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Why dynamic ? 

● Obfuscated & packed 

code hard for 

static analysis. 

● In some cases, we 

need only a high-

level view on 

malware behavior. 
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Current Situation in Dynamic Analysis 
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(e.g. APIMonitor) 

Emulation 

(e.g. QEMU+PANDA) 

Syscalls Tracing 

(e.g. ProcMon) 
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Emulation. Visibility Example 
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Runtime Overhead. Stalling Code 
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10 min on CPU = 1d08h in emulator 
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Emulation. Visibility Example 
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Syscalls Tracing. Visibility Example 
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API Tracing. Visibility Example 
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Ltrace for Linux 
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Dynamic Binary Instrumentation (DBI) is a 

technique of analyzing the behavior of a binary 

application at runtime through the injection of 

instrumentation code. 
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Modern DBI Frameworks 
DynamoRIO Intel PIN 

Redistribution 
model 

Open-source, BSD – license Proprietary 

Supported 
architectures 

x86, x86-64, ARM, AArch64 x86, x86-64 

Supported 
Platforms 

Linux, Windows, MacOS, 
Android 

Linux, Windows, MacOS, 
Android 

Average 
runtime overhead 

108% (no tool) 
139% (BBs counter) 

130% (no tool) 
162% (BBs counter) 

Language C/C++ C/C++ (some Python 
wrappers available) 

Technology Binary code transformation callout/trampolines 
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How Does DynamoRIO Work ? (10000 foot view) 

Target application Launcher 

DynamoRIO Application in memory 

Kernel 

 
shared system libs 
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Target application 

 
shared system libs 

How Does DynamoRIO Work ? (10000 foot view) 
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Hook entry point DynamoRIO lib + user-defined libs 
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How Does Drltrace Work ? 
Application in memory 

Main module 
 

kernel32.dll 
 

ntdll.dll 
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DynamoRIO and Drltracelib in The Memory of Calculator 
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Usage 

drltrace.exe –logdir . – malware.exe 



Why DrLtrace Rock 

● Support x86 and x64 (ARM in future). 
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Why DrLtrace Rock 

● Support x86 and x64 (ARM in future). 
● Support Windows and Linux (macOS in future). 
● Support self-modifying code. 
● Support all types of library API calls (static and 

dynamic). 
● Not-detectable by standard malware anti-research 

techniques (anti-hooking, anti-debugging and anti-
emulation). 

● External configuration file to add new API calls. 
● Easy-to-use (no additional dependencies, no heavy-

weight GUI). 
● Open-source (BSD-license). 
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Runtime Overhead 
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Example 1. EmbusteBot 

●   Type - Brazilian Banking Trojan  
●   Language - Delphi 
●   Main Functionality – Keylogger, Screenshots capturing 
●   Obfuscation – time-based anti-research checks, encryption of sensitive strings, no code packing 
●   Operation period – (2017 – present) 

 
 
 

Report- https://securityintelligence.com/brazilian-malware-never-sleeps-meet-embustebot/ 
More details - https://github.com/mxmssh/drltrace/wiki/Malware-Analysis-Examples 
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Example 1. EmbusteBot 
drltrace.exe -logdir . -print_ret_addr – vdeis.exe 
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Example I. EmbusteBot. Searching for Tab with Bank Name 
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Example I. EmbusteBot. Screenshots Capturing and Keylogging API Calls 
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Example I. EmbusteBot. Trigger 
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Example II. Gootkit Loader 
●   Type : Banking Trojan  
●   Language : C 
●   Main Functionality: Unpack actual payload loader, deliver Gootkit malware on victim’s machine 
●   Obfuscation: anti-VM, anti-debugging, anti-emulation, time-based anti-research,  packed payload, machine-
code obfuscation, anti-sandboxing. 
●   Operation period: (2014 – present) 
 

 

 

 

Technical report - https://drive.google.com/file/d/0BzFSoGMCVlTORUExdF9RTklpX3c/view 
More details - https://github.com/mxmssh/drltrace/wiki/Malware-Analysis-Examples 44 
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Example II. Gootkit Loader 

drltrace.exe -logdir . -print_ret_addr -- 477c305~f01.exe 
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Example II. Gootkit Loader. Unpacking 

46 



Example II. Gootkit Loader. Process Hollowing. New Process Creation 

47 



Example II. Gootkit Loader. Process Hollowing. New Section 
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Example II. Gootkit Loader. Process Hollowing. Write & Resume 
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Example II. Gootkit Loader 
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Example II. Gootkit Loader 
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Example II. Gootkit Loader 
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DEMO. NotPetya/PetrWrap 
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Drltrace. API calls visualization script 
python api_calls_vis.py -i wannacry.jpeg -gr -t drltrace_log_wannacry.log 
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Drltrace. API calls visualization script 
python api_calls_vis.py -ht wannacry.html -gr -t drltrace_log_wannacry.log 
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Future Work 

● Make DynamoRIO more resistant against anti-DBI 

tricks. 

● Add heuristics to search for certain (YARA 

rules?) malicious patterns in logs. 

● ARM and macOS. 

● Attach drltrace into running process 
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Conclusion 

● Dynamic binary instrumentation is a reasonable trade-off for 

dynamic malware analysis. 

● Drltrace is the first efficient and light-weight solution for 

API calls tracing in modern sophisticated malicious samples 

based on DBI technique. 

● The solution allowed to revel in several minutes a lot of 

internal technical details about malicious sample without even 

starting IDA or debugger. 
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Thank you! 

https://github.com/mxmssh/drltrace 
 

 
 

https://www.linkedin.com/in/mshudrak 
https://twitter.com/MShudrak 
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