
Catch me if you can: detection of Injection
exploitation by validating query and API

Integrity
Abhishek Singh
Ramesh Mani

Introduction - Abhishek Singh
● Chief Researcher at Prismo Systems
● Previously : Spearheaded Threat R&D at Acalvio, FireEye, Microsoft
● 26 Patents (Issued, Pending) Detection Algorithms, Analytics & Architecture

on Threat Detection Technologies.
● 2019 SC Media Reboot Leadership Award Innovation Category.
● Nominee for 2018 Péter Szőr Award by Virus Bulletin.

 Introduction Ramesh Mani

● Senior Principal Architect at Prismo Systems
● Previously: Spearheaded R&D of APM agents at CA Technologies, Wily
● 10+ Patents issued.

Agenda

● Algorithms to detect OS Command, SQL, NoSQL exploitation
● Advantages of Binary Instrumentation.
● Engineering Challenges
● Demo of Detection.

Why ?

 OS Command Injection CVE-2019-5678 (Nvidia
GForce Version)

Program Dependency Graph Benign vs.
Malicious Inputs

Detection by instrumenting Web Application
● Generate dynamic call graph to traces the data and control from the methods which accepts user

inputs to the program execution functions and the subsequent child processes which gets spawned
by the program execution functions.

● During each invocation of the program execution function, the dynamic call graph is used to validate
if the processes which gets spawned by the program execution functions is same as the values
passed to the methods which accept user inputs such as GET, POST etc.

● If the validation is found to be true, alarm for OS command injection is raised.

SQL Injection (CVE-2019-12516: Authenticated SQL
Injections)

SQL Injection Exploits
Legitimate Query

 SELECT Host FROM mysql.user WHERE User =‘john’;

 Query With Exploit

 SELECT Host FROM mysql.user WHERE user= ‘john’ UNION SELECT username,
Password FROM Users

SQL Injection Exploit Malicious SQL query gets introduced by a threat actor in the legitimate SQL query.

SQL Parse Tree of the Query Benign Vs. Malicious Query

Detection of SQL Injection
● Generate the program dependency graph (PDG) which traces the data and control from the

methods which accepts user inputs to the functions which execute SQL queries.
● Identify the SQL queries which accept user inputs and store them as the parse tree.
● During every invocation of the SQL query execution function, integrity of the executing query is

compared with the legitimate SQL queries via comparison of the parse tree. If there is an
modification in the parse tree of the executing query it gets validated if the modification is due the
values of the fields which accept user inputs.

● In case of a successful match an alert for SQL injection is raised.

No SQL Injection Vulnerability

AST of the Query Benign vs Malicious Query

Detection of NoSQL Vulnerability
● Generate the program dependence graph which traces the flow of data from function which

accept user input to functions which accept JSON query
● If there is a flow of data from functions which accepts user input to the function which then

AST of the legitimate query is generated.
● For every database access, AST of the executing JSON query is compared with the AST of

the JSON query. If there is modification in the AST of the executing JS query, it gets validated
with the value or part of the value passed to the methods such as GET, POST, Cookie,
User-Agents etc. in the case of match alert for No SQL injection is raised.

Other Detections
● Paper published in the proceedings details algorithm for detection of LDAP,

NoSQL (Javascript, XPath) Injection.

● White paper at our website
https://www.prismosystems.com/wp-content/uploads/2019/06/Prismo_Web_A
pplication_Injection.pdf further details detection of other class of exploits LFI,
RFI.

https://www.prismosystems.com/wp-content/uploads/2019/06/Prismo_Web_Application_Injection.pdf
https://www.prismosystems.com/wp-content/uploads/2019/06/Prismo_Web_Application_Injection.pdf

Advantages of the using Binary Instrumentation
for the Detection of Vulnerability

● Vulnerable Code Path

● Detection is independent of the deployment.
 - Microservices, Server

● Immune to evasion at the network layer.

Java -javaagent:/home/javaagent/agent.jar ...org.apache.catalina.startup.Bootstrap

prismopy gunicorn --bind:0.0.0.0 wsgi

● Instrumentation
○ Agents are language specific.
○ Bootstrapping
○ Frameworks
○ Probes (specific to instrumentation point)

Challenges : Agent
Challenges

● Instrumentation
○ Agents are language specific.
○ Bootstrapping
○ Frameworks
○ Probes (specific to instrumentation point)

● Startup bubble
○ Pre forked worker process
○ First request

Challenges : Agent
Challenges

● Instrumentation
○ Agents are language specific.
○ Bootstrapping
○ Frameworks
○ Probes (specific to instrumentation point)

Challenges : Agent

● Latency, CPU and memory overhead
○ Adds latency to request
○ CPU always a concern
○ Memory

● Startup bubble
○ Pre forked worker process
○ First request

@WebServlet(name = "BooksServlet")
public class BooksServlet extends HttpServlet {
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
 AgentProbe.startTrace()
 response.setContentType("text/html");
 response.setCharacterEncoding("UTF-8");
 PrintWriter out = response.getWriter();
 out.println("<!DOCTYPE html><html>");
 out.println("<head>");
 out.println("<meta charset=\"UTF-8\" />");
 String title = "Vulnerable App";
 out.println("<title>" + title + "</title>");
 out.println("</head>");
 out.println("<body bgcolor=\"white\">");
 out.println("");
 AgentProbe.finishTrace()

 }

Challenges

Challenges : Collector - Data Lake

● Microservices and App Instances

● Processing transactions fast

● Correlate Txn across microservices

● Transaction volume => More storage

Challenges

Demo

SQL Injection

OS Command Injection

https://drive.google.com/open?id=1H5r4HIWXK3Ua_0U4XFr_aKoiHWFmuoKG
https://drive.google.com/open?id=1JA8a9oCpuqyRbvfWycr0XsOtrTliGiNZ

Further References
● Paper published in the proceedings details algorithm for detection of LDAP,

NoSQL (Java script) Injection.

● White paper at our website
https://www.prismosystems.com/wp-content/uploads/2019/06/Prismo_Web_A
pplication_Injection.pdf further details detection of other class of exploits LFI,
RFI.

https://www.prismosystems.com/wp-content/uploads/2019/06/Prismo_Web_Application_Injection.pdf
https://www.prismosystems.com/wp-content/uploads/2019/06/Prismo_Web_Application_Injection.pdf

Q&A

Thank You

Contact : {asingh,rmani}@prismosystems.com

 www.prismosystems.com

http://www.prismosystes.com

