
VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS,
England. Tel. +44 (0)235 555139. /94/$0.00+2.50 No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form without the prior written permission of the publishers.

ISSN 0956-9979 JUNE 1994

Editor: Richard Ford

Technical Editor: Fridrik Skulason

Consulting Editor: Edward Wilding,
Network Security Management, UK

CONTENTS

EDITORIAL
Viruses for Sale, a Dime a Dozen 2

VIRUS PREVALENCE TABLE 3

NEWS
Pathogen: Storm in a Teacup? 3
NCSA on CompuServe 3

IBM PC VIRUSES (UPDATE) 4

INSIGHT
Bob Bales - The NCSA 6

VIRUS ANALYSES
1. Finnish Sprayer: Electronic Graffiti 8
2. Lock up your Source Code! 10

FEATURE
Heuristics: for Better or for Worse? 12

TUTORIAL
Stealthy Subjects 15

PRODUCT REVIEWS
1. Net-Prot: F-Prot for NetWare 18
2. Vi-Spy, with My Little Eye 21

END NOTES & NEWS 24

IN THIS ISSUE:

• Pathogen revisited. Just how much of a risk is this
virus, and how concerned does the user need to be? A
review of the spread of the virus and the real risk posed
to users is given on page 3.

• Source code viruses. The new generation of viruses
infect source code, spreading via non-executable objects.
What are the implications for vendors?

• Heuristics. How much of an advantage is it to use a
scanner which contains heuristic elements? Are heuristics
likely to take over from conventional, virus-specific
detection equipment? For an explanation of the tech-
nique, and a review of some of the available products, see
page 12.

THE INTERNATIONAL PUBLICATION ON COMPUTER VIRUS PREVENTION, RECOGNITION AND REMOVAL

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

2 • VIRUS BULLETIN JUNE 1994

EDITORIAL

Viruses for Sale, a Dime a Dozen

The latest move by virus supremo Mark Ludwig (of Little Black Book infamy) is set to make many
people sit up and take notice: American Eagle has published a CD-ROM packed with fully working
samples of computer viruses, virus creation toolkits, and malicious software. Although viruses have
been available in limited quantities for some time, this is the first large collection made publicly
available, and has some interesting implications for the anti-virus industry.

The CD-ROM is priced at $100 and, should it sell in any quantity, will make Ludwig a tidy profit
(once compiled, each additional CD costs peanuts to produce). However, how many people will be
prepared to pay for the collection? Unfortunately, finding prospective buyers will not be too diffi-
cult. One hundred dollars is not a vast sum, and there are doubtless plenty of rich schoolchildren
who will be drawn to the ‘outlaw’ image portrayed by Ludwig.

Inquisitive minors are not Ludwig’s only potential customers, nor his most lucrative. This latest
offering has two guaranteed buyers: the anti-virus vendors and the large-scale users of anti-virus
software. The vendors will justify their purchase on the grounds that they must protect the users.
Having spoken to a number of anti-virus researchers on the subject, the overall conclusion is that
many feel obliged to buy the CD in order to ensure that their customer is protected. To quote one
well-known scanner manufacturer: ‘I feel ethically forced to spend money on this thing.’ For users,
the argument is just as pervasive: this rather seedy offering is out there, and they want to know what
is on it, in order to evaluate the threat posed to their organisation (not to mention the chance to test
their chosen product against some live viruses).

It is not clear how sound either of these arguments is, but it is highly ironic that those who are lining
Ludwig’s pockets with gold are his largest and most powerful opponents. The ethical questions are
complex, but one thing is for certain: the likely reaction of the industry ensures the market for the
next edition of the collection.

Other than a mad dash of virus collectors rushing out to buy the CD, it is worth reflecting on the
consequences of Ludwig’s actions. Firstly, the CD could become the de facto test-set used by PC
magazines - if the industry cannot supply an unbiased test-set, maybe Ludwig can. Come to think of
it, this may be the answer to the UK government’s ITSEC problems (see Virus Bulletin, July 1993,
p.2). Moreover, even if a sample on the CD is not a virus, an unscrupulous firm could report that it is
infected anyway - the user has no way of interpreting the test results, so it will simply be a case of
the scanner with the highest score winning.

Secondly, anyone with a modem could put together a rudimentary collection of viruses. If one
knows where to look, samples are easily obtained, yet there are still only a small number of variants
in the wild. The main risk of the CD is that it spreads virus code around a wider audience than ever
before - the most probable result of which will be the unintentional infection of some of its buyers.

Meanwhile, the industry pays its thirty pieces of silver, in the name of protecting ‘the good of the
many’. This is uncomfortably close to paying the virus authors for their handiwork - the equivalent
of a glazier giving a 16 year old a brick, muttering about how breakable windows look, and telling
him there will be a £20 commission on each customer referred by him. The question of where to
draw the line between keeping up with industry developments and actually encouraging virus
writing is a thorny one, but wherever the line lies, the purchase of this CD is perilously close to it.

As the trend for wider dissemination of virus code continues, it is rapidly approaching a time when
anyone who wants a virus can get one. If things degenerate further, maybe the least painful route
would be for the industry to offer users the viruses which it wants them to have: ‘Come on Sir, roll
up for the Virus Service. Simply send your $99.99 and receive the virus test-set of your choice.
Better yet, guv’nor, for the discerning customer, why not buy the entire collection. Yours for only a
dime a dozen… and I’m cutting my own throat.’ But then again, aren’t we all?

it is highly ironic
that those who are
lining Ludwig’s
pockets with gold
are his largest and
most powerful
opponents

“

”

 VIRUS BULLETIN JUNE 1994 • 3

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Virus Prevalence Table - April 1994

Virus Incidents (%) Reports

Form 15 41.7%

JackRipper 3 8.3%

New_Zealand_2 3 8.3%

Exebug.4 2 5.6%

Form.b 2 5.6%

Spanish_Telecom 2 5.6%

Cascade 1 2.8%

EXEBug.1 1 2.8%

Form.II 1 2.8%

Liberty 1 2.8%

Macgyver.2083.b 1 2.8%

Parity_Boot.A 1 2.8%

Penza 1 2.8%

V-Sign 1 2.8%

Viresc 1 2.8%

Total 36 100.0%

NEWS

Pathogen: Storm in a Teacup?
Most UK readers will already be well aware of the storm of
publicity surrounding the SMEG (aka Pathogen and Queeg)
viruses. However, despite making national news, it is
important to evaluate the true extent of the threat.

The number of reports of Pathogen varied from vendor to
vendor, with the largest number coming from S&S Interna-
tional, who issued a press release warning users of ‘a
considerable threat to unprotected computer users’. The S&S
International grand total (claimed to be ‘about 12’), is larger
than the number of reports to all other sources combined,
with New Scotland Yard and Virus Bulletin having two
reports each, and Sophos one. Given that many of these
statistics are already known to overlap, a reasonable
estimate of the number of sites affected is at most about 15,
making the ‘Security alert’ press releases put out by S&S
International and Secure Computing wholly unnecessary.

Despite different opinions about how widespread the
problem is, Pathogen is certainly ‘in the wild’. A straw poll
of the larger vendors showed that a number had issued
updates for their products, including McAfee Associates,
S&S International, Sophos, Frisk Software International
and ESaSS. Those currently unable to supply a detection
algorithm included Central Point, Intel, and Symantec.

The other company contacted, IBM, informed us that their
new version (1.06), due out at the beginning of June, will
also be able to detect the virus. According to Sue Ling from
IBM, the company felt no need for undue panic, and did not
view Pathogen as an issue to cause serious concern. This
feeling was reflected by a number of other vendors: neither
Central Point, Symantec, IBM or the NCSA received any
calls from customers who experienced the virus first-hand.

By far the most amusing aspect of the entire media circus
was a report in PC Week claiming that the company Gate-
way 2000 had shipped 70 machines which contained
software infected with a virus which was ‘not the so-called
Smeg polymorphic virus which has troubled other manufac-
turers…’ Further investigation showed that the PC Week
article had arisen due to a game of Chinese whispers played
between Gateway and its PR company, Text 100, which
seemed to have confused the word ‘bug’ with the word
‘virus’. Surely this is an exception to the rule of ‘no publici-
ty is bad publicity’. No machines were, in fact, infected.

It is true that where a virus is found ‘in the wild’, there is
cause for concern: however, this concern must not degener-
ate into free-for-all panic. It is extremely rare for a new virus
to leap to the top of the virus prevalence table, and new
viruses are discovered in the wild all the time. Pathogen is
no exception: although it presents above-average detection
problems, the entire incident seems to have been no more
than an industry-provoked storm in a teacup ❚

NCSA on CompuServe
The National Computer Security Association (NCSA) has
announced the establishment of its own forum on
CompuServe, which is dedicated to coverage of information
security and computer ethics.

One section, the InfoSecurity News, will provide up-to-date
information about security incidents, and is marketed as a
‘valuable resource for journalists covering the field’. Other
individual sections which are available include topics such
as PC and LAN Security, UNIX/Internet Security, Disaster
Recovery, Mainframe Security, Telecom Security,
Encryption, and Anti-Virus Support.

The anti-virus support forum will be co-moderated by Virus
Bulletin, and aims to provide a vendor-independent forum
for the discussion of anti-virus software and all other matters
pertaining to viruses. Any vendor or reader is invited to post
messages in this sub-forum.

Informational resources available through the NCSA include
books, research reports, training materials, conference
proceedings, and tools, all of which are featured in an
information security resource catalogue. This is available
from the organisation free on request.

The National Computer Security Association forum can be
accessed from any CompuServe command prompt by
entering ‘GO NCSA’. Private Email to the NCSA should be
sent to 75300,2557@compuserve.com, and to Virus Bulletin
on 100070,1340@compuserve.com ❚

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

4 • VIRUS BULLETIN JUNE 1994

IBM PC VIRUSES (UPDATE)

The following is a list of updates and amendments to
the Virus Bulletin Table of Known IBM PC Viruses as
of 20 May 1994. Each entry consists of the virus name,
its aliases (if any) and the virus type. This is followed
by a short description (if available) and a 24-byte
hexadecimal search pattern to detect the presence of the
virus with a disk utility or a dedicated scanner which
contains a user-updatable pattern library.

Ash.449, Ash.1586 CN: Similar to Ash.451. There is also another, seriously flawed Ash variant, 1586 bytes long. It appends
its code to the host file, but does not put a JMP at the beginning of the file, so the code is never executed.
Ash.449 8DB6 0501 BF00 01B9 0400 FCF3 A4B4 1A8D 96C6 02CD 21B4 4E8D
Ash.1586 E802 00EB 208A 8637 078D B635 01B9 0006 3004 D2C0 46E2 F9C3

Better_World.E ER: A minor variant detected with the Better_World (previously Fellowship) search pattern.

Budo.B CR: A new variant of this Finnish overwriting virus. Detected with the Budo pattern.

Burger CN: New variants of this primitive overwriting virus are 505.K, 505.L, 505.M, 505.N, 512.B, 560.AO,
560.AP, 560.AQ and 560.AR. All are detected with the Burger pattern.

Cascade CR: Three new variants have now been reported (1701.R, 1704.T and 1704.U), all of which are detected
with the Cascade (1) pattern.

Creeper.472 CR: Very similar to the 476-byte variant.
Creeper.472 0E0E 071F C3CD 2050 2D00 4B74 2658 3D00 0775 15A1 8A01 8BF0

Curse_IV CER: A Dutch 400-byte virus belonging to the small group of those found ‘in the wild’. It contains the
text ‘CURSE IV - Dedicated to Eve’.
Curse_IV 80FC 4B74 03E9 0601 501E 5206 53B8 023D CD21 50B8 0057 5BCD

Dark_Avenger.1800.Satan CER: Contains the text ‘Written by Mad Satan in TAIWAN’. Detected with the Dark_Avenger pattern.

Diamond.1050 CER: This variant seems to be based on one of the original 1024-byte variants, but is slightly longer. An
unremarkable variant, detected with the Diamond search string.

Doom_II.1249 CER: A 1249/1261-byte variant, detected with the Doom2 pattern.

Ear.Ear.B C(E)R: This variant is very similar to the virus that was originally reported as Ear-6, and is detected with
the same pattern. It contains a flaw in the code, however, so will not infect EXE files correctly, causing
file corruption. There is also a new .C variant, which works correctly.

