
DARE ‘DEVIL’
beyond your senses with Dex Visualizer

Jun Yong Park – VB2015



whoami

Senior Principal Researcher / Architect

jypark@ahnlab.com

Security researcher @AhnLab since 2004

in recent years enjoy reversing and visualizing 

Android malware



Agenda

Motivations

 App lifecycle [graph]

 DEVIL

 How-to

 App lifecycling

 Case studies

 Conclusion



See the wood for the trees



 Every Android app has essential building blocks known 
as app components

 Each component serves a dintint purpose and has a 
distinct lifecycle

 Some interact each other, some depend on each other

 These relationships between app components construct 
the lifecycle of an Android app

App Lifecycle



App Lifecycle Graph

 A lifecycle can be visualized by various well-known 
graph algorithm

 The visualization of executables is one of the most 
effective ways to identify malware



Dare ‘DEVIL’
Dex Visualizer



DEVIL

DEVIL.py DEVIL.js

server client

INTER-OBJET RELATIONS

APK static analysis Graph visualization



HOW-TO
EP

Intent

Permission

App Component

Runnable Component

Import

String



Test/PNStealer



Entry Point (1/7)

 sdafsdfsdf

Android-Test/PNStealer

 First, only one abstract node, EP



Intent (2/7)

Android-Test/PNStealer

 reading AndroidManifest.xml
 emulating bytecodes
 tracing the life of objects



Permission (3/7)

Android-Test/PNStealer

 reading AndroidManifest.xml 
 tracking down permission usages
 propagation algorithm 



App Component (4/7)

Android-Test/PNStealer

 reading AndroidManifest.xml
 classes inheriting Activity, Service, ContentProviders 

and BroadcastReceiver



Runnable Component (5/7)

Android-Test/PNStealer

 classes inheriting Thread, Runnable and AsycTask



Import (6/7)

Android-Test/PNStealer

 classes referenced by app components or imports



String (7/7)

Android-Test/PNStealer

 such as URL, email or text containing keywords



A Complete Graph



APP LIFECYCLING



App Lifecycling

 Traversing all outgoing nodes from one node on the app 
lifecycle graph recursively, typically from EP

 useful for investigating the behaviours of an Android 
app

 effective for identifying a distinct behaviour

well suited to detecting the suspicious behaviours of 
Android malware



CASE STUDIES
Narut / KorTalk / Bankun / Dendroid / SMSMonitor



Trojan/Narut



Trojan/KorTalk



Trojan/KorTalk



Trojan/KorTalk



Trojan/KorTalk



Trojan/Bankun



Trojan/Dendroid



Inner Class



BounceBall Android-Backdoor/SMSMonitor

inner classesRepackaging



Repackaging



Conclusions

 The relationships between app components construct 
the App Lifecycle, and can effectively be visualized in a 
graph

 The App Lifecycle Graph is well suited to analyze how 
an Android app operates

 The App Lifecycling traverses all outging nodes from 
one node on the app lifecycle graph recursively

 is so effective in identifying the distinct behaviours that 
it can be used to detect the malicious behaviour



Thank you
jypark@ahnlab.com


