
Dead and Buried in Their Crypts:
Defeating Modern Ransomware

Samir Mody

Gregory Panakkal RIP

Screen Lockers not Covered

Our Targets – File Encryptors

Once Bitten…

…Revenge is Best Served Cold

Static Detection Difficult – Packer
Obfuscation

VB MSIL

NSIS SFX

Process Injection – Implications for
Dynamic Blocking

Into spawned non-OS process

• Potential loss of process context - complicates

behaviour tracking and blocking

Into spawned or running OS process – an opportunity

• Untrusted process injecting into explorer.exe or

svchost.exe, etc.

• OS process encryption-writes to target files

• Presence of encryption/hash algorithm artefacts in

OS process space

C & C

Typical Encryption Lifecycle

Target
Pupate

blob

Session key

(“cemetric”)
Master
private

key

Master

public

key

1

2

3

4

Master

public

key

Internet

boundary

Local machine

Assumptions

 Ransomware bypass first-line defences

OS privilege-control features do not abort the
infection

Ransomware EXEs come from untrusted sources

Only user mode components are involved 3

Modus Operandi

Locate

Target

Take

HOSTAGE

DeMAnD

RANSOM

Generic Ransomware Tracking

Interception Points

• IRP_MJ_CREATE

• IRP_MJ_DIRECTORY_CONTROL

• IRP_MJ_WRITE

• IRP_MJ_CLOSE / IRP_MJ_CLEANUP

• PoC intercepts using Filesystem Minifilter
architecture.

Of Triggers & Contexts..

• Trigger Point : Dir Enumeration

• Process-Level Context ?

– Few Inject code into OS Processes

– Insufficient..

• Thread-Level Context ?

– CTB Locker - Multiple Threads split work

– Insufficient..

• Code-Block Level Context ?

– Threads originate from same code-block

– Sufficient to track & prove intent

Nail in the Coffin

• Write Monitoring – For Encryption

• Known Binary File Type

– Change to Unknown file-type detected

• Unknown/Text File Type

– Increase in entropy detected

?

Minimizing the Damage

• I/O Buffering (In-Memory Backup)

– Handle based on detection

• Maintaining Journal

– Most Ransomware move the encrypted content
to <FileName>.<RandomExtn>

– Maintain rename/move actions history

– Revert changes post-detection

DEMO

Mitigating the Risk

False positives

 Performance slowdown

Tighten process context:

– Executables from external sources, e.g. Internet

– Untrusted exec path, e.g. NOT from Program Files

– Exclusions based on Digital Signature, etc.

What about Android Ransomware
Encryptors?

Simplelocker

Same detection framework applicable

... in theory

In practice however…

Low-level interception not possible

Malware AV Product

User Apps

"android.permission.RECEIVE_BOOT_COMPLETED"

Windows Ransomware Encryptors
Must Die

Here lieth:

Cryptolocker
Cryptowall
CTB Locker
Tesla Crypt
Onion Locker
…

RIP

