
Security Visibility

Tracking Mirai Variants
Ya Liu (speaker)

Hui Wang

Outline

• Background

• Data and methodology

– Configuration

– Supported attack methods

• Analysis of typical Mirai branches

– MASUTA, OWARI, WICKED

• (newly added) Classifications on VessOnSecurity’s samples

A short history of Mirai

• Firstly blogged by @MalwareMustDie in August, 2016

• Getting known for crippling Krebsonsecurity, OVH,
and DYN in autumn 2016

• Source was released on Sep 30, 2016

• Dozens of variants got derived, some of them were
also open sourced

https://twitter.com/MalwareMustDie
https://twitter.com/MalwareMustDie

Mirai variants

Mirai variants and branches

• Mirai variants are usually named and classified according
to their branch names

• Branch refers to the command used in infection

– “/bin/busybox MIRAI”

– “MIRAI: applet not found”

• Branches were often replaced with new words in later
variants

– E.g., AKUMA, OWARI, MASUTA, SATORI

Branch word cloud

Fine-grained classification is needed

• It’s common that the same branch of samples vary a lot

– 7 attack methods and 32 configurations in sample of
63e7878d0a9877fdcea6e094cb291ed5

– 10 attack methods and 196 configurations in sample
of a67c1814f5f558b10d11c312b2e2113a

• For better variant tracking, more fine-grained
classifications are needed

Outline

• Background

• Data and methodology
– Configuration

– Supported attack methods

• Analysis of typical Mirai branches
– MASUTA, OWARI, WICKED

Our solution

Samples

• 10,784 samples
of x86 & ARM

Extracted
data

• Configurations

• Attack methods

• Usernames and passwords

Schemes

• 4 classification
schemes

Data extraction model

• Static analysis

– To find target functions in sample

• Dynamic analysis

– To emulate the found functions to
obtain interested data

• Synthesis

A configuration example

MD5=0ae272306d313c6abf1433b85e0a2352
……

CNC & report ports

prompt line

Infection verification

Scanner parameters

Killer parameters

A summary of Mirai configuration

• A self-defined database to store running parameters

– Composed of variable number of items

– Each item is uniquely indexed

– Items are stored encrypted in an XOR-encryption

• Varying greatly among variants in terms of encryption
key, item count, and content

• A good entry point for variant classification

About configuration extraction

• 2 functions to analyze: table_init() and resolve_cnc_addr()

• 4 scripts: 2 for static analysis and 2 for dynamic analysis

– table_init() : an array of {slot_addr, cipher-text, size}

– resolve_cnc_addr(): indexes of CNC server and port

• Key is brute-force searched in the space of 1~256

• The final result is an array of {index, plain-text, size}

About table_init()

cipher text is copied to a

new memory block

config DB
slot is determined by

the index

index cipher-text item-size

Binary table_init()

A big function with a single and big instruction block

Repeatedly calling malloc/util_memcpy

to save individual configuration items

item size

cipher text address

slot address

About resolve_cnc_addr ()

retrieve & resolve CNC domain/IP

retrieve CNC port

called in main() or anti_gdb_entry()

Scheme-1: clustering based on config count/size

Cluster aandy:

size>7400

&& count>100

&& count<120

Branch name Key C2 Samples

KYUBI 0x34 cnc.aandy.xyz 4

MIRAI 0x34 cnc.aandy.xyz 8

MIRAI 0x34 www.aandy.cf 7

MIRAI 0x34 www.askjasghasg.ru 16

Cluster aandy

107.179.126.64

Scheme-2: key based classification

Since the key space is as much as 2^8,

there should be a low probability that two

variants share the same key.

key

s
a

m
p

le
s

A use case

• The branches of OWARI, JOSHO, and Cult can be

connected via the key of 0x54

MD5 Branch Configuration
 count/size

CNC

0729b89281c831fc035d56
fbf14631da

 Cult 30/333 198.134.120.150

23a98fc659982da993e782
5eb87bb640

 OWARI 30/340 198.134.120.150

2ff2d4feff4ffcec355f52993
ce7b73e

 JOSHO 30/346 198.134.120.150

Supported attack methods

• It’s reasonable to classify DDoS botnet variants based
on their supported attack methods

