
UNPACK YOUR TROUBLES:
.NET PACKER TRICKS AND

COUNTERMEASURES
Marcin Hartung

ESET, Poland

UNPACK YOUR TROUBLES:
.NET PACKER TRICKS AND COUNTERMEASURES

Marcin Hartung

hartung@eset.pl

Eset Poland

At Eset: programmer in the Software Protectors Analysis & Unpacking
Team

Other: motorbiker, mountain hiker, climber

Outline

• Object-oriented file format

• .NET analysing

• LoadAssembly

• UserString

• API

Object-oriented file format

Source code
(C#)

Compiler
CIL

(Common Intermediate
Language)

Native code
JIT (Just-
in-time)

Compilation

Execution

The first execution of
particular method

Executable
MZ...

Object-oriented file format

Program structure is kept in executable:

• Object (classes, methods, fields) in tables

• Referenced with tokens in CIL

• User method names

Object-oriented file format

Program structure is kept in executable:

• Object (classes, methods, fields) in tables

• Referenced with tokens in CIL

• User method names

6F 04 00 00 06 token

MethodDef table
4th entry in the table

opcode

Analysing .NET samples

• Static analysis (decompilers)

good for non-protected samples,

bad (or imposible) for obfuscation

• Deobfuscators

support for every new version

problem with patched or custom packers

Analysing .NET samples

• Debugging

symbols, runtime sources

winDbg + sos.dll plugin (!bpmd, !dumpmd)

• Other

emulating, profiling, ...

Packer – next layer loading

• Like old-fashioned native packer - decrypt & execute next layer

• .NET has special API – Assembly.Load()

(some packers, bladabindi malware family, ...) wikipedia.org

Packer – next layer loading

Assembly.Load() – solution – catching next layer MZ during loading

bp mscorwks!CLRMapViewOfFileEx + 0x26 "da eax" /

bp clr!AssemblyNative::LoadFromBuffer "dd (edx - 4) l1; da edx"

mscorwks – .NET ~v2.0 - 2.0.50727

clr – .NET ~v4.0 - 4.0.30319

Packer – next layer loading

next hint (AV):

Loaded MZ is kept in memory – it can be monitored:

• New-allocated memory region

• Mapped, RW

• MZ at the begin

Probably it is executable loaded with a call to Assembly.Load()

User strings

72 01 00 00 70 token

UserString
position in #US stream

opcode

#US (UserString stream):

User strings - obfuscation

• Every ldstr opcode is changed into call to decrypt method.

• Crypted strings are kept in:

 Manifest resources

 Static data fields

 #US stream (crypted)

What do the packers do?

User strings - obfuscation
DecryptString methods are similar – they use:

o !bpmd mscorlib.dll System.String.CreateStringFromEncoding
(confusers, eziriz, smartAssembly, cryptoobfuscator, codewall)

o !bpmd mscorlib.dll System.String.Intern
(yano, babel)

o !bpmd mscorlib.dll System.Text.StringBuilder.ToString *
(deepsee)

* used also by runtime

!bpmd – (sos.dll) breakpoint for NGENed method

Ngen.exe - The Native Image Generator

User strings - obfuscation

Classic strings (ldstr opcode)

• bp mscorwks!GlobalStringLiteralMap::GetStringLiteral \
bp clr!StringLiteralMap::GetStringLiteral

API – in CIL code

Obfuscation:

• Hide CIL code

 Restore with Module::.cctor()

 Restore with CompileMethod() hook

• Flow obfuscation

 Confuse decompilation and byte patterns

RE: Object-oriented file format

Source code
(C#)

Compiler
CIL

(Common Intermediate
Language)

Native code
JIT (Just-
in-time)

Compilation

Execution

The first execution of
particular method

Executable
MZ...

The CIL is crypted in executable

The code must be ready for JIT

API – in CIL code

Hide CIL code - solution – catching API during JIT resolving

bp mscorwks!MethodTable::MapMethodDeclToMethodImpl "!dumpmd dwo (esp+4)"

bp clr!MethodTable::MapMethodDeclToMethodImpl "!dumpmd ecx"

sos.dll

How to use it?

• Windbg scripts
https://bitbucket.org/marcin_hartung/vb_unpackyourtroubles

• VB whitepaper

How to use it?

• Next work – standalone analyser (with hooking)

• Internal runtime methods – hook by byte patterns

• !bpmd problem – NGENed functions (undocumented, complicated)

• !dumpmd problem – Method Descriptor object must be parsed

References

• CFF explorer

• ILSpy

• Msdn

• .NET sources

More in the whitepaper...

Thanks!

