

Tricky Sample ? Hack it easy! Applying dynamic binary

instrumentation to light-weight malware behavior analysis
Maksim Shudrak

About Me
BIO

2018 – present: Senior Offensive Security Researcher

2016: Defended PhD (Vulns Hunting) in Tomsk, Russia

2015-2017: Researcher, IBM Research, Haifa, Israel

2011-2015: Security Researcher, PhD student

Interests

Vulnerabilities Hunting

Fuzzing

Reverse-engineering

Malware Analysis

Dynamic Binary Instrumentation

Projects

Drltrace – transparent API-calls tracing for malware analysis

https://github.com/mxmssh/drltrace
WinHeap Explorer – PoC for heap-based bugs detection in x86 code

https://github.com/WinHeapExplorer/WinHeap-Explorer
IDAMetrics – IDA plugin for machine code complexity assessment

https://github.com/mxmssh/IDAmetrics

https://github.com/mxmssh/drltrace
https://github.com/WinHeapExplorer/WinHeap-Explorer
https://github.com/WinHeapExplorer/WinHeap-Explorer
https://github.com/WinHeapExplorer/WinHeap-Explorer
https://github.com/mxmssh/IDAmetrics

Outline

● Why Dynamic Analysis?

● Current approaches
● Runtime Overhead vs Visibility

● Dynamic Binary Instrumentation
● Technique Overview

● DBI Frameworks Comparison

● DrLtrace
● How Does It Work ?

● Usage

● Examples & Demo

3

Why dynamic ?

● Obfuscated & packed

code hard for

static analysis.

● In some cases, we

need only a high-

level view on

malware behavior.

4

Current Situation in Dynamic Analysis

Runtime overhead

V
i
s
i
b
i
l
i
t
y

Library Calls Tracing

(e.g. APIMonitor)

Emulation

(e.g. QEMU+PANDA)

Syscalls Tracing

(e.g. ProcMon)

5

Emulation. Visibility Example

6

Runtime Overhead. Stalling Code

7

10 min on CPU = 1d08h in emulator

8

Emulation. Visibility Example

9

Syscalls Tracing. Visibility Example

10

API Tracing. Visibility Example

11

Ltrace for Linux

12

Current Situation in Dynamic Analysis

Runtime overhead

V
i
s
i
b
i
l
i
t
y

Library Calls Tracing

(e.g. APIMonitor)

Emulation

(e.g. QEMU+PANDA)

Syscalls Tracing

(e.g. ProcMon)

?

13

Current Situation in Dynamic Analysis

Runtime overhead

V
i
s
i
b
i
l
i
t
y

Library Calls Tracing

(e.g. APIMonitor)

Emulation

(e.g. QEMU+PANDA)

Syscalls Tracing

(e.g. ProcMon)

Dynamic Binary Instrumentation

(e.g. Intel Pin)

14

Dynamic Binary Instrumentation (DBI) is a

technique of analyzing the behavior of a binary

application at runtime through the injection of

instrumentation code.

15

Modern DBI Frameworks
DynamoRIO Intel PIN

Redistribution
model

Open-source, BSD – license Proprietary

Supported
architectures

x86, x86-64, ARM, AArch64 x86, x86-64

Supported
Platforms

Linux, Windows, MacOS,
Android

Linux, Windows, MacOS,
Android

Average
runtime overhead

108% (no tool)
139% (BBs counter)

130% (no tool)
162% (BBs counter)

Language C/C++ C/C++ (some Python
wrappers available)

Technology Binary code transformation callout/trampolines

16

How Does DynamoRIO Work ? (10000 foot view)

Target application Launcher

DynamoRIO Application in memory

Kernel

shared system libs

17

How Does DynamoRIO Work ? (10000 foot view)

Target application Launcher

DynamoRIO

Launch (suspended)

(1)

Application in memory

Kernel

shared system libs

.

.

18

How Does DynamoRIO Work ? (10000 foot view)

Launcher

DynamoRIO

Launch (suspended)
(1)

Application in memory

Kernel

(2)

Inject instrumentation

library

Target application

shared system libs

19

Target application

shared system libs

How Does DynamoRIO Work ? (10000 foot view)

Launcher

DynamoRIO

Launch (suspended)
(1)

Application in memory

Kernel

(3)

Hook entry point DynamoRIO lib + user-defined libs

20

Target application

shared system libs

How Does DynamoRIO Work ? (10000 foot view)

Launcher

DynamoRIO

Launch (suspended)
(1)

Application in memory

Kernel

(3)

Hook entry point DynamoRIO lib + user-defined libs

ins2

basic block

ins3

ins1 T
a
k
e

f
i
r
s
t

b
a
s
i
c

b
l
o
c
k

(4)

