
Boris Larin

Anton Ivanov

Exploiting ActionScript3
interpreter

• Head of Advanced Threat Research and Detection Team

• Detecting exploits for 8 years

• Leads the targeted attacks research team

• Regular writer on https://securelist.com/

@antonivanovm

Bio (Anton Ivanov)

https://securelist.com/

• Malware Analyst (Heuristic Detection and Vulnerability Research Team)

• RE has been my main passion for 8+ years

• Author of Kaspersky Academy’s Malware Reverse Engineering course for
universities

• Regular writer on https://securelist.com/

@oct0xor

Bio (Boris Larin)

https://securelist.com/

Is it dead?

4

Is it dead?

5

6

Flash file format

7

• AS3 Sorcerer

• Pros: Good decompiler

• Cons: Commercial, closed source

• JPEXS Free Flash Decompiler

• Pros: Many features, free

• Cons: Written in Java

• RABCDAsm

• Pros: AS3 [Dis-]Assembler

• Cons: Written in D

Flash analysis tools

8

Flash analysis tools

9

A tool that is:

• Simple

• Stable

• Easy to use

• Shows disassembled instructions and their bytes

• Ctrl-C / Ctrl-V to create YARA rule

• Just works

What do we need?

10

A tool that is:

• Simple

• Stable

• Easy to use

• Shows disassembled instructions and their bytes

• Ctrl-C / Ctrl-V to create YARA rule

• Just works

What do we need?

Sounds like IDA Pro!

11

A tool that is:

• Simple

• Stable

• Easy to use

• Shows disassembled instructions and their bytes

• Ctrl-C / Ctrl-V to create YARA rule

• Just works

What do we need?

Sounds like IDA Pro!

IDA Pro has no support for SWF and ActionScript 3 bytecode

12

A tool that is:

• Simple

• Stable

• Easy to use

• Shows disassembled instructions and their bytes

• Ctrl-C / Ctrl-V to create YARA rule

• Just works

What do we need?

Sounds like IDA Pro!

IDA Pro has no support for SWF and ActionScript 3 bytecode

Let’s do it!

13

ActionScript3 processor module

14

Not so long ago…

15

Exploit

16

Exploit

Var130 launches shellcode using a standard technique

17

Exploit

Var130 launches shellcode using a standard technique

This variable should contain another value as an effect of the triggered vulnerability

18

Exploit

Var130 launches shellcode using a standard technique

This variable should contain another value as an effect of the triggered vulnerability

Where is the vulnerability?

19

First hints

20

First hints

21

• AVM2 source code: https://github.com/adobe/avmplus

• Bytecode is verified before execution

• Not all code is executed in the same way

AVM2 core

Native JIT Interpreted

22

https://github.com/adobe/avmplus

Native

23

JIT

24

• try {} block

• static Init

Interpreted

25

Interpreted

26

Verification

27

verifyBlock

28

OP_callmethod

Always throw verifyFailed()

29

• _longjmp() / _setjmp()

Exceptions in Flash

verifyFailed:

JIT’ed try {} block of function var122:

In which scenario would a legitimate SWF need to catch bytecode verify errors?

30

• Function var122 is called twice

• At first attempt verifyFailed exception is caught

• At second attempt exception is not thrown!

• Code interpreted without verification!

Back to the exploit…

31

Vulnerability

32

Vulnerability

(1) On first run – set exceptions

33

Vulnerability

(1) On first run – set exceptions

(2) On second run:

exceptions already set but…

tryFrom and tryTo = NULL

34

• tryTo = NULL and tryFrom = NULL

• if (pc < tryTo && pc >= tryFrom &&

(opcodeInfo[opcode].canThrow))

• This check is always false

• Exception handler is never verified!

Vulnerability

35

Interestingly, the same line of code was related to multiple previous vulnerabilities

But targeted another part of a check…

• if (pc < tryTo && pc >= tryFrom && (opcodeInfo[opcode].canThrow))

Past vulnerabilities

36

• Code found on GitHub

CVE-2017-11292 fix

37

• Code found on GitHub

CVE-2017-11292 fix

38

• Code found on GitHub

• Logic error – Verifier was not meant to run
twice on the same function

• Why it is possible to catch verifyFailed()
exceptions?