• Mirai variants did vary a lot in attack methods

– 10 attack methods were found in the released code

– Dozens of new, or updated, methods have been
detected in later variants

• The classification data includes method count, type,
and command code

Attack method initialization

command code attack function

Inside of add_attack()

each method is allocated separate item

method table

item is saved to method table

Attack method extraction

• attack_init() is found according to characteristics of :

– Composed of single instruction block

– 1~2 unique functions are repeatedly called

– Multiple (attack) functions are used as callbacks

• Command codes and attack functions are obtained by
dynamic emulation

• The final result is an array of {cmd_code, atk_func}

Scheme-3: command code based classification

Command code combination Samples

0_1_2_3_4_5_6_7_9_10 4488

0_1_2_3_4_5_6_7_8_9_10 3890

0_1_2_3_4_5_6_7_8 976

0_1_2_3_4_5_6_7_8_9 353

0_1_2_3_6_7_8 138

0_1_2_3_4_5_6_7_9 96

0_1_2_3_4 94

0_1_2_3 75

0_1_2_3_4_5_6_7_9_10_11_12 51

0_1_2 48

Fingerprinting attack functions

• To figure out extracted attack functions’ real semantics

– E.g., SYN-/UDP-/HTTP-flood

• It’s inspired by the following 2 findings:

– A set of attack options, together with command codes,

were defined to deliver attack parameters

– Different attack functions usually use different options

Mirai attack options

Option set is specific to attack type

different functions,

different option sets

Binary attack method functions

All
start
With

a
big

instruction
block

MD5=652ba82411b745e5dac44cd15e314b25

Fingerprinting definition

• FP(atk_func)={concatenation of option codes}

– E.g., FP(attack_app_http)=0x15_0x14_0x08_0x16_0x18_0x07

• In total 43 unique fingerprints have been found

– Most of them are shared across variants

• Maps of {FP, atk_type} could be established by manual RE
or using symbols from unstripped samples

Scheme-4: attack type based classification

• Variant is defined as the coded attack types

– E.g., {0-atk_udp1, 1-atk_udp_vse1, 2-atk_tcp_syn1, …}

• Information of method count, command codes, and
attack types is fully exploited

• In total 126 unique combinations have been found

Outline

• Background

• Data and methodology

• Analysis of typical branches

– MASUTA

– OWARI

– WICKED

MASUTA samples under scheme-2

• 4 keys have been found in MASUTA samples

Variant Samples CNCs

MASUTA+0x45 351 53

MASUTA+0x02 90 5

MASUTA+0x22 9 1

MASUTA+0x55 8 1

MASUTA+0x45 under scheme-1

MASUTA+0x45 under scheme-4

• Totally 8 combinations were found

 samples coded attack fingerprints

Outline

• Background

• Data and methodology

• Analysis of typical branches

– MASUTA

– OWARI

– WICKED

OWARI samples under scheme-2

• 2 keys are found in OWARI samples

Variant Samples CNCs

OWARI+0x54 687 146

OWARI+0x66 15 2

OWARI under scheme-1

command lines of download & kill added

kill parameters were added

More kill parameters added: "WsGA4@F6F", "ACDB",
"AbAd", "iaGv", "902i13", "19ju3d”

OWARI under scheme-4

• 15: {0-atk_udp1, 1-atk_udp_vse1, 2-atk_tcp_syn1, 3-

atk_tcp_ack1, 4-atk_gre1, 5-atk_gre1, 6-atk_std_or_udp,

7-atk_std_or_udp, 8-atk_tcp_stomp_or_xmas1}

• 642: {0-atk_udp1, 1-atk_udp_vse1, 2-atk_udp_dns, 3-

atk_tcp_syn1, 4-atk_tcp_ack1, 5-

atk_tcp_stomp_or_xmas1, 6-atk_gre1, 7-atk_gre1, 8-

atk_std_or_udp, 9-atk_std_or_udp, 10-

atk_tcp_stomp_or_xmas1}

Outline

• Background

• Data and methodology

• Analysis of typical branches

– MASUTA

– OWARI

– WICKED

WICKED under scheme-1

kill parameters were added

command lines of iptables were added

More details

(size, count) Samples CNC

(48, 614) 15 104.244.72.82

(27, 737) 4 185.246.152.173

(38, 833) 54

104.236.224.5
104.244.72.82
167.99.220.44
185.189.58.211
185.246.152.173
188.166.63.14

