DNSSEC: How far have we come?

Nick Sullivan (@grittygrease)
Motivation

- DNS is insecure
- DNSSEC has been proposed to fix it
- How does DNSSEC work?
- What are the pros/cons?
- How is deployment going?
Background on DNS

The Internet’s phone book
The Domain Name System

• Distributed key value database

• Authority delegation via hierarchy

• Ask a question, get an answer or the right place to ask the question
The Domain Name System

• Question:

“What’s the IP address of example.com?”

• Answers:

“93.184.216.119” (A record)

or

Here’s who you talk to: a.iana-servers.net (NS record)

or

This domain does not exist
In hex

• The raw DNS request is a UDP packet that looks more like:

0x0000: 27e1 0100 0001 0000 0000 0000 0765 7861 ‘.............exa
0x0010: 6d70 6c65 0363 6f6d 0000 0100 01 mple.com.....

• The response looks like this:

0x0000: 27e1 8180 0001 0001 0000 0000 0765 7861 ‘.............exa
0x0010: 6d70 6c65 0363 6f6d 0000 0100 01c0 0c00 mple.com........
0x0020: 0100 0100 0031 f500 045d b8d8 771...]..w
Users make requests through applications. These requests go through stub resolvers, which then query authoritative servers. The authoritative server provides the IP address of the origin server, which is then resolved by recursive resolvers.
Stub Resolvers

• The application interface with DNS
• Simple cache
• Being replaced by recursive resolvers on end-user hosts
 • mDNSReponder on OS X
 • Microsoft DNS Client on Windows
 • Unbound on Linux
Recursive Resolvers

- Google Public DNS
 - 8.8.8.8
 - 8.8.4.4
- OpenDNS
 - 208.67.222.222
 - 208.67.220.220
- Your local ISP
Authoritative Servers
Why is DNS insecure?

Kaminsky’s attack and more
Man-in-the-middle

- Answers can be modified
- Requires privileged network position

Q: what is the IP address of cloudflare.com

A: 6.6.6.6

A: 198.41.213.157
Cache Poisoning (Kaminsky’s attack)

• DNS queries use spoof-able UDP

• Resolver asks authoritative server for answer

• Attacker answers first with spoofed IP of authoritative server
Cache Poisoning (Kaminsky’s attack)

• DNS queries use spoof-able UDP

Q: what is the IP address of cloudflare.com

Resolver → Authoritative Server

A: 198.41.213.157

A: 6.6.6.6
A: 6.6.6.6
A: 6.6.6.6
A: 6.6.6.6
A: 6.6.6.6
Real Life Attacks

• Attack this month

• Detected via passive DNS

DNS cache poisoning used to steal emails

Call to use end-to-end encryption and to deploy DNSSEC.

DNS is sometimes called 'the phone book of the Internet'. If true, the DNS is also relatively easy to poison.

Whether it is a hard-coded DNS name, such as .com, or a DNS cache poisoning, any and potential email. Being

Probable Cache Poisoning of Mail Handling Domains

By Jonathan Spring on 09/10/2014 | Permalink

Hi, this is Jonathan Spring with my colleague Leigh Metcalf. For some time now, we’ve been working through a problem found, but it’s time to discuss it more broadly. Using our passive DNS data sources, we can observe cache poisoning, and we really observe changes in the answers that are returned for certain domains, but after consulting with various experts, we believe the only behavior these changes indicate is a successful cache poisoning attack.

The mechanism used to poison the answers is not clear. We see only responses, not queries, and figuring out the mechanism requires visibility into the queries. This limited visibility is one reason to disclose what we’ve found so that we can look for the root cause.
Real Life Attacks

• Very convincing phishing sites

• Redirecting email
DNSSEC

Security for DNS
DNSSEC

- DNS + Digital Signatures
- Chain of trust through on natural DNS hierarchy
- Authentic, not private
- Original RFC in 1997
- DNSSECbis in 2005
New records

• RRSIG: digital signature of a set of answers
• DNSKEY: public key, comes in two flavors
 • key signing key (KSK)
 • zone signing key (ZSK)
• DS: delegated signer, hash of DNSKEY
• NSEC(3): proof of non-existence
DNSSEC signature verification
Man-in-the-middle thwarted

Q: what is the IP address of cloudflare.com

A: 6.6.6.6
RRSIG:a7lbdTXn...nfd

A: 198.41.213.157
RRSIG:a7lbdTXn...nfd

Resolver

Check Signature
FAIL

Authoritative Server
Cache Poisoning thwarted

Q: what is the IP address of cloudflare.com

Resolver

Authoritative Server

No Signature
FAIL

A: 6.6.6.6
A: 6.6.6.6
A: 6.6.6.6
A: 6.6.6.6
A: 6.6.6.6
A: 6.6.6.6
A: 198.41.213.157
RRSIG: a71bdTXn...nfdf
Problem solved, right?

