
SafeMachine
malware needs love, too

Martin Hron, Jakub Jermář

AVAST Software, research

Dynamic malware detection

Dynamic:
dy·nam·ic adjective \dī-ˈna-mik\: changing; active; in motion

In a context of the digital “pest”: safely run it and watch what’s going inside

Tools for dynamic malware detection widely use binary instrumentation to be able to observe
guest behavior on instruction level.

They may use some kind of sandboxing or virtualization to isolate the running guest.

DYNAMIC BINARY TRANSLATOR - “HOST”

Binary translation (instrumentation)
machine code decomposition to “basic blocks” on the fly

entry point (EP)

JMP ADDR

….
….
…

d
is

as
se

m
b

le
r

tr
a

n
sl

at
io

n

in
st

ru
m

en
ta

ti
o

n

Basic Block

exit to dispatcher

basic block @ EP

basic block @ ADDR

machine code
basic blocks cache

dispatcher

cache hit

ca
ch

e
m

is
s

co
n

ti
n

u
e

@
 A

D
D

R

start on EP (hook)

execute

ADDR

JMP EP

….
….
…

co
n

ti
n

u
e

@
 E

P

metadata

PROCESS BOUNDARY

ORIGINAL CODE -“GUEST”

Existing GENERAL purpose frameworks

Pin - A Dynamic Binary Instrumentation Tool
developed and maintained by Intel®. Closed source.

Pin 2.14 User Guide:

“The following Pin switches are supported:

-smc_strict [0][1] Enable (1) or disable (0) support for SMC inside basic

blocks. By default (0), pin assumes that basic blocks
do not modify their own code.”

Existing GENERAL purpose frameworks

DynamoRIO - Dynamic Instrumentation Tool Platform
created at MIT and HP in 2001. Open-sourced in February 2009

2001: Bruening, D., Duesterwald, E., Amarasinghe, S.: Design and Implementation of a Dynamic Optimization
Framework for Windows

“We expected to have problems both with exception contexts and with

self-modifying code, but neither have occurred in any of the large Windows
programs we have been running.”

Existing GENERAL purpose frameworks

DynamoRIO - Dynamic Instrumentation Tool Platform
created at MIT and HP in 2001. Open-sourced in February 2009

2005: Bruening, D., Amarasinghe, S.: Maintaining Consistency and Bounding Capacity of Software Code Caches

“While true self-modifying code is only seen in a few applications, such as
Adobe Premiere and games like Doom, general code modification is

surprisingly prevalent.”

Existing special purpose frameworks

?

Existing special purpose frameworks

SafeMachine – Dynamic binary malware introspection
Developed by AVAST Software. Currently closed source.

“The general purpose frameworks can handle*
even the most complex instances of self-modifying code**.

But there is more, much more***.”

* Eventually and when pushed

** SMC on stack

*** And very little is actually needed to exploit it

Framework comparison

95.89%

98.06%

74.54%

94.20%

84.17%

90.51%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

Pin 2.12 / DynamoRIO 4.0.0 Pin 2.14 / DynamoRIO 5.0.0

H
u

n
d

re
d

s

Pin SafeMachine DynamoRIO

Exploitable areas

Block cache vs. virtual memory state
correct invalidation of block cache on page protection state transitions

Program counter virtualization vs. CPU instructions
some CPU instructions leak the actual program counter

Inherent weakness of the write-protecting approach to SMC

And many more
wrong syscall arguments, debug registers, segmentation, single-stepping, 0x66 & 0x67, …

Block cache problem

Self-modifying code stresses block cache consistency wrt. virtual memory contents.

How about code that stresses block cache consistency wrt. virtual memory state?

BLOCK 1

BLOCK 3

Block cache

BLOCK 2

BLOCK 4

Virtual memory

PAGE 11

PAGE 10

PAGE 9

PAGE 8

PAGE 7

PAGE 6

PAGE 5

PAGE 4

PAGE 3

PAGE 2

PAGE 1

PAGE 0 PAGE_READWRITE
PAGE_GUARD

PAGE_EXECUTE_READ

fg

PAGE_EXECUTE_READWRITE

PAGE_READWRITE

PAGE_EXECUTE_READWRITE
PAGE_GUARD

PAGE_EXECUTE_READ
PAGE_GUARD

PAGE_READONLY

PAGE_READONLY
PAGE_GUARD

PAGE_NOACCESS

Demo: ExecuteUnmap1.exe

Idea:

Test if the change of page protection to
NOACCESS removes the block from the
cache

DEMO

Result:

Both Pin and DR fail the test

Discovery:

Pin behaves differently if the page
protection goes from
EXECUTE_READWRITE directly to
NOACCESS

VirtualProtect(start, 2, PAGE_EXECUTE_READ);

/* First round: create the basic block */

_asm call start

VirtualProtect(start, 2, PAGE_NOACCESS);

/* Second round: the block should no longer be there */

__try {

_asm call start

/* FAILED */

}

__except(EXCEPTION_EXECUTE_HANDLER) {

/* PASSED */

}

start: nop

ret

PAGE 1:

rundemo.bat
rundemo.bat

Demo: TransientException1.exe

Idea:
Test if SMC handling preserves the guard
page associated with the second page of
the block.

