
Never Before Had Stierlitz
Been So Close To Failure

Sergei Shevchenko
Threat Research Manager

macOS Threat Reports

Potentially Unwanted Applications
(PUA): 94% of all infections

Malware:
6% of all infections

macOS Potential Threat Exposure Rate
Percentage of users across our macOS Customer Base that were attacked with
malware or PUA. 100% of attacks were detected and blocked.

1.06% were prevented from being
infected with macOS malware

16.04% were prevented from
being infected with macOS PUA

macOS Top PUA Threats

MacKeeper (32.8%)

Genieo (25.4%)

AdvancedMacCleaner (11.1%)

InstallCore (6.4%)

Bundlore (5.9%)

AdvancedMacCleaner
Downloader (5.2%)

CoinHive JavaScript
Cryptocoin Miner (4.5%)

PsExec (3.1%)
Mughthesec (2.8%)

InstallCore Installer (2.8%)

Installer is bundled with various forms of PUA
For the developers who want to monetize their work

Main Executable: random name / signer

• fatherless

• senectitude

• sphenobasilic

…

File name examples:

Various / random signers

• tryhouse

• entailment

• coconsecrator

Main Executable: Entropy

Disassembling Main Executable

__text:0000000100001150 04 start db 4
__text:0000000100001151 4A db 4Ah ; J
__text:0000000100001152 3E db 3Eh ; >

Mach-O binary, relies on Objective-C runtime libobjc.dylib.
EP starts with ‘garbage’, no valid code to execute:

How is it executed without crashing?

Non-lazy ('eager') and lazy ('on-demand') implementation of Objective-C classes:

• Non-lazy classes are realised when the program starts up. These classes will
always implement +load method

• Lazy classes (classes without +load method) do not have to be realised
immediately, but only when they receive a message for the first time

Objective-C Runtime realizes non-lazy classes
objc-runtime-new.mm

// Realize non-lazy classes (for +load methods and static instances)
for (EACH_HEADER) {

classref_t *classlist = _getObjc2NonlazyClassList(hi, &count);
for (i = 0; i < count; i++) {

realizeClass(remapClass(classlist[i]));
}

}

objc-file.mm

_getObjc2NonlazyClassList() collects non-lazy classes from the
__objc_nlclslist data section

// function name | content type | section name
GETSECT(_getObjc2NonlazyClassList, classref_t, "__objc_nlclslist");

__objc_nlclslist:0001000692C8 __objc_nlclslist segment para public 'DATA' use64
__objc_nlclslist:0001000692C8 dq offset _OBJC_CLASS_$_ListedUpaithric
__objc_nlclslist:0001000692D0 dq offset _OBJC_CLASS_$___ARCLite__
__objc_nlclslist:0001000692D0 __objc_nlclslist ends

Jumping into __objc_nlclslist segment

v

+[ListedUpaithric load]
mov al, 'c'
mov [rbx+8], al
mov byte ptr [rbx+2], '_'
mov byte ptr [rbx+5], 'o'
mov byte ptr [rbx+0Ah], 0
mov byte ptr [rbx+4], 'r'
mov r13b, 'm'
mov [rbx+1], r13b
mov al, 't'
mov [rbx+6], al
mov byte ptr [rbx], 'v'
mov al, [rbx+6]
mov [rbx+9], al
mov al, 'e'
mov [rbx+7], al
mov byte ptr [rbx+3], 'p'
mov rdi, 0FFFFFFFFFFFFFFFFh ; handle
mov rsi, rbx ; symbol
call _dlsym ; vm_protect()

rbx

1 2 3 4 5 6 7 8 9 A0

c_ 0orm t tep

vm_protect(mach_task_self(), // own task
(char *)&anchor – 2976, // 0x100001150 –> start of the __text section
14322, // size of the entire __text section
0, // maximum protection = FALSE
VM_PROT_ALL) // assign read, write, and execute access rights

0x100001150

14,322 bytes

anchor

2,976
__text:000100001CF0 23 anchor db 23h ; #
__text:000100001CF1 2B db 2Bh ; #
__text:000100001CF2 0E db 0Eh
__text:000100001CF3 0E db 0Eh

0x100001CF0

__text
section nJvgccZUbkJMUaoapqPGcgEjPyGay6xx

Decrypt with 32-byte XOR key:

Decrypting __text code section

Decrypting __text code section

Decrypting __text code section

__text:000100001CF0 anchor db 'Maxim Maximovich Isayev',0

__text:000100001CF0 anchor db 23h ; #
__text:000100001CF1 db 2Bh ; +
__text:000100001CF2 db 0Eh
__text:000100001CF3 db 0Eh

Anchor within encrypted section:

Anchor within decrypted section:

__text:000100001150 public start
__text:000100001150 start proc near
__text:000100001150 push 0
__text:000100001152 mov rbp, rsp
__text:000100001155 and rsp, 0FFFFFFFFFFFFFFF0h
__text:000100001159 mov rdi, [rbp+8]

Decrypted code section:

Decrypted __text code section

?