Frodo.Fish_6.E CER: A minor variant. The decryption loop has been slightly altered to invalidate earlier search strings.
Frodo.Fish_6.E E800 005B 81EB A80D B958 0D2E 8037 ??43 E2F9 2EFE 8FB3 0074

Fumble.867.F CR: Another minor variant, detected with the Fumble (previously Typo-COM) pattern.

Genesis CR: A 504-byte virus, distributed in source code form. The author calls himself ‘Holy Spirit’, and a
comment in the source code gives the name of the virus as ‘Genesis 1.0’.
Genesis FEC4 3D00 4C74 03E9 B700 5053 5152 5657 061E FA33 C08E C026

HLL.7940 CN: A non-destructive HLL virus which adds 7924 bytes to the beginning of programs it infects, and 16
bytes to the end. No search string will be given, because of the high risk of false positives. Other parasitic
HLL viruses this month are HLL.3677 and HLL.3678.

HLLC P: Four new Pascal or C ‘companion’ viruses have been discovered: HLLC.Christmas (6888),
HLLC.Even_Beeper.D, HLLC.Globe.7705 and HLLC.Sauna (8224).

HLLO.3816 CN: This family is somewhat artificial, as the viruses belonging to it have nothing in common other than
being written in Pascal or C and overwriting files they infect. As overwriting viruses, they have virtually
no chance of spreading. This particular 3816-byte virus is written in Turbo C. Other HLLO viruses not
previously mentioned by VB are HLLO.3800, HLLO.GOV (EN) and HLLO.Shadowgard (CEN).

M Infects Master Boot Sector
(Track 0, Head 0, Sector 1)

N Not memory-resident

P Companion virus

R Memory-resident after infection

C Infects COM files

D Infects DOS Boot Sector
(logical sector 0 on disk)

E Infects EXE files

L Link virus

Type Codes

 VIRUS BULLETIN JUNE 1994 • 5

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Jerusalem.1808.Executing CER: The only unusual thing about this variant is that it contains the text ‘Executing COM files...’.
Detected with the Jerusalem-US pattern.

Jerusalem.1808.Frere.I CER: Detected with the Jerusalem-1 pattern. This pattern will also detect a new 1506/1511-byte variant.

Jerusalem.AntiCad.2454 CER: This might be the oldest variant of the AntiCad group, although discovered only recently. It is
detected with the ACAD-2576 pattern, which also detects a 2656 variant containing the text ‘G Dengue’.

Jerusalem.Pipi.1536 ER: Contains the text ‘PI-PI’, and is detected with the Pipi search string, as is the 1552-byte variant
reported in October 1992.

Jerusalem.PSQR.Satan CER: By the author of the Dark_Avenger.Satan virus, and containing a similar text string. Detected with
the PSQR pattern.

Jerusalem.Smile CER: This 2576/2587 byte-variant from Taiwan contains the text ‘Smile Again’. Detected with the
Jerusalem-US pattern.

Jerusalem.Sunday.Nai-Tai CER: A Taiwanese variant, which does not infect EXE files correctly. Detected with the Jerusalem-1735
pattern. The same pattern will also detect the new Sunday_II.B variant.

Jihuu.686 CN: A Finnish virus. Very similar to the 621-byte original variant and detected by the same search string.

Leprosy.Sandra EN: Yet another variant of this overwriting family, 682 bytes long.
Leprosy.Sandra BA00 01CD 21E8 0100 C3BB 4101 8A27 3226 0601 8827 4381 FB58

Lockjaw.Flagyll.371 ER: An overwriting, 371-byte virus.
Flagyll.371 9C06 1E50 5352 3D00 4B75 03E8 0B00 5A5B 581F 079D 2EFF 2E73

Old_Yankee.1961.B EN: This variant is detected with the Old_Yankee pattern, and is similar to the original variant. However,
despite the fact that it is the same size, it cannot be disinfected in the same way. There is another variant,
1961.C, which is flawed, as it seems only to infect the first file it finds, but will do so many times.

Pixel CN: Several unremarkable variants have been discovered recently, all of which are detected with the
Pixel-936 pattern. They are 739, 846.B, 851 and 1268.

Proto-T.694 CR: Detected with the Proto-T pattern. Three other recent Proto-T variants require separate search
patterns. The Proto-T virus family is awaiting better analysis and classification, as it is possible it should
be merged with another Dutch family of viruses.
Proto-T.1050 1E06 5756 5053 5152 3D00 4B75 0D2E 8C1E 2905 2E89 162B 05EB
Proto-T.1053 1E06 5756 5053 5152 3D00 4B75 0D2E 8C1E 2C05 2E89 162E 05EB
Ritzen.1087 5053 5152 1E06 5756 9380 FF3D 7414 81FB 004B 740E 5E5F 071F

PS-MPC CN, CEN, EN: This month brings the following variants: G2.573.C (CEN), Pikninny (CEN, 616),
Powermen (EN, 717) and Small_ARCV.B (CN, 236).

Skew CR, ER: Both viruses in this family are very similar, with one important difference: the 445-byte variant
only infects EXE files, but the 458 one will only infect COM files.
Skew.445 0657 1E50 5152 5653 558B EC33 C98E C180 FC4B 7413 FA26 C706
Skew.458 0657 1E50 5152 5653 558B EC80 FC3D 7522 8BFA B93F 0047 803D

SVC CN: There are several new variants of this East European virus. Two are detected with the SVC_5.0
pattern. Three new variants, 2936, 3112 and 3241 bytes long, require new patterns.
SVC.2936 5153 502E A327 0B2E 813E 270B 004B 741B 80FC 3D74 1980 FC3E
SVC.3112 5606 86E0 35FF FF8E C00E 1F33 FFB9 A20B FCF3 A607 5E74 03E9
SVC.3241 5153 502E A358 0C2E 813E 580C 004B 741B 80FC 3D74 1980 FC3E

Sybille ER: Two variants of this family are known, 858 and 1200 bytes long.
Sybille.858 3D00 4B75 F350 5351 5256 5755 1E06 1E52 0E1F E8A9 015A 1FB8
Sybille.1200 7503 E990 03B8 00F0 8B16 7604 CD2F 4174 CC0A C075 C8B8 0158

VCL CN: Several new encrypted VCL-generated viruses: Dial.671, Diarrhoea.1221, Pro-Choice (1569) and
Reptoid (2536). Most are of little interest, excepting perhaps the Dial.671 variant, which attempts to dial
the number 1-900-976-6274. There are also some unencrypted variants this month: 514, 534, 660, 2750,
3243 and Mimic.4863. Finally, there are a few overwriting variants: 356, 418, 509, 541, Cockroach (614
bytes) and Jam (458 bytes), as well as two companion viruses: 604 and Heevahava.516.

VCS.Standard.Bad_Poem CN: An unremarkable variant, containing an extremely bad poem. Detected with the VCS_1.0 string.

Vienna.608.B CN: Detected with the Vienna-4 pattern. This pattern will also detect a new 526-byte variant, which does
not work properly, as it does not store the original first three bytes of infected files anywhere.

Virdem.1336.Killer.C CN: A minor variant, detected with the Virdem pattern.

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

6 • VIRUS BULLETIN JUNE 1994

INSIGHT

Bob Bales - The NCSA
The NCSA (National Computer Security Association) was
founded in 1989, to tap a market in the area of PC and Local
Area Network security. One name has become synonymous
with the organisation: Bob Bales, who has been involved
with the NCSA since 1990, shortly after the group’s incep-
tion by David Stang.

When he met Stang, Bales was running a consulting group
specialising in systems integration and software develop-
ment. The professional relationship which evolved led to
Bales’ group doing work for Stang, and vice versa. Bales’
move to the NCSA happened soon after.

The Early Days

Part of the NCSA’s challenge was to distinguish between
what they and other security organisations of the time were
doing. The major difference was that many of the others had
grown up with mainframes and were having difficulty
converting to PCs and LANs: ‘We were approaching the
problem from the ground up,’ explained Bales, ‘and they,
from the top down. We met in the middle - we overlap now,
but feel that the NCSA is still in many ways unique.’

Since then, the NCSA has grown apace. It has built a
network of support professionals, and membership has
grown from around 100 companies to over 1500 - Bales sees
this as indicative of the evolution in computer security
awareness being experienced by many organisations.

Aspirations and Achievements

A primary function of the NCSA is to act as a ‘clearing
house’, providing information generally unavailable to
network administrators. ‘NCSA membership varies from
small networked offices to industry giants, and we think we
fill that niche pretty well. If you plot the largest and the
smallest companies on an economic line, you can see that
there are about 100,000 companies in between!’ Bales said.
‘We see this area as our domain. Our emphasis is on the
LAN manager, or the person managing computer security as
a collateral duty.’

The NCSA offers many services: a bulletin board, a newslet-
ter, a CompuServe forum, and telephone support for
members with questions on computer security (in particular,
viruses). Other services include seminars and conferences
discounted to members, and there is a catalogue full of
resource materials which are available at discount prices.

The organisation also certifies anti-virus products, based on
detection rates. Present certification is pass/fail: 90% of the
test-set must be found, or the product fails. Vendors have

full access to the virus test samples - Bales feels this
openness is justified: ‘We’re primarily an end-user organisa-
tion; we feel that if we construct a test encouraging vendors
to do well on it, end-users will be better protected by
products which participate.’

Another of the NCSA’s concerns is the AVPD (Anti-Virus
Product Developers), set up in 1991 to develop areas of
common concern and interest in the industry. It was agreed
that non-competitive issues would be addressed, such as
development of a standard library for testing purposes, a
virus naming convention, and a code of ethics for develop-
ers. For several years, this cooperation was the only formal
point of contact between vendors, and contributed to the
emergence of a degree of concordance amongst them.

The Virus Issue

The incorporation of anti-virus software into MS-DOS 6 has
raised awareness of the problems inherent within the system.
Bales declared himself pleased with this: ‘It’s good, from an
awareness standpoint - if Bill Gates says it’s a problem,
people accept it. MS-DOS 6 now seems to play only a small
part in most people’s anti-virus strategy, but on balance, I
think it’s a good addition.

‘Soon every PC will have anti-virus capabilities. In our 1991
survey we found that about 43% of infections in businesses
occur as a result of disks brought from home - if we can
detect infections in the home, it’s good for business.’

“with a uniform set of standards,
we may be creating the blueprint

for uniformly-developed
malicious code”

He feels strongly that prevention is the way ahead in the
fight against viruses. Although the off-line scanner is still
important, Bales believes that a good TSR is more effective,
providing a line of defence preventing infection, where
scanners look at the environment after the fact.

It is well-known that most users see virus prevention as
synonymous with virus scanners - this preconception is
present among NCSA members too. He believes that action
is needed to rectify this: ‘Right now, scanning gets big play,
but as an industry, we need to do a better job of communi-
cating the virtues of other approaches.’

He thinks that server-based products which integrate with
the workstation product will become the main anti-virus
vehicle in most companies, and views the next step as
comparable products for systems other than NetWare.

 VIRUS BULLETIN JUNE 1994 • 7

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Legal Queries

The NCSA, and Bob Bales in particular, often have contact
with people who have their data destroyed by viruses, or
have other business problems caused by them. Laws on
computer viruses tend to be an unclear issue: in the USA,
due to the First Amendment, people are loath to rescind the
supposed freedom to which virus authors are entitled, a fact
reflected in the virus-writing competition currently being
promoted by Mark Ludwig. How does Bales feel when he
sees such contests happening, legally and openly?

‘It’s outrageous. One estimate says that, since 1990,
computer viruses have caused one billion dollars damage
and expense. In today’s economy, we can’t afford that kind
of business overhead, so we think that such a contest,
although not illegal, is totally irresponsible. While the First
Amendment guarantees people like Ludwig the right to do
the things they’re doing, it also protects us in decrying those
sorts of activities. We intend to try and evoke a sense of
moral outrage at such behaviour.’

He believes, however, that any legal jurisdiction would be
difficult, intertwined as the issue is with the American right
to freedom of speech. Bales believes that the best solution
would be to work on legislation which deals with the
aftermath, so that people who write viruses will pay. The
law needs to be modified so that when damage occurs, the
virus writer is responsible for the result of his actions

‘It’s difficult to prosecute a virus author,’ Bales explained.
‘You must first prove that he wrote the virus, and also that
he intended the damage which resulted in a trashed hard
disk. That’s virtually impossible. Something like the UK
Computer Misuse Act, which would describe virus activity
as unlawful access, would be useful.’