21

Target application

shared system libs

How Does DynamoRIO Work ? (10000 foot view)

Launcher

DynamoRIO

Launch (suspended)
(1)

Application in memory

Kernel

(3)

Hook entry point DynamoRIO lib + user-defined libs

ins2

basic block

transformation

(5)

ins1

ins2

DR’s ins6

ins3

ins1

Code cache

DR’s ins1
DR’s ins2

DR’s ins3
DR’s ins4

DR’s ins5

ins3

(4)

T
a
k
e

f
i
r
s
t

b
a
s
i
c

b
l
o
c
k

22

Target application

shared system libs

How Does DynamoRIO Work ? (10000 foot view)

Launcher

DynamoRIO

Launch (suspended)
(1)

Application in memory

Kernel

(3)

Hook entry point DynamoRIO lib + user-defined libs

T
a
k
e

f
i
r
s
t

b
a
s
i
c

b
l
o
c
k

(4)

ins2

basic block

transformation

(5)

ins1

ins2

DR’s ins6

ins3

ins1

Code cache

DR’s ins1
DR’s ins2

DR’s ins3
DR’s ins4

DR’s ins5

ins3

T
a
k
e

n
e
x
t

b
a
s
i
c

b
l
o
c
k

(6)

23

How Does Drltrace Work ?
Application in memory

Main module

kernel32.dll

ntdll.dll

DBI engine

dynamorio.dll

drltrace.dll

24

How Does Drltrace Work ?
Application in memory

Main module

kernel32.dll

ntdll.dll

DBI engine

dynamorio.dll

drltrace.dll

25

I
n
s
t
r
u
m
e
n
t

L
o
a
d
L
i
b
r
a
r
y

c
a
l
l

S
e
t

c
a
l
l
b
a
c
k

(1)

(1.1)

How Does Drltrace Work ?
Application in memory

Main module

kernel32.dll

ntdll.dll

DBI engine

dynamorio.dll

drltrace.dll

26

I
n
s
t
r
u
m
e
n
t

L
o
a
d
L
i
b
r
a
r
y

c
a
l
l

S
e
t

c
a
l
l
b
a
c
k

(1)

(1.1)

LoadLibrary(msvcrt.dll) (2)

How Does Drltrace Work ?
Application in memory

Main module

kernel32.dll

ntdll.dll

DBI engine

dynamorio.dll

drltrace.dll

27

I
n
s
t
r
u
m
e
n
t

L
o
a
d
L
i
b
r
a
r
y

c
a
l
l

S
e
t

c
a
l
l
b
a
c
k

(1)

(1.1)

LoadLibrary(msvcrt.dll) (2)

msvcrt.dll (being loaded)

I
n
s
t
r
u
m
e
n
t

e
x
p
o
r
t
e
d

f
u
n
c
t
i
o
n
s

(3)

DynamoRIO and Drltracelib in The Memory of Calculator

28

Usage

drltrace.exe –logdir . – malware.exe

Why DrLtrace Rock

● Support x86 and x64 (ARM in future).

30

Why DrLtrace Rock

● Support x86 and x64 (ARM in future).

● Support Windows and Linux (macOS in future).

31

Why DrLtrace Rock

● Support x86 and x64 (ARM in future).

● Support Windows and Linux (macOS in future).

● Support self-modifying code.

32

Why DrLtrace Rock

● Support x86 and x64 (ARM in future).

● Support Windows and Linux (macOS in future).

● Support self-modifying code.

● Support all types of library API calls (static and

dynamic).

33

Why DrLtrace Rock

● Support x86 and x64 (ARM in future).

● Support Windows and Linux (macOS in future).

● Support self-modifying code.

● Support all types of library API calls (static and

dynamic).

● Not-detectable by standard malware anti-research

techniques (anti-hooking, anti-debugging and anti-

emulation).

34

Why DrLtrace Rock

● Support x86 and x64 (ARM in future).

● Support Windows and Linux (macOS in future).

● Support self-modifying code.

● Support all types of library API calls (static and

dynamic).

● Not-detectable by standard malware anti-research

techniques (anti-hooking, anti-debugging and anti-

emulation).

● External configuration file to add new API calls.

35

Why DrLtrace Rock

● Support x86 and x64 (ARM in future).
● Support Windows and Linux (macOS in future).
● Support self-modifying code.
● Support all types of library API calls (static and

dynamic).
● Not-detectable by standard malware anti-research

techniques (anti-hooking, anti-debugging and anti-
emulation).

● External configuration file to add new API calls.
● Easy-to-use (no additional dependencies, no heavy-

weight GUI).
 36

Why DrLtrace Rock

● Support x86 and x64 (ARM in future).
● Support Windows and Linux (macOS in future).
● Support self-modifying code.
● Support all types of library API calls (static and

dynamic).
● Not-detectable by standard malware anti-research

techniques (anti-hooking, anti-debugging and anti-
emulation).