Hidden Marker

Maxim Maximovich Isayev (Максим
Максимович Исаев) is a real name of Max
Otto von Stierlitz, the lead character in a
popular Russian book series written in the
1960s.

A Soviet James Bond, Stierlitz takes a key role
in SS Reich Main Security Office in Berlin
during World War II.

Never Before Had Stierlitz Been So Close To Failure

Decompressed
Plugin (Engine)

The Engine
The loaded module represents itself an engine driven by the JavaScript files.

Non-lazy Class
+load method

Encrypted
__text section
• Entry Point

Compressed
BLOB

Encrypted
SDK

Dynamic linker
calls +load method
of Objective-C class
before Entry Point

Decrypted
__text section
• Entry Point Encrypted

API/strings
SDK

(JavaScript)

Downloaded
Tasks

(JavaScript)

Remote
Server

VM Detection
The engine is able to detect the presence of VM through the method
checkPossibleFraud(). This method is exposed to JavaScript, where it can be called as:
var isVm = system.checkPossibleFraud()>0 ? 1 : 0;

The engine compiles so called 'fraud' report that consists of the following details:

vmVendor Check if the MAC address starts from an address that is common for a given VM manufacturer.
For example, “00:1C:42*” is for Parallels VM. Recognises over 35 VMs by known MAC prefixes:

• Parallels ID.
• Egenera, Inc.
• First Virtual Corporation
• linux kernal virtual machine (kvm)
• Virtual Iron Software, Inc. (was: Katana Technology)
• Paravirtual Corporation (was: Accenia, Inc.)
• Virtual Conexions
• Virtual Computer Inc.
• virtual access, ltd.
• Virtual Instruments

• Virtualtek. Co. Ltd
• VMware, Inc.
• Microsoft Corporation (was: Connectix)
• Microsoft Corp.
• Microsoft Network Load Balancing Service Heartbeat
• Microsoft XCG
• Oracle Corporation (was: Virtual Iron Software)
• Oracle Corporation (was: Xsigo Systems, Inc.)
• Oracle Corporation (was: Sun Microsystems, Inc)
• CADMUS COMPUTER SYSTEMS

Host UUID

VM Detection

hddName DADiskCreateFromBSDName() for '/dev/disk0' device
usbFraud ioreg -l | grep -e 'USB Vendor Name'

dispRats

lastMove

lastRbt

dmgLoc

fromDMG

wndPos

msePos

gethostuuid()

MAC_L MAC and IP addresses for all network interfaces

display ratio

mouse position since the last mouse movement event

system up-time, since last reboot

full path filename of the DMG file, in case it's executed
by a sandbox under a generic name, i.e. a file hash

position and size of the app’s window

mouse position, to see if mouse is in use

to recognise
fingerprints
of the common
sandboxes

Engine Capabilities
The bundleware’s engine consists of components, capable of doing the following:
• Browser manager

o terminate browser process
o set new home page

• Screenshot controller
o take full screen snapshot with the mouse location

• Task manager
o download and execute new tasks
o create authorization for tasks, using given creds

• System controller
o collect system OS version
o collect all cookies from browsers
o collect the list of all installed / running applications
o check the presence of VM
o add/remove applications to/from dock
o get info about connected iOS devices:
o device class, ID, serial number (iPod/iPad/iPhone)

o search for files in the specified directory
o terminate specified applications
o read key values from user defaults
o add an app to dock as persistent item
o read text files
o copy given directory to a new location
o delete the specified directory
o run specified script with '/bin/sh', as root
o get detailed HDD information
o collect network information
o download files
o display alerts
o launch tasks/applications as root
o copy/move files
o save data to files
o create/delete directories

Conclusions

• A popular bundleware product conceals a very powerful engine

• The engine resembles a backdoor as it unlocks full access to the system

• Memory injection is described in the “The Mac Hacker's Handbook”

• The engine is driven by symmetrically encrypted remote tasks

• A disturbing trend we’re witnessing – the continued ‘spill’ of the traditional
Windows malicious techniques, such as run-time packing, strings/API
obfuscation, memory injection into the world of Mac