This is only one of the many difficulties: ‘I’ve spoken with
Scott Charney, who heads the Computer Crime Unit at the
US Department of Justice. He believes that modification of
existing law would help with prosecutions. Of course, there
is another phenomenon - the typical age of the average
hacker or virus writer. If you’re confronting a fourteen-year-
old kid who’s responsible for the incident, the justice system
tends to be merciful - public floggings are out of style!’

Part of the problem, in his eyes, is that it is not possible to
put a value on data, although initiatives to try and define
some standards have begun.

‘It’s ironic,’ said Bales. ‘If you can prove damage - to do
this, you have to reconstruct the data, and keep labour
records associated with that effort - then you can collect
damages. There are cases where that has happened. The
better a job the network manager does, the less punitive the
damages: if all you have to do is reload all the data from last
night’s backup tape, then there wasn’t much damage. That’s
an imbalance in the way which that particular law is
administered which just isn’t equitable. An incompetent
company can collect major damages, and somebody who’s
doing a good job is... stuck.’

Planning Ahead

The NCSA has become well established in the USA, and
Bales has many plans to expand its presence. He aims to
become more focused on the areas of training, consulting,
and publishing. New projects include creation of multi-
media educational products, and production of conference
proceedings in multi-media.

Another indication of this wider viewpoint is its new
CompuServe forum (accessed by typing GO NCSA within
CompuServe), intended to be a meeting place for people
concerned with computer security. Topics will include,
amongst others, computer crime, law, and ethics, viruses,
UNIX security, communication security, encryption, access
control, and business resumption planning. The various sub-
forums will be managed by industry ‘names’.

The current US administration’s emphasis on the national
information infrastructure (NII), the so-called Data
Superhighway, and health care reform, will soon catapult
digital communication into the limelight. However, Bales
believes that this development will bring more problems -
the more widespread the technology, the higher the prob-
ability that it will come under attack. One such danger is in
the NII: it will, he thinks, become a set of standards for
information interchange. Many systems will be lashed
together, and more emphasis will be put on interoperability.

‘Once you’ve done that,’ he explained, ‘you’ve created an
environment where a virus might move and thrive. Today,
due to the fragmented nature of our infrastructure, things
don’t interoperate, so it’s difficult for them to move about
and propagate. With a uniform set of standards, we may be
creating the blueprint for uniformly-developed malicious
code, be that worms, Trojans, viruses, or what have you. So,
there is a downside to the expansion of technology.’
However, Bales says that, come what may, the NCSA will
still be there to help: ‘We will guarantee a first line of
defence - we always have, and we always will.’

Bales: ‘One estimate says that, since 1990, computer viruses
have caused one billion dollars damage and expense. In today’s

economy, we can’t afford that kind of business overhead’.

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

8 • VIRUS BULLETIN JUNE 1994

VIRUS ANALYSIS 1

Finnish Sprayer: Electronic
Graffiti
Mikko Hyppönen
Data Fellows, Finland

Virus writers have sometimes been compared to people who
create graffiti. It is as difficult to find a rational motive for
vandalising other people’s property with sloppy spray-
paintings as to understand the rationale behind creating a
harmful computer program. Whatever the reason, it is
unfortunate that both of these activities remain popular. In
the case of Finnish Sprayer, one can see a person who
perhaps combines both of these pursuits - the ‘artist’
scrawls his electronic graffiti over the entire contents of an
infected hard drive.

This virus was first found in Finland in December 1993, and
has quickly spread throughout the country. It was not long
before it was found in Sweden, Russia and Estonia, and it
may well have spread even further.

Installation

Finnish Sprayer is a fairly typical boot sector virus which
infects floppy boot sectors and hard disk Master Boot
Sectors (MBS). It employs stealth methods to conceal its
presence, and contains two destructive trigger routines.

The virus stores the original boot sector and its own code on
the last three sectors of either the active hard disk partition
or a diskette. When a PC is booted from an infected disk, the
virus code is executed, and either installation or hard drive
infection begins.

Its first action is to load the second sector of its code from
disk. After this, it relocates all of its code to the top of the
conventional memory area and continues the execution from
there, decreasing the available memory by 5K. The reason
for reserving this large area is unclear - the virus only
requires 1K of memory to function, making it likely that this
is a simple arithmetical error.

The next part of the virus code is also rather unusual: it
checks whether or not the operation of moving the second
part of the virus code to memory has been successful. This
is done by searching for the letters ‘Ai’ in the area into
which it believes it has loaded the code. If this marker is not
found, the virus will try to overwrite the first sector of the
hard disk with random data, and reboot the machine.

This destructive routine does not work because of a pro-
gramming error, but it is obviously meant to be executed if a
read error occurs during the virus’ installation phase, or if
the second part of the virus code is corrupted.

Propagation

The virus is now ready to infect the MBS of the hard disk. It
loads the MBS to memory, and analyses the partition
information. The virus then searches for its own infection
marker: the letters ‘Ai’ in offset 45h of the MBS. If the
computer is already infected, the virus code exits, and lets
the normal boot process continue.

If the machine is uninfected, the active partition is located,
and its file system type is identified - only partitions using a
known DOS file system are infected. This kind of checking
is rare among boot sector viruses, and means that the virus
will not infect PCs running other operating systems (e.g.
OS/2 and Windows NT) .

If the hard disk is found suitable for infection, the virus
moves the original partition information to the correct place
inside the viral code and writes an image of its first sector to
the MBS. The virus calculates the location of the end of the
active partition and copies the original MBS and the second
part of its own code to the last two sectors. Any data
contained within these sectors is overwritten.

The virus then executes the original boot sector. It does not
stay active after the initial infection (i.e. when a previously
uninfected computer is booted from an infected diskette),
and will only function when the machine is booted from an
infected hard disk.

The Finnish Sprayer virus has been reported throughout Finland,
with most incidents concentrated in the south of the country.

Reports are indicated by black dots.

 VIRUS BULLETIN JUNE 1994 • 9

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Stealth

Once the hard disk is infected, the virus code will be
executed during every boot-up. Its operation is similar to
that of the floppy disk boot code, but after initialisation it
makes a date check, and collects the original Int 13h vector
for later use. Finnish Sprayer then installs its own Int 13h
handler by modifying the interrupt table in low system
memory to point directly to the virus code.

The virus’ Int 13h handler starts by checking the called
function. If this is not a disk read, the virus passes the call
on to the original Int 13h handler, otherwise a rudimentary
check is made to ascertain whether the call is directed to a
fixed disk or a floppy drive. This information is used to
branch program flow.

In the case of a read from hard disk, the virus checks
whether it is a request to read the MBS. If so, the register
values will be replaced with the head/cylinder/sector values
of the original MBS and control is passed to the original Int
13h handler. The BIOS routines then complete the stealth
operation by reading the original MBS to memory, and
returning it to the calling function.

The virus does not stealth the last two sectors of hard disks,
and does not stealth floppy disks at all. If the intercepted
Int 13h call is a read from a floppy disk, the virus checks
whether or not the disk is already infected. If it is not, the
virus inspects the ‘total number of sectors’ field in the boot
sector in order to to ascertain the diskette type.

The virus recognises the four common types of diskette:
360KB, 720KB, 1.2MB and 1.44MB. If the disk’s structure
does not match any of these, the virus will not infect it. Non-
standard (for example, FDformatted) 180KB and 2.88MB
floppies are never infected. If the virus recognises the disk
type, it writes its own code to the boot sector and overwrites
the two last sectors of the floppy with a copy of the original
boot sector and the remainder of its code.

Activation

During every boot-up from the hard drive, Finnish Sprayer
will check the real-time clock date. If the date is 25 March,
the virus will activate, overwriting random sectors on the
active partition. The random number is generated by using
non-initialised registers as destination values and entering a
loop, which calls the BIOS disk write function, decrement-
ing the head value after each write.

After this destructive routine, the virus changes the screen
background to grey and displays the text:

FINNISH_SPRAYER.1. Send your painting +358-0-
4322019 (FAX), [Aija]

Since this text is encrypted with a XOR 50h operation, it is
not visible inside the virus code. The phone number is that
of the Finnish House of Parliament, which received dozens
of faxes on activation day this year. After the display
routine, the virus hangs the machine by entering an infinite

loop. It should be noted that since real-time clocks are
generally available only on AT machines and above, this
routine will fail on older machines. On such computers, the
virus will never activate. Finnish Sprayer also contains the
following unencrypted text, which is never shown:

Tks to B.B, Z-VirX [Aija]

This string is also used as part of the virus’ self-recognition
signature. Incidentally, the trigger date of 25 March is also
the ‘name day’ of Aija (a girl’s name) in Finland.

Conclusions

The coding style of Finnish Sprayer varies between different
parts of the virus. This might indicate that the author has
incorporated parts of older viruses into its make-up, al-
though no obvious similarities with other common viruses
exist. Another explanation is that this virus might be the
work of a number of different people, working as a team.

Finnish anti-virus organisations have followed the Finnish
Sprayer incident very closely, which has made it possible to
compile remarkably accurate statistics. Some of this
information is shown on the map on the facing page.

During March 1994, Finnish Sprayer was reported to have
activated on approximately two hundred PCs in Finland
alone. The total number of infected machines rises to several
hundred, possibly even one thousand. This is quite amazing,
since the virus was first found only a few months ago. Such
new viruses are becoming increasingly common - for the ill-
prepared PC user, the ‘writing is on the wall’…

Finnish Sprayer

Aliases: Aija.

Type: Memory-resident boot sector virus.

Infection: Hard disk Master Boot Sectors and
floppy boot sectors.

Self-recognition in Memory:

None.

Self-recognition on Disk:

Letters ‘Ai’ at offset 45h in boot sector.

Hex pattern:

49B8 0103 33DB CD13 0E07 B801
0333 DBB9 0100 B600 CD13 5AC3

Intercepts: Int 13h for stealth and infection.

Trigger: Displays message and overwrites part
of active partition on 25 March.

Removal: Under clean system conditions, return
original boot sector to its original place.
Alternatively, overwrite viral code using
the DOS command FDISK/MBR.

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

10 • VIRUS BULLETIN JUNE 1994

VIRUS ANALYSIS 2

Lock up your Source Code!
Eugene Kaspersky

The virus researcher is an indefatigable character, spending
his time discovering new algorithms, breaking virus code,
and proving time and again that people who write viruses
are no match for those who fight to stop them spreading.
Nonetheless, every now and then a new virus pops up which
poses more than minor problems for the researchers. The
latest such innovation is the infection of source code files,
and is published as so-called legitimate research by none
other than Mark Ludwig.

These viruses are the ‘new generation’, spreading via a non-
executable object. This manner of infection has, of course,
always been theoretically possible, but seeing the theory put
into practice is fascinating.

Getting There

Early viruses were fairly simple and uncomplicated,
spreading by replication - somewhat like cell fission. These
creations infected COM, EXE, SYS files, executable files of
other platforms such as MS-Windows and OS/2, and boot
sectors. Such viruses alter the code of executable files
(parasitic infectors), use substitute file names (companion
viruses), or replace boot sectors with virus code. In each
case, the virus makes changes to an executable object, or to
the way in which an object is treated by the system.

The next ‘era’, infection of ‘pre-executable’ files, came with
the recent discovery of a virus named Shifting Objectives:
this targets object modules, the half-way house between
program and source code (see VB March 1994 pp.11-12).

Finally, the virus author has turned his attention to the
beginning of the chain: the source code file from which the
object modules are compiled. Changes are made to the
source code, which is then compiled into object modules
(OBJ-file) and linked into executable files.

The spread of the source code viruses resembles the repro-
duction of the butterfly: a larva is dropped, which becomes a
caterpillar, which later develops into a butterfly.

Incorporation in Source Code

Source code viruses modify the source code of programs in
such a way that once a program is compiled it contains virus
code. The sources are known as ‘infected sources’, and the
trojanised executable file as an ‘infected file’, just as after
modification by an ordinary virus. Two problems relate to
the spread of such a virus: the first pertains to limitations in
the source language, the second to finding the right place in
the source code for storage of the virus’ source.