CVE-2017-11292 fix

39

Exploitation

40

callmethod 0x1D is interpreted, 0x1D is index of function C0/f2()

Var16 is passed as “this” !

Exploitation

41

this.u5 – points to BA object

this.u5-1 – converts atom and retrieves pointer from object

It is used later to corrupt BA and get arbitrary Read / Write

Exploitation

42

But arbitrary Read / Write is already achieved with ability to
overwrite this.u0

Points to ??_7BufferControlParameters@psdk@@6B@

Exploitation

43

Overwriting BufferControlParameters can enable arbitrary Read / Write

Exploitation

44

• While vulnerability is present in code verification, which is common for interpreted and JIT mode, it
can’t be exploited in JIT mode

• Exception handler will not be compiled in JIT mode

Why target the interpretation mode?

45

46

• How was it possible for us to quickly analyze this exploit?

Analysis

47

• How was it possible for us to quickly analyze this exploit?

• Debugging of interpreted code

• avmplus::interpBoxed – main function responsible for interpretation

Analysis

48

• How was it possible for us to quickly analyze this exploit?

• Debugging of interpreted code

• avmplus::interpBoxed – main function responsible for interpretation

• Debugging of JIT code?

“Debugging with JIT code is a nightmare for analysts”

- Jeong Wook Oh, “AVM Inception” - ShmooCon2012

Analysis

• First concept was presented by Haifei Li at REcon 2012, “Inside AVM”

• Set hooks before code is JIT compiled

• AbcParser::parseMethodBodies

• at the end of verifyOnCall

• Wasn’t ever released to public

JIT debugging - 2012

49

• Sulo is not a debug plugin, but a Pin tool for Flash instrumentation, mainly for call tracing

• Uses similar concept shown by Haifei Li

• Hooks needed functions

• Also parses and implements many structures

• Supports only old versions of Flash

• Not very obvious how to get it to work
with newer versions

JIT debugging - 2014

50

DbgFlashVul - First (?) public release of Flash WinDbg plugin to debug JIT

• Works on different Flash versions
with the use of signatures

JIT debugging - 2015

51

Fldbg - Pykd script for Flash tracing with emphasis on heap allocations

JIT debugging - 2016

52

We analyzed AVM and found out it is possible to further improve the debugging experience with JIT
code

JIT debugging

53

JIT code

54

JIT code

What is it?

55

avmplus/core/CodegenLIR.cpp

_save_eip – local storage for the current
ABC-based "pc", used for exception-handling

Only present when method has try/catch

JIT codegen

56

JIT codegen

57

• Create debug plugin for IDA Pro

• With ability to trace and set breakpoints

• Hook has ReachableExceptions() in CodegenLIR::writePrologue() to always return True

• Use signatures to support different versions of Flash

• Use _save_eip to map ABC bytecode to compiled JIT code

Plan

58

JIT codegen

59

DEMO

60

• AVM core was and still is a source of critical vulnerabilities

• Bypass of bytecode verification

• JIT type-confusion vulnerabilities

• More execution modes leads to more exploitable bugs

Conclusions

61

Licensed under GPL-3.0-or-later

https://github.com/KasperskyLab

Source code

62

https://github.com/KasperskyLab

63

• CVE-2018-5002

• Exception handler will be called if instructions in range
from 0x4666 to 0x466A cause exception

• In this range there is only one instruction: “jump”

• “jump” never causes exception…

Bonus

64

• But in this case li8 (Load 8bit integer value)
cause exception

• 0x1E240 is too big to fit in 8bit integer

Bonus

65

• Let’s take a look at li8 handler

Bonus

66

• mop_rangeCheckFailed throws exception that will be caught by interpreter

• It will try to find assigned exception handler in bytecode

• If exception handler is found it will be interpreted

• Guess which exception handler will be executed ?

Bonus

67

• mop_rangeCheckFailed throws exception that will be caught by interpreter

• It will try to find assigned exception handler in bytecode

• If exception handler is found it will be interpreted

• Guess which exception handler will be executed ?

• expc (Exception PC) equals zero! Zero is PC of “jump” instruction…

Bonus

68

• Macros SAVE_EXPC was not used – expc was not set

Bonus

@oct0xor – Boris Larin

@antonivanovm – Anton Ivanov

Let’s talk?

