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What’s your take away?

An open source tool, that extracts malicious code 
from memory and prepares it for deeper static 
analysis



http://www.volatilityfoundation.org/



Malicious Code – 
Where is it hiding?



New Processes

• New processes created by the Malware



Self Modifying Code
• Packers and Crypters have to unpack the malware 

in memory, in order to execute it.



Remote Code Injection
• A malicious process writes code into the memory 

space of  a target process and forces it to execute.  



Hollow Process Code 
Injection

• A malicious process starts a new instance of a legitimate process 
(i.e explorer.exe, svchost.exe) in suspended mode. (0x00000004 
Flag)  

• Before resuming it, the executable  section(s) are freed and 
reallocated with malicious code.



Kernel Modules
• Usually they serve to hide malware evidence, make 

the malware harder to remove or obstruct the 
research process.  

• “Advanced control and data flow hijacking 
techniques that leverage the lower layers of the OS 
architecture” 1

1. Alex Matrosov, Eugene Rodionov, and Sergey Bratus, Rootkits and Bootkits, No Starch Press, 2015



API Hooks
• Hi-jacking the code flow of a legitimate windows 

API call, in order to make it do something else, i.e 
grab your POST request.





VolatilityBot
• Automated 

• Modular 

• Extraction of various artifacts
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Manager
• Can theoretically manage an unlimited quantity 

of machines. 

• Tags - Multiple tags can be defined on 
execution 

• Dynamic Tags - Some post processing 
modules add tags to the sample. i.e.: 
Code_Injection, Hooks_API
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Machines
• Abstract model of a machine that has five basic 

functions: 

• Revert 

• Suspend 

• Start 

• Get Memory Path 

• Cleanup

Manager

Code Extractors

Post Processing



Code Extractors
• Injected Code   

• Kernel Modules 

• New Processes 

• Entire Address Spaces 

• Hooks
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Post Process Modules
• YARA (And YARA Semantic Analysis) 

• Strings 

• Basic Static PE analysis 

• Generation of IDC file with imports from memory 

• Fix PE header (sections, image base…) 

Manager

Code Extractors

Post Processing



YARA Semantic Analysis
• Dynamic YARA rules 

• Detect specific behaviors 

$process_priv_esc = { FF 15 API:GetCurrentProcess 50 FF 15 API:OpenProcessToken 
[-] 68 string:SeDebugPrivilege [-] FF 15 API:LookupPrivilegeValueW [-] 50 [-] 

 FF 15 API:AdjustTokenPrivileges

$process_priv_esc = { FF 15 4D 00 7D 98 50 FF 15 4D 00 7D A3  
[-] 68 4D FE 77 15 [-] FF 15 4D 00 7D A6 [-] 50 [-] 

 FF 15 4D 00 7D A9



Efficacy & Results



Total Samples 3875

Samples with at least one successful dump 3395 88%

New processes dumped 3363 86%
Injected Code extractions 992 25%
Kernel Modules dumped 119 0.03%

Virus Share Malware Subset

88% Success Rate



Malware Families Subset

92% Success Rate

Total Samples 68

Samples with at least one successful dump 63 92%

Injected Code extractions 41 60%

New processes dumped 31 45%

Kernel Modules dumped 4 0.05%



Demo Time!



What’s Next?

• Automated Dumping of injected  shellcode 

• Extraction of malware configurations 

• Additional information extraction (URLs,Mutexes)  



Caveats
• False positives 

• Anti-Research mechanisms



Cool! Where can I get it?
• BitBucket Repository: https://bitbucket.org/martink90/volatilitybot_public/overview 

• Communicate with me, via Mail in order to get the source code 
(kormanmartin@gmail.com) 

• Use my Web-Service: https://fightingmalware.com 

• @MartinKorman 

• blog.fightingmalware.com 



Thanks for you time!

Questions?