In order to infect a source code file, the virus adds its own
source code to that file. It is vital that both the virus and the
host file are written in the same programming language,
because the next stage in the virus’ life cycle is at compile
time, when the infected file is compiled to form an object
module which contains the virus code.

Finding the correct place in which to install the virus source
is of paramount importance: if the virus places itself at the
wrong position in the infected source, either the compiler
will generate error and/or warning messages and will not
generate executable files, or the compiled virus code will
never receive control from the host code.

Also to be considered is the problem of hiding the virus in
the infected source code. If a large block of text is added to
the file, even a cursory glance at the file will alert the
programmer to its presence.

“the source code virus… hits
source code which will then be

compiled into object modules and
linked into executable files”

Inside the Virus

There are already a number of source code viruses written
for the PC (as well as several for UNIX - see VB, March 94,
p.15). The first is written by none other than Mark Ludwig,
and begins with the copyright string:

/*Microsoft C 7.0-compatible source code virus
This file contains the actual body of the
virus.

This code is (C) 1993 by American Eagle
Publications, Inc. P.O. Box 41401 Tucson, AZ
85717

ALL RIGHTS RESERVED. YOU MAY NOT COPY OR
DISTRIBUTE THIS CODE IN ANY FORM, SOURCE OR
EXECUTABLE, WITHOUT PRIOR WRITTEN PERMISSION
FROM THE PUBLISHER!!! */

This in itself is rather an odd statement, given the self-
replicating nature of a virus. One assumes that Ludwig (of
American Eagle Publications Inc) is aware of the fact that it
is not yet possible to sue a virus [Even if it is an artificial
life form, capable of evolving! Ed.].

The remainder of the virus code consists of subroutines
which explain the actual workings of the virus, and its
infection routine. When an infected program is executed, the
virus searches for the string ‘INCLUDE=’ in the system
environment area. Usually, this string points to the subdirec-

 VIRUS BULLETIN JUNE 1994 • 11

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

tory which contains common header files for the Microsoft
C compiler. If this is not found, the virus terminates its
infection routine and passes control to the host program.

If this environment variable is defined, the virus then creates
its own header file, writing its own source code twice to that
file, once as the following data array:

static char
virush[]={47,42,77,105,99,114,111,115,111...

 and also in standard C language:

/*Microsoft C 7.0-compatible source code virus
int ok_to_attach(char *fn)
 ...
{
FILE *host_file;
...

This is necessary because executable files do not contain
their own source code, but only assembler instructions and
data fields. On compilation into an executable file, the
source text of the virus will be lost, but the virus must keep
a copy of the text in order to infect other source files.

After creating the VIRUS.H header file, the virus searches
the current directory for files with the file extension ‘C’. If
found, the virus scans for the string ‘#include <virus.h>’ to
detect already infected source files. If a file does not contain
this string, the virus starts its infection routine.

The virus creates a temporary file to read and write infected
sources and deletes it after infection. The source file is
analysed, and the virus adds the strings ‘#include <virus.h>’
at the file beginning and ‘sc_virus();’ which calls the virus
routine before the last ‘}’ bracket. As a result, the source
code file TEST.C

main() {
printf(“Hello world!”);

}

becomes

#include “virus.h”
main() {

printf(“Hello world!”);
sc_virus();

}

The virus header file is then written into the directory
specified by the INCLUDE variable, and the source code is
read through twice: once as a C source for the compiler, and
once as a data array. Once these changes have been made,
the work is finished, and the .C file is infected. When that
file is compiled, linked, and executed, the virus will search
for other C files and the entire process will be repeated.

More Source Code Viruses

Ludwig’s virus is unfortunately not the only known source
code virus. The second is similar but not as long, and
contains neither comments nor optimised source code. On
infection it creates the file V784.H instead of VIRUS.H, and

also uses another subroutine name. The call to the main
virus routine is ‘s784();’, rather than (as in the first virus)
‘sc_virus();’. Thus, this virus is capable of hiding itself more
efficiently than its predecessor.

The last source code virus searches and infects .PAS files,
i.e. is a Pascal source infector. It does not create include files
but inserts its complete source code into infected files.

It is difficult to fix the length of source code files, as the
length of the header file is not the length of the virus (the
virus saves its code in header file twice: in hexadecimal
ASCII and in source formats). The length of the virus in
executable files (and in object modules) depends on the
compiler, the compiler version, selected memory model,
optimization flags and so on.

The length of the header files in Source_Family_1 is 53256
bytes, and in Source_Family_2, 14955 bytes. The third virus
(for Pascal) increases the files by about 52K. The length of
executable files grows from about 8K to 20K, depending on
the compiler options selected.

Final Note

These three viruses carry their own source code about with
them, and therefore do not require disassembly in the
traditional way. They are, as discussed, the first viruses to
target source files.

The methods and ideas described above are the first from a
multitude of possible methods of source code infection. One
can only wait and see what crops up next.

Source Family

Aliases: None known.

Type: Non memory-resident, parasitic source
file infectors.

Infection: .C or .PAS files, dependent on virus
version.

Self-recognition in Memory:

None - the virus does not become
memory-resident.

Self-recognition in Files:

File beginning checked for virus source
code.

Hex Pattern: Part of virus source code may be used
as search pattern, but it is difficult to
detect in compiled files.

Trigger: No trigger routines.

Removal: Under clean system conditions identify
and replace infected files; delete virus
header files.

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

12 • VIRUS BULLETIN JUNE 1994

FEATURE

Heuristics: for Better or for
Worse?
When reviewing anti-virus software, it is not uncommon for
the main body of the review to be concerned with the virus-
specific parts of the product, with other features getting only
a cursory mention. Of these overlooked elements, possibly
the most interesting is heuristic virus detection. Advocates
of the technique point out its ability to provide protection
against countless as yet unwritten viruses, while critics
claim that the technique is inherently flawed, and prone to
false positives. This article examines how heuristic virus
detection works, and compares the performance of some of
the heuristic-based scanners currently on the market.

Hand-waving or Hard Science?

The underlying concept of heuristics is very simple. An
experienced virus researcher could make a good guess as to
whether or not a file was infected almost at a glance. This
decision would be based on the ‘look’ of the code. For
example, does the file contain code which appears to reduce
system memory? Does the program use ‘odd’ code frag-
ments (e.g. PUSH SP, RET)? A heuristic virus scanner
attempts to emulate this ‘guess’ in software.

True heuristic analysis of computer programs moves quickly
into the area of artificial intelligence, but it is possible to
illustrate the basic ideas without the discussion becoming
too technical. All viruses must contain code to infect other
objects, and are usually written in assembler. They very
rarely carry out any ‘housekeeping’ tasks, such as searching
for command line options, or clearing the screen, which
would be common in a legitimate program. However, they
often start with code to make themselves memory-resident,
or locate an already resident copy, frequently via an undocu-
mented Int 21h call. Heuristic scanning makes use of these
(and other) differences in ‘appearance’ in order to ascertain
whether or not a file is clean.

As an example of basic heuristic analysis, consider a COM
file which begins as follows:

1233:0100 B405 MOV AH, 05h
1233:0104 CD13 INT 13h

This makes a call to the BIOS which would format the fixed
disk. Clearly, any program which begins with these instruc-
tion is highly suspicious, and is probably a Trojan horse. A
heuristic scanner would recognise these instructions as
potentially damaging, and warn the user that the file
appeared to contain malicious code. Moreover, by using
more complex code analysis, routines which attempt to write
to other executable files can be located and identified.

Compression and Encryption

One of the areas in which heuristic detection has been
seriously limited is examination of an encrypted or com-
pressed file. Evidently, if the main body of a file is not in an
immediately executable format, it is impossible to carry out
a behavioural analysis of the code.

Fortunately, this problem can be overcome. In the case of
compressed files, the developers have added code which
decompresses the file ‘on the fly’, and then subjects the
expanded code to heuristic analysis. Thus, any virus lurking
inside the compression should be seen.

The case of encrypted viruses is much more difficult to
solve, because unlike compressed files, there is no ‘stand-
ard’ virus encryption technique. The approach taken here is
to examine the start of the suspect file. If it appears to
contain a loop which alters the contents of another memory
location, the behaviour of the loop is modelled in software,
and the virus code is decrypted. Note that this does not
involve actually running the virus, only modelling the
changes made during the decryption routine.

Once the loop has completed, the decrypted code can be
analysed. This technique allows the scanner to peer within
the outer shell of the encryption, and gives excellent results
when applied to polymorphic viruses.

Problems

One of the biggest problems with heuristics is that of false
positives - i.e. labelling a clean file as infected. This is much
more common with heuristics than with a traditional virus
scanner. In the latter case, one is searching for something
specific; in the former, the software is making an estimate of
how much a program ‘looks’ like a virus. In a large organi-
sation, false positives can be more damaging than false
negatives, and vendors have done a great deal of work trying
to minimise the problem.

One of the simplest ways in which this can be done is to
increase the number of virus-like features a file must have in
order to be labelled as infected. Clearly, this reduces the
number of false positives, but will also mean that the
number of viruses detected by the heuristic elements in the
software are reduced.

Another problem is that it is possible to write virus code in
such a way that it hides its true function. For example, there
are a number of ways in which to hook a particular interrupt:
all the virus author has to do is try out several techniques
until he discovers one which does not raise any of the
heuristic flags. It is very difficult to prevent this type of
attack, as the virus author has an essentially infinite time to
try out new ideas against the heuristic scanner.

 VIRUS BULLETIN JUNE 1994 • 13

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

The Tests

In order to test the heuristic components of the products,
some very simple tests were carried out. Firstly, the virus
scanner was run on a number of infected files, with all virus-
specific elements disabled. Thus, the figures presented do
not reflect the overall detection ability of the software, only
that of its heuristic scanner.

Secondly, the software was tested against a large collection
of executable files, including a number of files sent to Virus
Bulletin as suspected viruses which were later identified as
false positives. This test-set (100MB of executable files) was
used to measure of the number of false positives generated
by the software. Details of the virus test-sets used are given
in the Technical Details section at the end of the article.

Central Point Anti-Virus

In the Wild 64/109
Standard 142/229
Polymorphic See text

After the release of MS-DOS 6, Central Point launched an
updated version of its popular CPAV product. The new
incarnation featured a number of enhancements, one of
which was a ‘Virus Analyser’. This claims to be an expert
system, capable of detecting virus-like code - no further
details are given in the documentation.

The results of the tests show that the product is capable of
detecting a respectable number of viruses using just its
heuristic engine. However, on the test machine, CPAV
repeatedly aborted with a number of different run-time
errors (the following is a typical example: ‘WNCPAV
caused a General Protection Fault in module <unknown>
24BF:0D42@WWNCPAV will now close’). This problem
was repeatable, and associated with scanning particular files.
This made it impossible to calculate how many of the
polymorphic viruses were detected by the CPAV heuristics,
but the figure was approximately 550/750.

The report generated by CPAV is particularly bland, simply
stating that ‘Virus Viral Code F’ was found in a particular
file. According to the manual, this means that the suspicious
code was found in a file. In the event of the scanner encoun-
tering a boot sector virus, the message ‘Viral Code B’ is
displayed. No further information is given on the Central
Point expert system, other than stating that the system
detects viruses ‘using factual knowledge and reasoning’.

The overall detection rate of the scanner could not be
measured, as CPAV crashed during testing, generating
illegal instruction errors. This problem has been reported in
Virus Bulletin numerous times, and still needs to be fixed.

The product was not wholly immune to false positive
problems, labelling one file as infected with ‘Viral code F’.
With the virus-specific engine enabled, another uninfected

file was reported as being infected. When used in a large
company with many thousands of machines, this may well
be an unacceptably high rate of error.

F-Prot

In the Wild 49/109
Standard 103/229
Polymorphic 39/750

The heuristic elements within F-Prot have changed over the
course of time, as emphasis shifted from pure virus detection
to the realisation that false positives were just as serious as
false negatives. Thus, the sensitivity of the heuristics within
the program has been reduced. Notwithstanding, the
detection results when run against the Polymorphic test-set
are rather disappointing.

One of the best features of the heuristic component is that it
is possible to receive a report on which virus-like features
were exhibited by a program. An example of a typical report
is shown below:

C:\VIRUSES\INTHEWIL\EDD-2100.EXE contains
unusual code, which is normally only found in
viruses.