• Not so fast...
Problems

DNSSEC controversies
Main Problems

- Zone privacy
- Reflection/Amplification
- Last hop
- Complexity/Risk
Zone privacy

• NSEC walking
• NSEC3 dictionary attack
• Live signing to the rescue
Zone Walking

- NSEC: records to prove the nonexistence of records
- Signs pair of records, claim no records exist between
- “Covers” the whole zone
Zone Walking

Q: A tx.ietf.org

Q: A wwwa.ietf.org
A: www6.ietf.org. 938 IN NSEC xml2rfc.ietf.org. CNAME RRSIG NSEC

• Walk the whole zone
Zone Dictionary Attack

• In NSEC3, it’s the hash of the zone.
• Walk the whole zone to collect all the hashes
• Hash and compare dictionary offline
Solution: Live signing + “white lies”

• Create NSEC(3) and RRSIG records on the fly

• Sign smallest possible gap, i.e.:

 somethinfzzzzzzzzzzzzzzzzzzz.com to
 something000000000000000000001.com
Live signing problems

• Key management
 • Is deploying keys safe?
 • Hardware Security Modules (HSMs)?

• CPU usage
 • Mitigated with modern hardware and ECDSA keys

• Implementations
 • Not available in BIND
Amplification/Reflection

- DNS amplification attacks
UDP is unauthenticated

- Small requests can result in big responses in DNSSEC
- Especially ANY and DNSKEY questions
- UDP is unauthenticated (some networks do not implement BCP 38)
Amplification attack

Attacker with 1 Mbps

1 Mbps connection

10 compromised trigger machines with 1 Gbps

1 Gbps connection x10

400 ‘amplifier’ machines

Amplification factor of 50x

500 Gbps hits target machine from amplifiers

www.cloudflare.com
Solution: Use TCP?

• RFC 5966, 2010-08, DNS Transport over TCP:
 “[…] TCP is henceforth a REQUIRED part of a full DNS protocol implementation.”

• Not enough servers support it (16% don’t retry [2012, circleid])

• Worries of slowdown for TCP handshake
 • T-DNS claims this is unfounded (http://www.isi.edu/ant/tdns/index.html)
Solution: Use Elliptic Curves?

• Elliptic curve keys are smaller than RSA keys
• Smaller amplification ratio
• Universal support lagging
Last hop

• Stub resolver to recursive resolver message is unauthenticated

• Problem going away: validating resolvers on end user machines

• In the meantime:
 • DNSCurve
 • TLS
Complexity/Risk

- Changes at the network protocol layer are scary
- Schedule for rotating keys
- Mistakes here can cost a lot of money
Problems

• Zone privacy
• Reflection/Amplification
• Last hop
• Complexity/Risk

vs

• Security and Trust
• More?
DNSSEC extensions

Replacing the Certificate Authority PKI with the DNS PKI
DNS-based Authentication of Named Entities (DANE)

• Put the website certificate in DNS

• Can replace the certificate authority system

• Questions:
 • Trust chain for sites runs through the TLDs (e.g. Libya .ly, Indian Ocean .io, ...)
DNSSEC deployment

Where are we today
Requirements to work

- Trust chain established
- Domains need to be trusted
- Resolvers need to check
- Users have to be alerted
Signing the root

• Complicated “key ceremony” process managed by ICANN

• The first root zone keys published on July 15, 2010

• Root key:

AwEAAagAIKlVZrpC6Ia7gEzah0R+9W29euxhJhVVL0yQbSEW008gcCjFFVQUTf6v58fLjwBd0YI0EzrAcQqBGCzh/RStIo08g0NfntL2MTJRkxoXbfDaUeVPQuYEHg37NZWAJQ9VnMVDxP/VHL496M/QZxkJf5/EFucp2gaDX6RS6CXpoY68LsvPVjr0ZSzz1apAzvN9dlzEheX7IJCBBtuA6G3LQpzW5h0A2hzCTMcJPJ8LbqF6dsV6DoBQzgul0sG1cG0Yl70yQdXfZ57relSQageu+iPAdTTJ25AsRTAoub80NGcLmqrAmRLKBPlfwhYB4N7knNnulqQxA+Uk1ihz0=
TLDs

• June 2009: .org was signed
• Others followed suit
• All new TLDs are required to be signed at launch
TLDs signed (http://rick.eng.br/dnssecstat/)
Individual Domains

• Growing numbers
• 0.3% of .com domains (~400,000)
• 0.5% of .net domains (~70,000)
• 6.9% of .eu names (~260,000)
• 1 million+ .nl names
Individual Domains (http://secspider.cs.ucla.edu/growth.html)

• Under a million
• Zone privacy reduces visibility
Resolvers

• How many validate?

• Google DNS: Yes

 • DNSSEC signed zones validated unless CD flag set

• OpenDNS: Not yet

• Total requests: ~12% validate DNSSEC (APNIC, 2014)
Resolvers (http://stats.labs.apnic.net/dnssec)
Registrars

• 30-35 registrars
 • https://www.icann.org/resources/pages/deployment-2012-02-25-en
 • Largest registrar (GoDaddy) supports DNSSEC

• Many require manual email of DS

• Many do not support Elliptic Curve DNSKEYs
Browsers

• No current browser support (was removed from Chrome)

• Plug-in: DNSSEC validator (www.dnssec-validator.cz)
Requirements to work

- Trust chain established (mostly)
- Domains need to be trusted (not many)
- Resolvers need to check (some)
- Users have to be alerted (incomplete)
Where are we going with DNSSEC

Where are we tomorrow?
Slowly happening

- CloudFlare enabling DNSSEC by end of year
- Internet Society’s Deploy 360 is tracking deployment
- Continuing research
- Future is yet to be determined
DNSSEC: How far have we come?

Nick Sullivan
@grittygrease