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Flash file format
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• AS3 Sorcerer 

• Pros: Good decompiler

• Cons: Commercial, closed source

• JPEXS Free Flash Decompiler

• Pros: Many features, free

• Cons: Written in Java

• RABCDAsm

• Pros: AS3 [Dis-]Assembler

• Cons: Written in D

Flash analysis tools
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Flash analysis tools
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A tool that is:

• Simple

• Stable

• Easy to use

• Shows disassembled instructions and their bytes

• Ctrl-C / Ctrl-V to create YARA rule

• Just works

What do we need?
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A tool that is:

• Simple

• Stable

• Easy to use

• Shows disassembled instructions and their bytes

• Ctrl-C / Ctrl-V to create YARA rule

• Just works

What do we need?

Sounds like IDA Pro! 

IDA Pro has no support for SWF and ActionScript 3 bytecode 

Let’s do it!
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ActionScript3 processor module
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Not so long ago…
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Exploit
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Exploit

Var130 launches shellcode using a standard technique
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Exploit

Var130 launches shellcode using a standard technique

This variable should contain another value as an effect of the triggered vulnerability
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Exploit

Var130 launches shellcode using a standard technique

This variable should contain another value as an effect of the triggered vulnerability

Where is the vulnerability?
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First hints
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First hints
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• AVM2 source code: https://github.com/adobe/avmplus

• Bytecode is verified before execution

• Not all code is executed in the same way

AVM2 core

Native JIT Interpreted
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https://github.com/adobe/avmplus


Native
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JIT

24



• try {} block

• static Init

Interpreted
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Interpreted
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Verification
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verifyBlock
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OP_callmethod

Always throw verifyFailed()
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• _longjmp() / _setjmp()

Exceptions in Flash

verifyFailed:

JIT’ed try {} block of function var122:

In which scenario would a legitimate SWF need to catch bytecode verify errors?
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• Function var122 is called twice

• At first attempt verifyFailed exception is caught

• At second attempt exception is not thrown!

• Code interpreted without verification!

Back to the exploit…
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Vulnerability
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Vulnerability

(1) On first run – set exceptions 
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Vulnerability

(1) On first run – set exceptions 

(2) On second run:

exceptions already set but…

tryFrom and tryTo = NULL 
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• tryTo = NULL and tryFrom = NULL

• if (pc < tryTo && pc >= tryFrom &&

(opcodeInfo[opcode].canThrow)) 

• This check is always false

• Exception handler is never verified!

Vulnerability
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Interestingly, the same line of code was related to multiple previous vulnerabilities

But targeted another part of a check… 

• if (pc < tryTo && pc >= tryFrom && (opcodeInfo[opcode].canThrow)) 

Past vulnerabilities
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• Code found on GitHub

CVE-2017-11292 fix
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• Code found on GitHub

CVE-2017-11292 fix
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• Code found on GitHub

• Logic error – Verifier was not meant to run 
twice on the same function

• Why it is possible to catch verifyFailed() 
exceptions?

CVE-2017-11292 fix
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Exploitation
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callmethod 0x1D is interpreted, 0x1D is index of function C0/f2()

Var16 is passed as “this” !

Exploitation

41



this.u5 – points to BA object

this.u5-1 – converts atom and retrieves pointer from object

It is used later to corrupt BA and get arbitrary Read / Write

Exploitation

42



But arbitrary Read / Write is already achieved with ability to 
overwrite this.u0

Points to ??_7BufferControlParameters@psdk@@6B@

Exploitation
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Overwriting BufferControlParameters can enable arbitrary Read / Write

Exploitation
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• While vulnerability is present in code verification, which is common for interpreted and JIT mode, it 
can’t be exploited in JIT mode

• Exception handler will not be compiled in JIT mode

Why target  the interpretation mode? 
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• How was it possible for us to quickly analyze this exploit? 

Analysis
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• How was it possible for us to quickly analyze this exploit? 

• Debugging of interpreted code

• avmplus::interpBoxed – main function responsible for interpretation

• Debugging of JIT code?

“Debugging with JIT code is a nightmare for analysts”

- Jeong Wook Oh, “AVM Inception” - ShmooCon2012

Analysis



• First concept was presented by Haifei Li at REcon 2012, “Inside AVM”

• Set hooks before code is JIT compiled

• AbcParser::parseMethodBodies

• at the end of verifyOnCall

• Wasn’t ever released to public

JIT debugging - 2012
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• Sulo is not a debug plugin, but a Pin tool for Flash instrumentation, mainly for call tracing

• Uses similar concept shown  by Haifei Li

• Hooks needed functions

• Also parses and implements many structures

• Supports only old versions of Flash

• Not very obvious how to get it to work 
with newer versions

JIT debugging - 2014
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DbgFlashVul - First (?) public release of Flash WinDbg plugin to debug JIT

• Works on different Flash versions 
with the use of signatures

JIT debugging - 2015
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Fldbg - Pykd script for Flash tracing with emphasis on heap allocations

JIT debugging - 2016
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We analyzed AVM and found out it is possible to further improve the debugging experience with JIT 
code

JIT debugging
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JIT code
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JIT code

What is it?
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avmplus/core/CodegenLIR.cpp

_save_eip – local storage for the current 
ABC-based "pc", used for exception-handling

Only present when method has try/catch

JIT codegen
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JIT codegen
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• Create debug plugin for IDA Pro

• With ability to trace and set breakpoints

• Hook has ReachableExceptions() in CodegenLIR::writePrologue() to always return True

• Use signatures to support different versions of Flash

• Use _save_eip to map ABC bytecode to compiled JIT code

Plan
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JIT codegen
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DEMO
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• AVM core was and still is a source of critical vulnerabilities

• Bypass of bytecode verification

• JIT type-confusion vulnerabilities

• More execution modes leads to more exploitable bugs

Conclusions
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Licensed under GPL-3.0-or-later

https://github.com/KasperskyLab

Source code
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https://github.com/KasperskyLab
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• CVE-2018-5002

• Exception handler will be called if instructions in range 
from 0x4666 to 0x466A cause exception

• In this range there is only one instruction: “jump”

• “jump” never causes exception…

Bonus
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• But in this case li8 (Load 8bit integer value) 
cause exception

• 0x1E240 is too big to fit in 8bit integer 

Bonus
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• Let’s take a look at li8 handler

Bonus
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• mop_rangeCheckFailed throws exception that will be caught by interpreter 

• It will try to find assigned exception handler in bytecode

• If exception handler is found it will be interpreted

• Guess which exception handler will be executed ? 

Bonus
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• mop_rangeCheckFailed throws exception that will be caught by interpreter 

• It will try to find assigned exception handler in bytecode

• If exception handler is found it will be interpreted

• Guess which exception handler will be executed ? 

• expc (Exception PC) equals zero! Zero is PC of “jump” instruction…  

Bonus
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• Macros SAVE_EXPC was not used – expc was not set

Bonus



@oct0xor – Boris Larin

@antonivanovm – Anton Ivanov

Let’s talk?