 - self-relocating code

 - invalid time/date

 - strange structure

Please contact Frisk Software International to
check if this is a known false alarm or send
us a copy for analysis.

The principal advantage of the F-Prot heuristics is that in
the false positive tests, the product successfully identified all
files as uninfected. This partly accounts for the uninspiring
detection results, and makes the product highly useable.

ThunderBYTE Anti-Virus

In the Wild 73/109
Standard 149/229
Polymorphic 594/750

Of all the products tested, the overall winner in terms of
detection and usability was ThunderBYTE, by ESaSS. The
detection results were highly impressive, scoring well
against each of the test-sets used.

TBAV allows the user to switch between two different levels
of heuristics. The default setting is to use minimal code
analysis. This is designed to minimise false positives
generated by the program, while still detecting viruses
missed by the virus-specific search engine. The figures
given for the product were taken in this default mode.

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

14 • VIRUS BULLETIN JUNE 1994

The second mode increases the sensitivity of the heuristic
engine by lowering the number of features a file needs to
have in order to be considered suspicious. With this mode
selected, the detection results rose to 98/109 (In the wild),
211/229 (Standard) and 719/750 (Polymorphic). Unfortu-
nately, it also caused a number of false positives: in the low-
sensitivity mode TBAV had no false positives; in the higher
mode, there were 38.

Another feature of note is the amount of information
displayed by the product when it encounters a suspicious
file. A typical example is displayed below:

C:\VIRUSES\INTHEWIL\EDD-2100.EXE probably
infected by an unknown virus

c No checksum/recovery information (Anti-
Vir.Dat) available.

F Suspicious file access. Might be able to
infect a file.

E Flexible Entry-point. The code seems to be
designed to be linked on any location
within an executable file. Common for
viruses.

L The program traps the loading of software.
Might be a virus that intercepts program
load to infect the software.

D Disk write access. The program writes to
disk without using DOS.

M Memory resident code. The program might
stay resident in memory.

T Incorrect timestamp. Some viruses use this
to mark infected files.

Z EXE/COM determination. The program tries
to check whether a file is a COM or EXE
file. Viruses need to do this to infect a
program.

B Back to entry point. Contains code to re-
start the program after modifications at
the entry-point are made. Very usual for
viruses.

ThunderBYTE also deals with encrypted viruses, by analys-
ing the decryption routine and attempting to decrypt the
encrypted code. This code is then subjected to further
analysis. Using this technique, TBAV managed to detect well
over 90% of all the polymorphics tested.

Anti-Virus Professional

In the Wild 87/107
Standard 173/229
Polymorphic 577/750

Anti-Virus Professional (AVP) is a relatively new name in
Virus Bulletin, although it will be familiar to subscribers in
Russia. Developed by Eugene Kaspersky for KAMI, AVP is
to be found on several anonymous ftp sites in the West.

The sensitivity of the heuristics within AVP is not user-
definable, and can only be turned on or off. This small
limitation aside, the product worked well and detected a
large number of viruses. Those detected by the heuristic
engine are not described in any detail, beyond the bland
statement ‘virus Type…’ followed by the product’s estimate
of the virus’ length.

Virus detection was extremely good, achieving a slightly
lower detection rate than TBAV. However, AVP did cause
three false positives when run against the test collection of
clean files - an unacceptably high result.

Analysis and Conclusions

It is rare for any VB review to end with a wholly positive
note, and this comparative is no exception. However, one
pleasing statistic is that, in each case, the heuristic detection
was capable of finding at least some viruses. In particular,
the excellent detection results of ThunderBYTE and AVP are
worthy of praise.

The largest drawback with a package which utilises heuristic
analysis is its propensity for false positives. Although the
tests were conducted on far too small a sample of files to be
representative, they do show that, on a large site, false
positives will happen. For the average user, the high
heuristic mode in ThunderBYTE is probably unusable, as
there is no practical way of ascertaining whether suspicious
files are infected or not. A false positive can waste as much
time as a genuine virus infection.

These results make it difficult to decide how much of a
benefit a heuristic scanner is. The trade off between false-
positives and false-negatives is nowhere as clear as for
generic virus detection, and the acceptable threshold for
error will vary from organisation to organisation. For the
dedicated virus hunter, the extensive analysis provided by
TBAV places it well in front of the competition, but more
than a little technical knowledge is required to make the
most of its many features. At the other end of the scale, F-
Prot’s heuristics detection results lagged behind those of its
competitors, but no false alarms were caused. The ideal
choice of product will vary from site to site; it is left up to
the reader to decide which (if any) will suit him best.

Technical Details:
Tests were carried out on an Opus Technologies 25MHz 386SX,
with 10MB RAM, a high-density 3.5-inch drive, a high density
5.25-inch drive and an 80 Mbyte hard drive. The machine was
running MS-DOS 6.2 and Microsoft Windows 3.1.
Each test-set contains genuine infections (in both COM and EXE
format where appropriate) of the following viruses:
[1] Standard Test-Set: As printed in VB, February 1994, p.23
(file infectors only).
[2] In the Wild Test-Set: As printed in VB, May 1994, p.22.
[3] Polymorphic Test-Set: A special expanded version of the
polymorphic test-set, comprising 750 genuine samples of:
Coffeeshop (500), Cruncher (25), Uruguay.4 (75), Satanbug
(100), SMEG.Pathogen (100).

 VIRUS BULLETIN JUNE 1994 • 15

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

TUTORIAL

Stealthy Subjects

One of the attributes which is often used to describe a virus
is that of ‘Stealth’. Unfortunately, the mechanisms of stealth
are shrouded in mystery to the average MIS Manager. Much
of this image arises from the way in which stealth viruses
operate: when a full stealth virus is memory-resident,
infected files will appear to be ‘clean’, right down to the last
bit. However, there is nothing magical about this - the
trickery described above is nothing more than a simple
exercise in assembly-level programming. This article will
examine exactly how stealth viruses function, and how their
attempts at invisibility can be nullified.

How it Works

The simplest way to understand how one computer program
can hide from another on disk is to examine how a typical
stealth virus functions. If one were to examine a directory of
a disk before and after it was infected with the 4K virus, one
would see no changes to file date or time stamps, or to file
lengths: indeed, if one opened an infected file and compared
it byte by byte with an uninfected original, no difference
would be apparent... as long as the virus was already
memory-resident on the infected machine.

This invisibility relies upon the way in which DOS pro-
grams communicate with the computer hardware.

Now You See It...

The purpose of an operating system is to provide an inter-
face between third-party software running on the machine
and the low-level I/O functions which nearly all programs
need to use (e.g. reading from the disk, outputting to the
screen). This interface allows programs to be developed for
a wide range of physically different machines with compati-
bility issues already dealt with by the operating system.

Although a program does not need to take advantage of this
standard interface, any executable file which accesses the
hardware directly would have to be able to deal with the
multitude of different standards to which PC components
adhere. This would be highly inefficient (not to mention
completely impractical).

The interface between a program and the hardware is made
up of a number of calls, known as interrupts. On the PC,
one of the by-products of this design is that nearly all calls
to the operating system are made via one or two different
interrupts. A precise description of how an interrupt func-
tions on the IBM PC is beyond the scope of this article.
However, all that is needed to understand how stealth
viruses work is a general overview of the actions the
processor takes when it encounters an ‘INT’ call.

An interrupt is an
instruction to the
processor which
instigates a call to
another program
stored in memory.
When an Interrupt
(INT) instruction is
encountered, the
machine makes a
note of the current
position in the
calling program, and
then jumps to a
subroutine (or
interrupt handler) in
memory. The
location of this
subroutine will vary
for different machine
configurations, so a
pointer to it is stored
in a fixed area of low
memory known as
the interrupt vector
table. The correct values of these vectors are loaded during
the boot process. When called, the interrupt handler carries
out whatever function it was designed to do before returning
control to the calling program. In the case of DOS, this
provides access to all its functions.

It is relatively easy to write programs in such a way as to be
machine independent. Programs communicate with the
machine hardware via interrupts, with machine-specific code
(e.g. a device driver for an unusual graphics card) dealing
with requests to access the hardware. This allows the user to
choose from a range of different add-ons which have
different characteristics, merely by loading a small device
driver which translates the requests of the calling program
into instructions which the hardware can understand.

Although there are 256 different interrupts, there are three
DOS interrupts which are extensively used by viruses:

• Int 21h - The DOS function dispatcher

• Int 24h - The DOS critical error handler

• Int 2Fh - The DOS multiplex interrupt

In addition to these, there is another commonly used
interrupt, Int 13h, which provides direct access to the disk.
Using just these four interrupts, a program can access nearly
every service needed for basic I/O and functionality. This
provides a big advantage in terms of simplicity and usabili-
ty, but also provides a ‘bottleneck’ through which calls to
the disk usually pass.

Interrupt Vector

Calling Program

Interrupt Handler

Diagrammatic RAM map of interrupt
processing on an uninfected PC.

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

16 • VIRUS BULLETIN JUNE 1994

Now You Don’t!

Due to the nonexistence of memory protection under
MS-DOS, any program can alter the values stored in the
interrupt vector table. This is a double-edged sword. Firstly,
it means that a program which wants to intercept calls to
DOS (for example, a TSR which monitors suspicious disk
activity) can easily insert its own address into the interrupt
vector table. However, the downside is that a virus can do
exactly the same thing.

A term which is often used within the pages of Virus
Bulletin is ‘interrupt hooking’. This is used to describe the
process of altering the address in the interrupt vector table to
point to a virus. Thereafter, whenever a program attempts to
use that interrupt, control is passed to the virus code. This
can carry out whatever actions it deems necessary, before
passing control on to the original handler. Armed with this
knowledge, one can see that the process of stealth is far from
magical - indeed, a rudimentary stealth routine is a simple
exercise in student-level computing.

As an example of a such a routine, let us consider the
mechanism of hiding an increase in the length of infected
files. DOS would normally use an Int 21h call to locate a
file. Consider the following code fragment:

mov ax, 4E00h ;Set up Int 21h function
;number

mov cx, 0020h ;Set up attribute bits
;of file to find

mov dx, _filename_ptr ;Set DX to point to
;filename

int 21h ;Call Int 21h handler

This issues a call to the DOS function dispatcher to find the
first file matching the filename pointed to by DS:DX. On an
uninfected system, this would return critical information
about the file.

However, if the virus is memory-resident, the Int 21h call
passes control to the virus code. At this point, the virus
could examine the target file, and attempt to ascertain
whether or not it was infected. Techniques for this self-
infection check range from examining the time or datestamp
of the file for a particular value, down to checking specific
code sections within the program.

If this test shows that the virus has already infected the file,
it could allow the call to pass to the original Int 21h handler,
but with the return address from this call set to the virus
code. The virus could then alter the data returned by the
DOS call; in this example, it would involve subtracting the
length of the virus from the length of the file. Therefore, a
directory listing of an infected machine would show no
apparent increase in file size.

Extreme Stances

Hiding an increase in file size is perhaps the simplest action
which a memory-resident virus can carry out, but several
viruses have taken things much further. The 4K virus (aka

Frodo.Frodo.4K) intercepts a number of different Int 21h
subfunctions. When the virus is resident, it examines nearly
twenty different system requests. Aside from the obvious
repair of infected file size, 4K also monitors attempts to read
an infected file. If such a call is intercepted, the virus returns
the original contents of the host file. When that file is
closed, the virus examines its extension, and if it is either
COM or EXE, infects it.

This means that if one were to use a checksumming package
which accessed the disk through the DOS function handlers,
no changes would be seen in infected files, and the disk
would be reported as clean. However, the action of check-
summing the files involves opening and closing every
executable, thereby infecting every suitable file on the disk.

This highlights the need for clean bootstrapping: if a virus is
memory-resident, it can block many of the different attempts
to search for it. Therefore, many anti-virus packages require
that a machine is booted from a clean, write-protected
system disk before virus checking takes place.

Fighting Back

Virus authors are well aware that if their code is not running
it is relatively easy to detect. For this reason, they have
attempted to improve the stealth capabilities of their
creations in a number of different ways.

Firstly, most users still do not carry out a clean boot before
scanning a disk for viruses (in the case of a Windows-based
anti-virus product, this is an almost impossible feat).
Therefore, when a scanner is executed, it usually has the
option of checking memory for viruses which are known to
cause a problem. If
any such viruses are
found, the user is
alerted and requested
to clean-boot the
machine.