(48, 1362)
(48, 1376)

55
167.99.220.44
185.246.152.173

WICKED on Scheme-4

• 4 combinations are obtained

Summary

• Current Mirai variants and classifications were discussed

• Solutions of extracting 2 kinds of classification data were
introduced

• 4 classification schemes based on the extracted data were
demonstrated

• 3 popular Mirai branches were investigated with the
demonstrated data and methodology

Future work

• To keep a tight watch on new exploits used by emerging
Mirai variants

• To design classification with fuzzy hashing techniques
(e.g., SSDP) to make better use of sample configurations

• To improve attack method fingerprinting techniques by
considering the default option values

Classifications on VessOnSecurity’s samples

The left slides are later added to answer Vess’s questions

tweeted during VB2018 conference

• 7897 unique MD5s were found in Vess’s
sample set

– https://pastebin.com/rnHdzfHy

• Only samples of x86 and ARM were considered
– Because only those 2 kinds of samples were used in our

talk for reasons of simplicity and efficiency

– There should be no much accuracy loss due to Mirai’s
“one-source-to-multiple-processor” style of code
compilation

• 1658 samples hit our talk’s dataset
– 520 x86 samples, 1132 ARM samples

– https://pastebin.com/YCrpnmS4

https://pastebin.com/rnHdzfHy
https://pastebin.com/rnHdzfHy
https://pastebin.com/YCrpnmS4
https://pastebin.com/YCrpnmS4

20 branches found
branch samples

MIRAI 1484

MASUTA 61

ASUNA 23

AKUMA 17

CATSMEOW 10

MEMES 8

QBOTV1 7

NULL[*] 7

WHOSGHOST 6

REKAI 6

PUTIN 6

Tenshi 5

MIORI 4

SENPAI 3

MM 3

HENTAI 3

NGRLS 2

RipPEEP 1

OOMGA 1

LiLboats 1

s
a

m
p

le
s
 with branch of “MIRAI” removed

[*] no branches found

9 configuration encryption keys
key samples

0x22 1478

0x45 97

0x62 34

0x34 21

0x6F 12

0x56 8

0x44 3

0x0C 3

0xE0 2

with key of 0x22 removed

s
a

m
p

le
s

key

25 combinations of “branch+key”

with “MIRAI+0x22” removed

s
a

m
p

le
s

branch+key

branch+key samples

MIRAI+0x22 1423

MASUTA+0x45 61

MIRAI+0x62 34

ASUNA+0x45 23

MIRAI+0x34 21

AKUMA+0x22 14

CATSMEOW+0x22 10

MEMES+0x56 8

QBOTV1+0x22 7

NUL+0x22 7

WHOSGHOST+0x22 6

REKAI+0x22 6

PUTIN+0x6F 6

MIRAI+0x6F 6

Tenshi+0x45 5

SENPAI+0x45 3

MM+0x0C 3

HENTAI+0x45 3

AKUMA+0x44 3

NGRLS+0x22 2

MIORI+0xE0 2

MIORI+0x45 2

RipPEEP+0x22 1

OOMGA+0x22 1

LiLboats+0x22 1

24 combinations of
command coded attack FPs

• For consideration of limited space, prefixes of “atk_” are omitted

– E.g., “atk_udp1 ” -> “udp1”

• UNKn stands for unknown attack fingerprints

Thank you
liuya@360.cn

wanghui3-s@360.cn

mailto:liuya@360.cn