DEMO

Result:
Pin fails the test.
DR crashes.

Discovery:
Both Pin and DR cannot deal with the
PAGE_GUARD protection for some
combinations of other protections.

VirtualProtect(pb, 1, PAGE_EXECUTE_READWRITE|PAGE_GUARD);

__try {

_asm call start

/* FAILED */

}

__except(EXCEPTION_EXECUTE_HANDLER) {

if (GetExceptionCode() == EXCEPTION_GUARD_PAGE)

/* PASSED */

else

/* FAILED */

}

…

start:

mov byte ptr [pb - 1], 0x90

nop

PAGE 1:

pb:

nop

ret

…

PAGE 2:

rundemo.bat
rundemo.bat

Demo: TransientException2.exe

Idea:

Test if the first of two overlapping blocks
to hit a guard page consumes it.

DEMO

Result:

Both Pin and DR fail the test.

Discovery:

Both Pin and DR cannot deal with the
PAGE_GUARD protection for some
combinations of other protections.

VirtualProtect(pb, 1, PAGE_EXECUTE_READWRITE|PAGE_GUARD);

__try {

_asm call start

/* FAILED */

} __except(EXCEPTION_EXECUTE_HANDLER) {

if (GetExceptionCode() != EXCEPTION_GUARD_PAGE)

/* FAILED */

}

__try {

_asm call start

/* PASSED */

} __except(EXCEPTION_EXECUTE_HANDLER) {

/* FAILED */

}

…

start:

cmp cnt, 0

jz pb

PAGE 1:

pb:

inc cnt

ret

…

PAGE 2:

rundemo.bat
rundemo.bat

Virtual memory state transitions (DynamoRIO 5.0.0)

PAGE_EXECUTE_READ

fg

PAGE_EXECUTE_READWRITE

PAGE_READWRITE

PAGE_EXECUTE_READWRITE
PAGE_GUARD

PAGE_EXECUTE_READ
PAGE_GUARD

PAGE_READONLY

PAGE_READONLY
PAGE_GUARD

PAGE_READWRITE
PAGE_GUARD

PAGE_NOACCESS

Virtual memory state transitions (Pin 2.14)

PAGE_EXECUTE_READ

fg

PAGE_EXECUTE_READWRITE

PAGE_READWRITE

PAGE_EXECUTE_READWRITE
PAGE_GUARD

PAGE_EXECUTE_READ
PAGE_GUARD

PAGE_READONLY

PAGE_READONLY
PAGE_GUARD

PAGE_READWRITE
PAGE_GUARD

PAGE_NOACCESS

Program counter virtualization problem

Binary translated guest code runs from a different address
Guest EIP different from block EIP

Some CPU instructions leak the program counter
FNXSAVE, FNSAVE, FNSTENV

010A1003 fsin 006ED3F1 fsin
006ED3F3 mov dword ptr ds:[0B1F5Ch],10A1003h

Demo: FPUContext1.exe

Idea:

Test if the EIP of the last FPU
instruction is correctly virtualized.

DEMO

Result:

Pin fails the test, DR passes.

start:
fsin
fnstenv fpu_save_area
lea eax, start
cmp eax, dword ptr fpu_save_area[3 * 4]
jnz FAILED
jmp PASSED

rundemo.bat
rundemo.bat

Demo: FPUContext2.exe

Idea:

Test if the IP of the last FPU instruction
is correctly virtualized.

DEMO

Result:

Both Pin and DR fail the test.

start:
fsin
_emit OPERAND_SIZE_PREFIX
fnstenv fpu_save_area
lea eax, start
cmp ax, word ptr fpu_save_area[3 * 2]
jnz FAILED
jmp PASSED

rundemo.bat
rundemo.bat

Unused stack

Inherent weakness in write-protecting

If SMC is detected by write-protecting…

…then each SMC generates a service exception…

…which smashes a part of the unused (guest) stack

Used stack

Stack pointer

Demo: ServiceException1.exe

Idea:

Test if a pattern left on the stack is still
there after SMC.

DEMO

Result:

DR and Sf(write-protect) fail the test.

Pin and Sf(memory-check) pass the
test.

Observation:

To pass, the tool must either use
memory checks or virtualize guest
stack.

push 0xdeadbeef
push 0xbadcafe1
pop ecx
pop eax
mov byte ptr smc, 0x90

smc:
_emit 0xcc
cmp dword ptr [esp - 4], eax
jnz FAILED
cmp dword ptr [esp - 8], ecx
jnz FAILED
jmp PASSED

rundemo.bat
rundemo.bat

Conclusion

General purpose DBI frameworks made to work well with normal applications

SMC handling an after-thought (done well)

Many other corner cases not handled at all

Dealing with malware requires a DBI framework with a “malware mindset”

Conclusion

And it definitelly rewards you back

Because malware needs love, too

Thank you

It’s Q&A time!

Presented and additional samples can be downloaded:

https://github.com/sf2team/vb2014

Jakub Jermář:

E-mail: jermar@avast.com

Twitter: @jjermar

Martin Hron:

E-mail: hron@avast.com

Twitter: @thinkcz