An attack against
this technique is to
make the virus very
difficult to detect in
memory by encrypt-
ing memory-resident
code as well as the
virus code on disk
(an example of such
a virus is Uru-
guay.6). Finding an
encrypted virus in
memory is more
difficult than finding
the same virus on
disk: when searching
a potentially infected
file, it is easy to trace
the path of execution

Interrupt Vector

Calling Program

Interrupt Handler

Virus Code

Interrupt processing on an infected
machine. The return values of the
call are controlled by the virus.

 VIRUS BULLETIN JUNE 1994 • 17

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

If it detects any reads of the MBS, it
ensures that the original contents of
the MBS are returned. The advantage
of this technique over the traditional
interception of Int 13h calls is that
even if an anti-virus program contains
‘anti-stealth’ code (that is, it attempts
to access the disk directly), it will still
be ‘stealthed’ by the virus. Once
again, the nonstandard nature of the
calls means that Strange will not
function correctly on a number of
machines, limiting its threat to the
user (see VB, April 1993, pp.12-13).

Conclusions

Hopefully, it should now be apparent
that searching a disk for viruses when
a virus is already active in memory is
a lost cause, which can lead to even
more files on the disk becoming
infected. Therefore, when dealing
with a potentially infected machine,
there are a number of points which the
user should take into account.

Firstly the user must reboot a machine
from a clean write-protected system
disk before making any checks for
infection. It is essential that such a
boot disk is made - the last time at
which one wants to be rooting
through dusty boxes of diskettes is
when a new virus is on the loose.

Creating a boot disk for a ‘vanilla’
DOS system is easy. However, if any
disk compression software is used, it
is important to install the appropriate
device drivers on the boot disk. This
process is discussed in a previous
article in Virus Bulletin (September
93, p.23): suffice it to say that the
quickest way to ensure that a newly-
created boot disk is functioning is to
test it.

Secondly, the user should bear in
mind that a complete power-down of
the machine is necessary - a simple
Ctrl-Alt-Del is not enough.

The most important fact about stealth
viruses is that if they are not memory-
resident, they cannot hide the changes
they have made to infected files, and
the virus author’s hard work will have
been wasted. Stealth will only work if
you let it.

has been loaded in, a boot is ‘faked’
from the A: drive. Although the user
believes that the virus is not active
(after all, the machine was apparently
cold-booted from an uninfected
diskette), the virus is memory-
resident, and intercepts all accesses to
the Master Boot Sector. Fortunately,
the feature in the BIOS on which the
virus relies is nonstandard, and
therefore does not work on the vast
majority of machines. Most anti-virus
products will warn the user if this
virus is detected in memory, but if a
user is particularly concerned about
his machine, he should examine the
values stored in the CMOS, and check
that the drive settings are as they are
expected to be.

Things can become still more compli-
cated. Although most viruses imple-
ment stealth at an interrupt level, it is
possible to intercept disk reads and
writes at an even lower level by
trapping the calls made to the hard-
ware. Due to the extremely low-level
nature of this approach, numerous
compatibility issues are raised, but
there are viruses which attempt to use
this technique.

One example of such a virus is
Strange. The virus is a Master Boot
Sector infector, which monitors all
calls made to the disk at a port level.

through the file, whereas in memory,
it is difficult to know where the virus
code begins and ends.

An example of a virus which attempts
to do this is Satanbug. When resident,
this virus multiply encrypts itself,
only calling decryption routines when
specific areas of the code are
accessed. This makes it very difficult
to detect reliably once it is running. It
is therefore advisable to boot from a
clean system disk before checking a
disk for viruses.

Another tactic used by the virus
authors is to ensure that the virus
remains active in memory even after a
warm boot of the machine. This trick
is relatively simple to accomplish, and
means that the user is forced to cold
boot his machine by powering off. It
is well-worth remembering this fact
when examining a machine which
might be infected.

New Steps

The latest development in viruses in
terms of memory-resident behaviour
is that used by the EXEBug virus (see
Virus Bulletin January 93, p.13). This
virus takes advantage of a ‘feature’ in
a particular version of the AMI BIOS,
which allows the user to force a boot
from the C: drive. After the virus code

Unfortunately, everything is
not as it seems. The results

of the same operation are
shown below, this time

after booting from a clean
system disk.

Stealth in Action

Above: the result of viewing
a Spanish_Telecom-
infected Master Boot Sector
with the virus memory-
resident. Note that every-
thing appears normal.…

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

18 • VIRUS BULLETIN JUNE 1994

PRODUCT REVIEW 1

Net-Prot: F-Prot for NetWare
Jonathan Burchell

Readers will already be familiar with Command Software
Systems’ F-Prot Professional, which is a well-established
package held in high esteem by users and industry alike.
This month’s review looks at Net-Prot, which includes both
DOS and NLM versions of the software.

The package seems to set out to be minimalist in its ap-
proach, comprising just two 3.5-inch floppy disks and a slim
manual, merely ten pages long. No mention is made of the
availability of other media - presumably, one could apply to
Command Software if these are required.

Installation

To install the program, it is first necessary to log in as
supervisor. The supplied install program then copies the
product’s files to the server directory, the user being asked
only whether or not AUTOEXEC.NCF should be modified
to load F-Prot when the server is started. The NLM claims
to be compatible with Novell NetWare v3.11, v3.12 and
v4.0x; however, testing was only carried out under v3.11.

When I loaded the NLM, the software immediately gener-
ated an error message. The manual points out that F-Prot
requires the latest version of CLIB.NLM to be installed, and
that it may be necessary to download it from a Novell
distribution site. After some convoluted manoeuvres (the
Internet is a wonderful thing!) this was achieved, allowing
F-Prot to load without any error messages.

However, without Internet access (or a modem and a
CompuServe account), procuring the newest libraries is a
time-consuming and difficult procedure. Command Software
should obtain permission from Novell to redistribute the
latest CLIB.NLM with their software, modifying the install
program to copy it over if necessary.

Additionally, why can the install program not check the
version of CLIB on the server and warn of any potential
problem? This would be far more user-friendly than having
the software abort with an error message at the very outset.

Configuration Options

The few configuration options offered by the NLM software
are controlled from the setup program, which may be set up
to be password-protected. The program can be run by any
user who is logged in as supervisor, or who has write
permission to the server system directories. It allows for
real-time scanning mode, controlling the scanning of files
moving on or off the server, and may be set to any combina-
tion of file execution, file read and file write.

If a virus is detected, the infected file may be moved to a
quarantine directory, or, alternatively, renamed or deleted.
F-Prot creates the quarantine directory as part of the install
procedure, and cannot be set to use a different directory.

When an infected file is discovered, a warning message may
be sent to whomever originated the file request and/or to
other nominated users or Novell groups. It is not possible to
customise the warning message, or to request that it be sent
to a group plus a list of individual users.

F-Prot is preconfigured to scan those files most likely to
become infected (those with extensions COM, EXE, OVL
etc.), but further extensions may be added to the specified
list, which appears limited to approximately fifteen entries.
This, however, is not enough to retain the predefined list and
add all the extensions of the virus test-set. There is no
apparent option to specify all files: setting the file extension
to a wild card ‘*’ did not work.

The Scheduler which is included is fairly basic, and allows
the user to specify scan time according to days of the week
and a time to operate. It is also capable of delaying the scan
if the file server is in heavy use (qualified as a percentage
loading figure).

Points to Ponder

The NLM is very simplistic, and whilst simple can be good,
it is necessary to point out the issues it fails to address. First
amongst these is the documentation. I am all for conserva-
tion, and saving the planet’s eco-system: less than three
pages in the manual deal with NLM operation and configu-
ration. This would be fine, if good on-line documentation
and help existed. Command Software provides neither.

Rather surprisingly, given the reputation of the DOS-based
product, Net-Prot falls down badly in terms of virus detection,

missing almost all polymorphic viruses.

 VIRUS BULLETIN JUNE 1994 • 19

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

The second issue is the fact that the F-Prot NLM lacks
many of the more advanced features to be found in other
server-based anti-virus software. These include the ability to
treat groups of servers as logical domains, the ability to load
specific NLMs according to scan results, and the ability to
customise the entire operation of the scanner. Net-Prot does
generate a log file, but it is not documented anywhere. No
reporting or viewing facilities are provided.

Some very basic features were also absent: I found, for
instance, not being able to set the scan to include ‘all files’ a
major disadvantage. Were I to use the software in a produc-
tion environment, I would want to be able to customise the
‘infection found’ message. Ensuring that users do not panic
at an inappropriate message is of paramount importance.

Furthermore, although F-Prot claims to be (and probably is)
NetWare 4.0 compatible, I could see no reference to
supporting the more advanced features of v4.0, such as
automatic data compression and backup media migration.

Neither could I find mention of, nor detect any linkage
between, workstation and server utilities. These days one
expects the server NLM to act as a centralised logger of
events, and to interact with the workstation utilities, double-
checking their integrity and ensuring that they are loaded at
login time. F-Prot has none of these features.

The scanner was not the most efficient I have encountered:
about the only thing in its favour is that it seems to place an
almost negligible load on the server. I could not measure
any degradation of file throughput with the scanner loaded
and scanning. It performed poorly on both the Standard and
the In the Wild test-sets, and also almost completely missed
the polymorphic and Diet compressed files.

Within DOS

The F-Prot Professional for DOS package provides three
main utilities: a DOS-based scanner, a real-time scanner and
a file integrity package. A Windows program is also in-
stalled, which is able to receive and display messages from
the DOS TSRs when the user is in Windows.

Once installed, F-Prot acts as a classic DOS character-based
menuing front-end to the scanner, the configuration utilities
and the on-line encyclopaedia. The scanner can be config-
ured according to type of scan, disk areas to scan, action to
be taken on detection, targets, and files.

Configuration according to type of scan allows a choice of
three scanning methods: secure, quick, and heuristic. The
secure method uses multiple signatures to detect possible
infection, and offers the possibility of disinfection. Quick
scan is faster than secure, but not as thorough, and offers no
disinfection possibilities. The heuristic scan does not rely on
specific signatures, but seeks specific code sequences which
may be part of a typical virus. This might be code which
writes to the disk via the BIOS, or which attempts to make
the program resident in a non-standard way. The advantage

In contrast to the NetWare version, F-Prot scored well on the
test-sets, and was easy and flexible to use.

of the heuristic scan is that it does not rely on the signature
database; the disadvantage being that it can be ‘triggered’ by
legitimate programs (see also pp.12-14).

Any combination of local hard disks, diskettes and network
drives may be scanned. It is also possible to specify a
specific drive/path to be searched. The action to be taken on
detection may be set to Report, Disinfect, Delete or Rename.
The disinfect and delete actions may be set to be carried out
automatically, or to request confirmation from the user.

Choice of targets allows specification of any combination of
boot sector viruses, file viruses, user-defined strings and
packed files. The files option chooses files to be searched by
extension. As well as a standard list, the option of <All
files> and a user-specified list are provided. Unlike the
NLM-based scanner, wild card extensions are allowed and
did work.

On-line Help

In addition to configuring the scanner, the F-Prot front-end
gives access to a good on-line virus encyclopaedia. This lists
all viruses known to F-Prot, together with background
information on the virus and its actions. An option is
provided to define new virus signatures: this prompts for the
virus name, the type of infection it generates (boot sector,
COM or EXE) and a hexadecimal search string. It is not
clear why it should want to know if the virus infects COM
or EXE files - what about other file types specified to be
searched? Perhaps this information is used to reduce false
positives, or is utilised by the heuristic scanner.

The DOS scanner does not have to be used interactively, and
may be run from the command line. A large number of
option switches allow the run-time configuration and control
of the scanner. In this mode, F-Prot can be run from within
batch files such as AUTOEXEC.BAT. Further control of the
scanning process is available: F-Prot will generate different
DOS ERRORLEVEL exit codes according to scan results.

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

20 • VIRUS BULLETIN JUNE 1994

This scanner has wildly different results to the NLM
version, detecting almost 100% of the ‘Standard’ and the ‘In
the Wild’ test-sets. It was also much better at polymorphic
detection, although it did miss all samples of both Uruguay
and Cruncher. It is worth noting, that when run in its ‘quick’
mode, the detection results became identical to those of the
server-based software.

