassing the security industry
- No preventing us from working together
- No attacks without our knowledge
So, has it happened?
We’ve seen...

Attack sophistication

• Crafted files moving from clean to junk to malicious files
• Use of TOR for sample and telemetry submission

Microsoft-specific targeting

• Discovered an automation strategy weakness and a weak signature type

Broad industry targeting

• Crafted files targeting other AV vendors
• Embedding our (and other) signature fragments as triggers
• Exposing weaknesses in how we exchange samples between ourselves/testers
6 March – 12 April

Assumed goal: automation holes

Method to craft

• Insert signature fragments into clean files’ resource sections
• Submit to VirusTotal via TOR

Results

• ~300 crafted clean files (never seen in wild)
• Many vendors re-sharing and signing
• Our automation treated it as obfuscated sample
• FP with proactive signature on clean code
• Partner FP on copied signature

Learn system weaknesses

- What causes us to accept samples
- How samples spread around the industry
- Which vendor determinations we trust
- What triggers us to use different kinds of signatures
- Holes in our automation
- Holes in our signatures

Launch the attack

- Craft a sample that:
 - Encourages target vendor to sign it
 - Exploits target vendors signature weakness
- Inject sample and telemetry into the system
- Wait, then watch the mess
Crafted clean files

NULLs in .rsr

f7e23305f49a83f5b7ef749c2d8c159b3f7057f9
(Epson Brother file)

Signature Fragment in .rsr

CBDD3071CEB251D84E8B35743A61027C25DE6F66
29 April – present

Assumed goal: signature holes

Method to craft

- Build junk files attempting to cause signature hash collisions
- Insert sig fragment strings/heads to cause “trusted” vendor detections
- Submit to VirusTotal via TOR

Results

- ~2000 crafted junk files (never seen in wild)
- Many vendors re-sharing and signing
- Some vendors sharing with external testers

Learn system weaknesses

- What causes us to accept samples
- How samples spread around the industry
- Which vendor determinations we trust
- What triggers us to use different kinds of signatures
- Holes in our automation
- Holes in our signatures

Launch the attack

- Craft a sample that:
 - Encourages target vendor to sign it
 - Exploits target vendors signature weakness
- Inject sample and telemetry into the system
- Wait, then watch the mess

Assumed goal: signature holes

Method to craft

- Build junk files attempting to cause signature hash collisions
- Insert sig fragment strings/heads to cause “trusted” vendor detections
- Submit to VirusTotal via TOR

Results

- ~2000 crafted junk files (never seen in wild)
- Many vendors re-sharing and signing
- Some vendors sharing with external testers

Crafted junk file

Junk import table

Embedded signature fragments

0x361d9b1375bf5f49f4b9f2f9fc4398d5ffdb353
Crafted junk file, signature collision with malware

“Static” signature collides with Trojan:Win32/Simda

F8A12B809909112BA9E4F175F4D262EE9DEC8DB1

Junk file

a622b580ac5748e0cca17879a303178b118862c0
"Static" signature collides with VisualBoyAdvance

e0a010951cab6bf9bf0d124d7a944e0457cb170
Future (weaponized)

Assumed goal: targeted FP

Method to craft

- Modify real malicious file to cause signature hash collisions with victim clean file
- Compel target vendor to sign with signature fragments from trusted vendor
- Submit to VirusTotal via TOR

Results

- Target vendor signs automatically
- Victim suffers FP against clean file
Our recent investigations

Did we get used as a weapon?

• We searched for an event in past 3 months
 • Static signature weaknesses: searched for inadvertent “test” FPs
 • Nothing conclusive (6 suspicious events)

Is some of our telemetry also crafted?

• We are monitoring TOR-based telemetry
 • 1 out of 100,000 of our endpoints use TOR
 • TOR endpoints seem 4 times as infected as normal users
 • TOR endpoints send one tenth the rate of junk telemetry
 • Nothing found
The aftermath
Changes we’ve made

Big Data
- samples, telemetry, reputation, determinations

Collection
- Industry
 - Samples
 - Meta-data
 - Reputation
 - Determinations
- Customers
 - Telemetry
 - Samples

Analysis
- Auto-classification
- Signature generation
- Telemetry response

Issue
- Signature generation using clean sections when signing crafted clean files
- Static signatures used in automation had CRC collision weakness
- Potential poisoned telemetry
- Not handling artificial escalations very well

Changes
- 1) Auto-detect crafted clean files
- 2) Sign only with static signatures
- 1) Harden signature type to require SHA1 match
- 1) Anomaly monitoring
- 1) Sample sharing requirements to include attestation of sourcing
- 2) Automation rules stop “credit” for detections
- 3) Issue awareness
- 4) Cross-vendor working group
Contaminating AV-Test

2 crafted files showed up in AV-Test’s August testing set

- 0xf019bceae867415dc2027b12b282486973759fa5
- 0x186f720f76bcd6fcc83055a64989ed45cd7b5d66

Andreas Marx investigated

- Vendors give to aggregators
- Aggregators share with testers and vendors
- Testers curate samples, but in the end, they trust vendor sources

Highlights need for vendor control of what is shared

- Artificially inflates the value of these files
- Encourages useless vendor detections
- Could lead to becoming a victim of weaponization
Industry Recommendations

Exchanging unseen samples
 • Causes artificial escalations and drives useless detections
 • *If your customers don’t see it, don’t exchange it*

Automated blind reliance on partner detections
 • detections ≠ determinations
 • *Rely only on vendor samples for vendor determinations*
More Industry Recommendations

Treat this as a serious threat
- Before somebody weaponizes you
- *Find and fix your automation and signature weaknesses*

We need to work together
- *Let’s share crafted file/telemetry awareness and detection/mitigation techniques*