
Automatic malicious code extraction using
Volatility Framework

Martin G. Korman

What’s your take away?

An open source tool, that extracts malicious code
from memory and prepares it for deeper static
analysis

http://www.volatilityfoundation.org/

Malicious Code –
Where is it hiding?

New Processes

• New processes created by the Malware

Self Modifying Code
• Packers and Crypters have to unpack the malware

in memory, in order to execute it.

Remote Code Injection
• A malicious process writes code into the memory

space of a target process and forces it to execute.

Hollow Process Code
Injection

• A malicious process starts a new instance of a legitimate process
(i.e explorer.exe, svchost.exe) in suspended mode. (0x00000004
Flag)

• Before resuming it, the executable section(s) are freed and
reallocated with malicious code.

Kernel Modules
• Usually they serve to hide malware evidence, make

the malware harder to remove or obstruct the
research process.

• “Advanced control and data flow hijacking
techniques that leverage the lower layers of the OS
architecture” 1

1. Alex Matrosov, Eugene Rodionov, and Sergey Bratus, Rootkits and Bootkits, No Starch Press, 2015

API Hooks
• Hi-jacking the code flow of a legitimate windows

API call, in order to make it do something else, i.e
grab your POST request.

VolatilityBot
• Automated

• Modular

• Extraction of various artifacts

Manager

Code Extractors

Post Processing

PE

Manager
• Can theoretically manage an unlimited quantity

of machines.

• Tags - Multiple tags can be defined on
execution

• Dynamic Tags - Some post processing
modules add tags to the sample. i.e.:
Code_Injection, Hooks_API

Manager

Code Extractors

Post Processing

Machines
• Abstract model of a machine that has five basic

functions:

• Revert

• Suspend

• Start

• Get Memory Path

• Cleanup

Manager

Code Extractors

Post Processing

Code Extractors
• Injected Code

• Kernel Modules

• New Processes

• Entire Address Spaces

• Hooks

Manager

Code Extractors

Post Processing

Post Process Modules
• YARA (And YARA Semantic Analysis)

• Strings

• Basic Static PE analysis

• Generation of IDC file with imports from memory

• Fix PE header (sections, image base…)

Manager

Code Extractors

Post Processing

YARA Semantic Analysis
• Dynamic YARA rules

• Detect specific behaviors

$process_priv_esc = { FF 15 API:GetCurrentProcess 50 FF 15 API:OpenProcessToken
[-] 68 string:SeDebugPrivilege [-] FF 15 API:LookupPrivilegeValueW [-] 50 [-]

 FF 15 API:AdjustTokenPrivileges

$process_priv_esc = { FF 15 4D 00 7D 98 50 FF 15 4D 00 7D A3
[-] 68 4D FE 77 15 [-] FF 15 4D 00 7D A6 [-] 50 [-]

 FF 15 4D 00 7D A9

Efficacy & Results

Total Samples 3875

Samples with at least one successful dump 3395 88%

New processes dumped 3363 86%
Injected Code extractions 992 25%
Kernel Modules dumped 119 0.03%

Virus Share Malware Subset

88% Success Rate

Malware Families Subset

92% Success Rate

Total Samples 68

Samples with at least one successful dump 63 92%

Injected Code extractions 41 60%

New processes dumped 31 45%

Kernel Modules dumped 4 0.05%

Demo Time!

What’s Next?

• Automated Dumping of injected shellcode

• Extraction of malware configurations

• Additional information extraction (URLs,Mutexes)

Caveats
• False positives

• Anti-Research mechanisms

Cool! Where can I get it?
• BitBucket Repository: https://bitbucket.org/martink90/volatilitybot_public/overview

• Communicate with me, via Mail in order to get the source code
(kormanmartin@gmail.com)

• Use my Web-Service: https://fightingmalware.com

• @MartinKorman

• blog.fightingmalware.com

Thanks for you time!

Questions?