The real-time scanner included in F-Prot allows checking of
files as they are loaded and executed at the workstation. The
real-time checker uses the same signature database as the
scanner, but will not perform any heuristic-type analysis. If
the real-time scanner detects a possible infection, it can be
set to notify the user, and to broadcast a network message.

Even though the real-time scanner is a DOS TSR, a user in
MS-Windows will be successfully notified through the
supplied windows utility. I was pleased to see that network
broadcasting is supported not only for Novell but also for
Banyan networks. Considering that Banyan sites are often
enormous, with many users and file servers, this is a useful
ability, and one which others would do well to emulate.

The File Integrity Checking Package.

The check program allows checksums to be calculated for
files on disk, and calculates new checksums. CHECK.EXE
can attempt restoration of altered files which were previous-
ly checked. However, the documentation gives few details
of the checking method used, or the manner in which
restoration is attempted, so it is difficult to assess the
integrity of the process.

There is also no indication as to whether or not the check-
sum database is protected, although it is possible to rename
and password-protect it. Presumably, this would provide
further security. An additional TSR provides real-time
checking of files as they are loaded for execution. It is
possible to specify the action to be taken if a file is loaded
which is not in the database, or which has been altered since
the database was created.

Conclusions

The main problem with Net-Prot is simply that the NLM
virus detection rate is too low. To be any use at all in day-to-
day work, a scanner must score well in virus detection,
particularly against those viruses in the wild. This is even
more important on a network than under ‘vanilla’ DOS.

The DOS components were excellent, and I am mystified as
to why such a large difference should exist between the two
products. The NLM lacks the kinds of features which other
server-based products have: its only advantage is that it is
extremely simple to install and use. Perhaps if it had a
higher detection ratio, it could find a place as a fit-and-
forget type scanner/real time checker for small networks.
Net-Prot is a new product: clearly, further development is
needed before it comes into line with the accuracy of the
other components of the F-Prot stable.

Net-Prot

Detection Results (Secure mode):

NLM Scanner

Standard Test-Set [1] 205/229 89.5%
In the Wild Test-Set [2] 86/109 78.9%
Polymorphic Test-Set [3] 2/450 0.4%

DOS Scanner

Standard Test-Set [1] 226/229 98.7%
In the Wild Test-Set [2] 107/109 98.1%
Polymorphic Test-Set [3] 365/450 81.1%

Scanning Speed:

Speed results for an NLM product are inappropriate,
due to the multi-tasking nature of the operating
system. Full comparative speed results and over-
heads for all current NLMs will be printed in a forth-
coming VB review.

Technical Details

Product: Net-Prot

Developer: Frisk Software International, P.O. Box 7180, 127
Reykjavik, Iceland.
Tel. +354 1 617273, Fax +354 1 617274.

Vendor: Command Software, 1061 East Indian Road, Suite 500,
Jupiter, Fl 33477, USA.
Tel. +1 407 575 3200, Fax +1 407 555 3026.

Price: £495 per server. Additionally, £89.95 per workstation.

Hardware used: Client machine - 33 MHz 486, 200 Meg IDE
drive, 16 Mbyte RAM.File server - 33 MHz 486, EISA bus, 32
bit caching disk controller, NetWare 3.11, 16 Mybte RAM.

Each test-set contains genuine infections (in both COM and EXE
format where appropriate) of the following viruses:
[1] Standard Test-Set: As printed in VB, February 1994, p.23
(file infectors only).
[2]In the Wild Test-Set: 4K (Frodo.Frodo.A), Barrotes.1310.A,
BFD-451, Butterfly, Captain_Trips, Cascade.1701, Cas-
cade.1704, CMOS1-T1, CMOS1-T1, Coffeeshop,
Dark_Avenger.1800.A, Dark_Avenger.2100.DI.A,
Dark_Avenger.Father, Datalock.920.A, Dir-II.A, DOSHunter,
Eddie-2.A, Fax_Free.Topo, Fichv.2.1, Flip.2153.E,
Green_Caterpillar.1575.A, Halloechen.A, Helloween.1376,
Hidenowt, HLLC.Even_Beeper.A, Jerusalem.1808.Standard,
Jerusalem.Anticad, Jerusalem.PcVrsDs,
Jerusalem.Zerotime.Australian.A, Keypress.1232.A,
Liberty.2857.D, Maltese_Amoeba, Necros, No_Frills.843,
No_Frills.Dudley, Nomenklatura, Nothing, Nov_17th.855.A,
Npox.963.A, Old_Yankee.1, Old_Yankee.2, Pitch, Piter.A,
Power_Pump.1, Revenge, Screaming_Fist.II.696, Satanbug,
SBC, Sibel_Sheep, Spanish_Telecom, Spanz, Starship,
SVC.3103.A, Syslock.Macho, Tequila, Todor, Tremor (5),
Vacsina.Penza.700, Vacsina.TP.5.A, Vienna.627.A,
Vienna.648.A, Vienna.W-13.534.A, Vienna.W-13.507.B,
Virdem.1336.English, Warrior, Whale, XPEH.4928
[3] Polymorphic Test-Set: The test-set consists of 450 genuine
samples of: Coffeeshop (375), Cruncher (25), Uruguay.4 (50).

 VIRUS BULLETIN JUNE 1994 • 21

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

PRODUCT REVIEW 2

Vi-Spy, with My Little Eye…
Dr Keith Jackson

RG Software’s Vi-Spy has been reviewed by VB twice
before, initially in May 1990, and latterly in August of 1992.
In past comparative tests, the product has always performed
very well, frequently appearing in the top handful of
products. The latest release of Vi-Spy adds several new
features to the software, which now comprises a scanner,
TSR virus detection, an integrity checker, a scheduler, and
facilities for removing viruses from infected files. Vi-Spy
operates under either DOS or Windows, and supports a
selection of networks. These networking options will be the
subject of a later stand-alone review.

Documentation

The documentation shipped with the product comprises two
A5 books, identified as a ‘Guide to Operations’ (154 pages,
including a seven-page index), and a ‘Computer Virus
Primer and Troubleshooting Guide’ (67 pages).

The ‘Guide to Operations’ is very thorough, and easy to
understand. In marked contrast to certain packages reviewed
recently, all error messages are documented.

The ‘Computer Virus Primer and Troubleshooting Guide’
describes what viruses are, how to combat them, and what
actions to take if a virus is detected. It also provides a good
explanation of how a PC boots, and how a virus can interact
with this process. Last time around I reviewed this book
very favourably: it has not been updated (this would have
been unnecessary, as general rules do not alter with time), so
the original conclusions still stand.

Installation

Vi-Spy is provided on one 3.5-inch (1.44 MB) floppy disk.
Other disks - 5.25-inch (360 KB or 1.2 MB), or 3.5-inch
(720 KB) - are available free of charge, simply by filling in
a form provided with the documentation. The last time this
product was reviewed, the package came on both 3.5-inch
and 5.25-inch floppy disks. Although nearly all software
products are shipped in this fashion (most notably, Micro-
soft), anti-virus software is needed on every machine in an
organisation, right down to single drive XTs. The loss of the
choice of media as standard seems like a step backwards.

Installation of Vi-Spy onto hard disk was always straightfor-
ward: this still holds true. The installation program searches
for existing copies of Vi-Spy, and decides whether this is an
upgrade or an original installation. After performing a fast
scan (memory, all boot sectors, and some DOS files), and
asking if Windows will be used with Vi-Spy, any desired
subdirectory can be used to contain the 54 Vi-Spy files

(requiring 1.19 MB of disk space). Changes are optionally
made to the DOS file AUTOEXEC.BAT, and the special
Windows configuration file WIN.INI.

If Windows is requested, the installation program ‘fires it
up’, requests that paths to desired subdirectory locations are
specified, and leaves the user in Windows to test things out.
On leaving Windows, the DOS installation program re-
emerges and completes its tasks - a nice touch.

Scanning

The scanner in this product currently knows about 1879
unique virus names (as opposed to number of viruses). The
two previous product reviews searched for 750 (1992) and
46 (1990) viruses respectively - oh, for the simple days!

This scanner is available as either a command line-driven
DOS program, a DOS program which uses drop-down
menus, or a Windows program. All three versions execute
the command line version to do the actual disk scan,
although it is not possible to alter all of its features from
within the menu-driven versions.

“Vi-Spy detected all 239 parasitic
test viruses, and all nine boot

sector test samples”
When run, all available drives are checked by default,
although a scan of a specific drive can be selected on
request. Every version of Vi-Spy I have seen has contained
this feature, which definitely encourages thoroughness.

I tested scanning speed whilst Vi-Spy was inspecting the
hard disk of my test computer (957 files spread across 36.2
Mbytes), a test which took 28 seconds to complete. In
comparison, Dr Solomon’s AVTK scanned the same hard
disk in 21 seconds, and Sophos’ Sweep took 25 seconds for
a quick scan, and 1 minute 13 seconds for a complete scan.

This scan time was measured in what is denoted as ‘Opti-
mal’ mode, where the product only checks ‘important’ parts
of the disk, and executable files. Although Vi-Spy knows
about many forms of compressed files, it only warns that
such files exist, and does not scan within them.

The scanner can also be used in ‘Intense’ mode, which
inspects many more file extensions (this took 1 minute 18
seconds to scan the same hard disk), and ‘Maximum’ mode
where all files are checked against all virus signatures
(increasing the scan time to 3 minutes 10 seconds). A
scanning mode entitled ‘DOS Critical’ is also available: this
inspects only the MBS and the DOS boot sector of a hard
disk, and completes its tests almost instantaneously.

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

22 • VIRUS BULLETIN JUNE 1994

accidental floppy disk boot; inspects the boot sector of all
floppy disks; warns when a program is attempting to remain
memory-resident; prevents writing to a hard disk’s Partition
table or boot sector, and warns when an executable program
has changed in size.

A second memory-resident program is available with all
these features, which additionally verifies a checksum of
each executable program before allowing execution. A
stripped-down version which only examines the checksum is
also available. With one exception, the virus detection
capability of the memory-resident component part of Vi-Spy
proved identical to the virus detection capability offered by
the scanner. The memory-resident program spotted all virus
samples except one copy of the Liberty virus.

Rather curiously, the other four test samples of this virus
were detected correctly, and for reasons I cannot fathom, the
memory-resident program decided that one Liberty test
sample was not an infected file. Testing the Vi-Spy memory-
resident program (RVS) against MtE samples produced
identical test results to those obtained with the scanner (83%
detected), even down to the same MtE test files being
missed in both cases.

Small, Speedy and Safe

Any memory-resident monitoring program which is carrying
out tests before allowing a file to be executed is bound to
have an impact on system performance. This varies from
zero (usually from programs which, no matter what they
claim, are not actually doing a great deal), up to unusably
large overheads.

To test the overhead, I measured the increase in time taken
to copy 38 files (1.20 MB) from one subdirectory to another,
making sure that the copy was made to/from exactly the
same parts of the hard disk. When RVS was not loaded, the
test took 17.3 seconds, which increased to 21.5 seconds with
RVS active in default setup mode. This is an overhead of
24% on file copying - presumably this also applies to file
loading, and is certainly not excessive.

Given that Virus Bulletin has published comparative reviews
of memory-resident anti-virus products in the past (see Virus
Bulletin, September 1993, pp.15-19), and been scathing
about measured (as opposed to claimed) performance, the
above figures are very impressive. Not only does the
detection rate of the memory-resident software approach
close to 100%, but the overhead of 24% on system through-
out is also acceptable.

Most similar products either fail to detect a reasonable
number of viruses (in which case they are useless), or
impose an unacceptable overhead (in which case they won’t
get used). Products like RVS are conspicuously rare in the
anti-virus industry.

Vi-Spy’s memory-resident component can also prevent an
accidental boot from a floppy disk. If a floppy disk is left in
drive A, Vi-Spy intervenes and requests confirmation that a

Vi-Spy provides a combination of ease of use and excellent
detection, scoring well in all tests.

I re-measured the above timings using the Windows version
of Vi-Spy. When last reviewed, timings under DOS and
Windows were identical. This is no longer the case: the three
measurements described above have increased. An ‘Opti-
mal’ scan took 1 minute 5 seconds, an ‘Intense’ scan, 2
minutes 13 seconds, and a ‘Maximum’ scan (DOS scan 3
minutes 10) needed 5 minutes 18 seconds to complete.
These figures represent an overhead ranging from 60 to
130% - clearly something has changed over the years.