● External configuration file to add new API calls.
● Easy-to-use (no additional dependencies, no heavy-

weight GUI).
● Open-source (BSD-license).

37

Runtime Overhead

PowerPoint Word Calculator Internet Explorer VMWare IDA PRO StarCraft II

Launcher

Dropbox Chrome Notepad++ 38

14,7
16,5

20,2

37,2

10

22

44,6

25,6

43,3

32

0

5

10

15

20

25

30

35

40

45

50

R
U
N
T
I
M
E

O
V
E
R
H
E
A
D

Example 1. EmbusteBot

● Type - Brazilian Banking Trojan
● Language - Delphi
● Main Functionality – Keylogger, Screenshots capturing
● Obfuscation – time-based anti-research checks, encryption of sensitive strings, no code packing
● Operation period – (2017 – present)

Report- https://securityintelligence.com/brazilian-malware-never-sleeps-meet-embustebot/
More details - https://github.com/mxmssh/drltrace/wiki/Malware-Analysis-Examples

39

https://github.com/mxmssh/drltrace/wiki/Malware-Analysis-Examples
https://github.com/mxmssh/drltrace/wiki/Malware-Analysis-Examples
https://github.com/mxmssh/drltrace/wiki/Malware-Analysis-Examples
https://github.com/mxmssh/drltrace/wiki/Malware-Analysis-Examples
https://github.com/mxmssh/drltrace/wiki/Malware-Analysis-Examples

Example 1. EmbusteBot
drltrace.exe -logdir . -print_ret_addr – vdeis.exe

40

Example I. EmbusteBot. Searching for Tab with Bank Name

41

Example I. EmbusteBot. Screenshots Capturing and Keylogging API Calls

42

Example I. EmbusteBot. Trigger

43

Example II. Gootkit Loader
● Type : Banking Trojan
● Language : C
● Main Functionality: Unpack actual payload loader, deliver Gootkit malware on victim’s machine
● Obfuscation: anti-VM, anti-debugging, anti-emulation, time-based anti-research, packed payload, machine-
code obfuscation, anti-sandboxing.
● Operation period: (2014 – present)

Technical report - https://drive.google.com/file/d/0BzFSoGMCVlTORUExdF9RTklpX3c/view
More details - https://github.com/mxmssh/drltrace/wiki/Malware-Analysis-Examples 44

https://drive.google.com/file/d/0BzFSoGMCVlTORUExdF9RTklpX3c/view
https://github.com/mxmssh/drltrace/wiki/Malware-Analysis-Examples
https://github.com/mxmssh/drltrace/wiki/Malware-Analysis-Examples
https://github.com/mxmssh/drltrace/wiki/Malware-Analysis-Examples
https://github.com/mxmssh/drltrace/wiki/Malware-Analysis-Examples
https://github.com/mxmssh/drltrace/wiki/Malware-Analysis-Examples

Example II. Gootkit Loader

drltrace.exe -logdir . -print_ret_addr -- 477c305~f01.exe

45

Example II. Gootkit Loader. Unpacking

46

Example II. Gootkit Loader. Process Hollowing. New Process Creation

47

Example II. Gootkit Loader. Process Hollowing. New Section

48

Example II. Gootkit Loader. Process Hollowing. Write & Resume

49

Example II. Gootkit Loader

50

Example II. Gootkit Loader

51

Example II. Gootkit Loader

52

DEMO. NotPetya/PetrWrap

53

54

Drltrace. API calls visualization script
python api_calls_vis.py -i wannacry.jpeg -gr -t drltrace_log_wannacry.log

55

Drltrace. API calls visualization script
python api_calls_vis.py -ht wannacry.html -gr -t drltrace_log_wannacry.log

56

Future Work

● Make DynamoRIO more resistant against anti-DBI

tricks.

● Add heuristics to search for certain (YARA

rules?) malicious patterns in logs.

● ARM and macOS.

● Attach drltrace into running process

57

Conclusion

● Dynamic binary instrumentation is a reasonable trade-off for

dynamic malware analysis.

● Drltrace is the first efficient and light-weight solution for

API calls tracing in modern sophisticated malicious samples

based on DBI technique.

● The solution allowed to revel in several minutes a lot of

internal technical details about malicious sample without even

starting IDA or debugger.

58

Thank you!

https://github.com/mxmssh/drltrace

https://www.linkedin.com/in/mshudrak
https://twitter.com/MShudrak

https://github.com/mxmssh
https://github.com/mxmssh
https://github.com/mxmssh
https://github.com/mxmssh
https://www.linkedin.com/in/mshudrak
https://twitter.com/MShudrak