The Windows version of the scanner is (thankfully) very
plain in appearance, and does not have a ‘jazzed-up’ user
interface. This is meant as a compliment - fancy graphics are
irrelevant when searching for viruses.

The menu-driven version of Vi-Spy and the raw DOS
scanner use different naming conventions for various types
of scan available (e.g. Optimal = Turbo, and Intense = Full).
The manual explains this point, but I find it bewildering, and
would contend that it is an unnecessary confusion which
should be eradicated.

Vi-Spy has always been very good at detecting viruses, and
nothing much has changed in that department. In its last
review, it detected all of the test viruses bar one. Even
though the number of viruses in the test set has at least
trebled since then, Vi-Spy detected all 239 parasitic test
viruses, and all nine boot sector test samples.

There was, however, a problem when the scanner was tested
against the 1024 Mutation Engine (MtE) samples - here, it
detected only 83%. Even this, though, is much better than
many similar products can achieve.

Memory-resident Features

Three memory-resident detection systems are provided with
Vi-Spy. The default program (RVS) checks program files
when executed, copied, and uncompressed; prevents an

 VIRUS BULLETIN JUNE 1994 • 23

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

boot from floppy disk was intended. The memory-resident
software occupies less than 17K of memory, and operates in
EMS memory, if available.

Checksumming

The first time the integrity checker option is selected, disk
scan times increase while it creates a checksum database.
For instance, the above-quoted time of 28 seconds to scan
the hard disk of my test computer in ‘Optimal’ mode rose to
34 seconds - a small but noticeable increase. After this first
execution, the scanner took only 14 seconds to verify the
checksums (when requested).

These quick timings concur with the fact that the documen-
tation states quite clearly that not all parts of a file are
checksummed. To keep the checksum verification time
within reasonable bounds, this is inevitable.

Calculating checksums across all parts of all files is a very
time-consuming process. The details of which parts of a
program are included in the checksum process are not
explained; however, my tests showed that parts of a file
from the 129th byte onwards can be changed at will, and Vi-
Spy does not seem to notice.

Grouches and Grumbles

I have only a few complaints about Vi-Spy, all of which are
small. Firstly, the option to maintain a memory map of all
memory-resident programs is a pain when a multi-path boot
is used. I sometimes use 4DOS as a command processor,
and sometimes the MS-DOS equivalent, COMMAND.COM.
Switching from one to the other causes the boot sequence to
stop, and Vi-Spy asks if the detected alteration to the
memory map is correct, requesting authorisation to update
the map. This feature can be disabled, but is present in a
default installation.

My multi-path boot also fooled the installation program,
which only modified AUTOEXEC.BAT in the final one of
the various possible boot sequences. Given that MS-DOS
now incorporates a multi-path boot as a standard feature
from version 6.0 onwards, this needs alteration.

Another grouch is that Vi-Spy insists on maintaining its own
files in a subdirectory in the root of drive C (called
RGVSPYDB). This is a nuisance, and even if it can be
circumvented by some jiggery-pokery, Vi-Spy should
maintain its files within a user-designated subdirectory.

The text file viewer available with the DOS drop-down
menu version of the scanner (VSMENU) has an odd quirk.
It can be either keyboard- or mouse-driven. However, if one
moves down a long way by dragging the text bar with the
mouse, when the keyboard is next used, the text file springs
back to where the last keyboard command left it. The
movement within the file caused by the mouse seems to be
ignored. The effect is almost as if the mouse and the
keyboard controls are independent of each other.

I was intrigued to see that Vi-Spy now includes facilities
which will (sometimes?) remove viruses from infected files.
Previous versions which I have reviewed did not include
such features. While the documentation still states that it is
better to delete an infected file and replace it, I think that
most users will not follow this good advice, opting instead
simply to press a key, and have their worries disappear.

In common with other anti-virus manufacturers, the devel-
opers of Vi-Spy have no doubt had to bow to user demands
for such a feature. I do not have to respond to such commer-
cial pressures, so I shall continue to point out how stupid,
and potentially dangerous, such features can be.

However, as the heading of this section suggests, all these
observations really are small moans, rather than serious
criticism. They are quirks, rather than problems, and given
that version 12 of the software has only been shipping for a
matter of weeks, they are not wholly surprising.

Conclusions

In its previous incarnations, I have found Vi-Spy simple to
understand, and easy to use. Additionally, it has always been
fleet of foot in searching for virus signatures on a disk. I
have found no reason to alter these conclusions in investi-
gating this product for the current review.

The scanner is very good indeed. It is as fast as many of the
quickest scanners around, and offers a very high detection
rate, though MtE detection needs more work. Vi-Spy
concentrates on being a very good virus detection utility,
ignores the frills, and does not waste its effort on pretty
Windows front ends, which are ultimately useless in such a
package. This one’s heartily recommended.

Technical Details
Product: Vi-Spy
Developer/Vendor: RG Software Systems Inc., 6900
E.Camelback Rd., #630 Scottsdale, AZ 85251, USA.
Tel. +1 602 423 8000, Fax +1 602 423 8389,
BBS +1 602 970 6901.
Availability: 8088 processor or better, 256 Kbytes of RAM, 1.5
Mbytes of hard disk space (optional). Either MS-DOS or
PC-DOS can be used. The command line-driven scanner requires
DOS v2.0; all other Vi-Spy programs require DOS v3.2 or above.
Either version 3.0 or 3.1 of Windows can be used.
Version evaluated: 12.00, Rel.01.94
Serial number: VSP9412011.
Price: $149.95 with quarterly updates.
Hardware used: A 33 MHz 486 clone with 4 Mbytes of RAM,
one 3.5-inch (1.4 Mbyte) floppy disk drive, one 5.25-inch (1.2
Mbyte) floppy disk drive, and a 120 Mbyte hard disk, running
under MS-DOS v5.00.
Viruses used for testing purposes: This suite of 158 unique
viruses (according to the virus naming convention employed by
VB), spread across 247 individual virus samples, is the current
standard test-set. A specific test is also made against 1024
viruses generated by the Mutation Engine (which are particularly
difficult to detect with certainty).
For a complete list of viruses in the test-sets, see Virus Bulletin,
February 1994, p.23.

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

24 • VIRUS BULLETIN JUNE 1994

END NOTES AND NEWS

ADVISORY BOARD:

David M. Chess, IBM Research, USA
Phil Crewe, Ziff-Davis, UK
David Ferbrache, Defence Research Agency, UK
Ray Glath, RG Software Inc., USA
Hans Gliss, Datenschutz Berater, West Germany
Igor Grebert, McAfee Associates, USA
Ross M. Greenberg, Software Concepts Design, USA
Dr. Harold Joseph Highland, Compulit Microcomputer
Security Evaluation Laboratory, USA
Dr. Jan Hruska, Sophos Plc, UK
Dr. Keith Jackson, Walsham Contracts, UK
Owen Keane, Barrister, UK
John Laws, Defence Research Agency, UK
Dr. Tony Pitt, Digital Equipment Corporation, UK
Yisrael Radai, Hebrew University of Jerusalem, Israel
Roger Riordan, Cybec Pty, Australia
Martin Samociuk, Network Security Management, UK
Eli Shapira, Central Point Software Inc, USA
John Sherwood, Sherwood Associates, UK
Prof. Eugene Spafford, Purdue University, USA
Dr. Peter Tippett, Symantec Corporation, USA
Dr. Steve R. White, IBM Research, USA
Joseph Wells, Symantec Corporation, USA
Dr. Ken Wong, PA Consulting Group, UK
Ken van Wyk, CERT, USA

SUBSCRIPTION RATES

Subscription price for 1 year (12 issues) including first-
class/airmail delivery:

UK £195, Europe £225, International £245 (US$395)

Editorial enquiries, subscription enquiries, orders and
payments:

Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire,
OX14 3YS, England

Tel. 0235 555139, International Tel. +44 235 555139
Fax 0235 559935, International Fax +44 235 559935
Email virusbtn@vax.ox.ac.uk
CompuServe 100070,1340@compuserve.com

US subscriptions only:

June Jordan, Virus Bulletin, 590 Danbury Road, Ridgefield,
CT 06877, USA

Tel. +1 203 431 8720, Fax +1 203 431 8165

This publication has been registered with the Copyright Clearance Centre Ltd.
Consent is given for copying of articles for personal or internal use, or for
personal use of specific clients. The consent is given on the condition that the
copier pays through the Centre the per-copy fee stated on each page.

No responsibility is assumed by the Publisher for any injury
and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or
operation of any methods, products, instructions or ideas
contained in the material herein.

Jitec Corporation has announced the launch of a new ‘virus-
immune computer’. The anti-virus system is built around the ‘totally
and literally invincible anti-virus technology, EVAC (Electronic Virus
Activity Control)’. In the event of this claim being true, it could be the
end for over twenty anti-virus software vendors. The industry holds its
breath… again.

A team of 600 computer buffs has succeeded in factorising a 129-digit
modulus used for data encryption under RSA. However, the group,
using 1600 machines, still took eight months to crack the code. This
breakthrough poses few problems for current encryption users: most
companies and government agencies use 150- or 200-digit keys.

CD-ROM manufacturer Chinon America Inc warned users that its
name has been put on a Trojan program entitled CD-IT.ZIP. The
program, which claims to convert an ordinary CD-ROM drive into a
CD-Recordable device, destroys critical system files on the user’s hard
drive. Chinon speculates that the vandals picked its company name ‘to
make it seem that the software was being endorsed by a well-known
and reputable CD-ROM manufacturer’. Users are warned not to use the
file. Anyone with information which could lead to the arrest and
prosecution of those responsible for the CD-IT program are asked to
call Chinon. Tel. +1 310 533 0274.

The VB Conference will be held on 8-9 September 1994, at the Hôtel
de France, Jersey. Tel. +44 (0)235 531889.

VSUM Certifications for April: 1. McAfee Associates ViruScan V114,
97.8%, 2. SafetyNet’s VirusNet Pro 2.11a, 96.2%, 3. Command
Software’s F-Prot Professional 2.10g, 96.1%, 4. Sophos Sweep 2.58,
93.0%, 5. Dr Solomon’s AVTK 6.60, 90.5%. NLMs: 1. McAfee
NetShield 1.6V113, 95.8%, 2. Sophos Sweep NLM 2.58, 92.9%, 3. Dr
Solomon’s AVTK, 82.7%, 4. Command Software’s Net-Prot 1.22
77.8%, 5. Norton Anti-Virus NLM 1.0, 76.7%.

According to a report in Corporate Security Digest, American
prosecutors have a poor level of understanding of the technology used
in many computer crime cases. Scott Charney, chief of the Justice
Department’s Computer Crime Unit, noted that some prosecutors opt
to use more familiar statutes, such as wire fraud, rather than the
computer law. ‘Computer crime lends itself to other crimes - theft,
embezzlement, wire fraud,’ commented Jeff Herig, special agent for
the Florida Department of Law Enforcement. ‘If I can prove the easy
crime, why go to the trouble of explaining computer crime to the jury?’

S&S International’s statutory accounts for the year ending 31 May
1993 show that the company is in the process of being sued for over
half a million pounds for breach of contract. When questioned, Dr
Solomon refused to comment, simply stating that the case ‘had nothing
to do with failure of the product’.

Network Connection Ltd has launched a product designed to scan
UUENCODED messages for viruses. The product sits between a
protected system and an Internet gateway, and checks mail messages
for encoded executables. The product uses McAfee SCAN, but other
DOS-based virus checkers are also supported. Tel. +44 (0)483 776000.

KPMG Management Consulting claims that 79% of company PCs are
inadequately protected against unauthorised access. Brian Kervell-
White of KPMG commented: ‘Though companies now recognise the
asset value of the data they hold, until senior management recognise
that security is a management issue and become actively involved, the
reckless approach to computer security will continue, with all its
associated risks.’

Sophos is holding a Computer Virus Workshop at the Sophos
training suite in Abingdon, near Oxford, on 27/28 July. Cost for one
day is £295+VAT, and for both days £545+VAT. For further informa-
tion, contact Karen Richardson. Tel. +44 (0)235 559933.

