
VIRUS BULLETIN OCTOBER 1994 • 9

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)1235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

VIRUS ANALYSIS 1

One_Half: The Lieutenant
Commander?
Eugene Kaspersky

Kami Associates

Two years ago, a virus appeared which amazed researchers
with its infection algorithm. Regular VB readers will
remember Commander_Bomber (see VB, December 1992),
which caused numerous problems for researchers by
inserting its code into a random location within an infected
file. Control does not pass from the beginning of an infected
file directly to the main virus body: several blocks of
polymorphic code pass control from one part to another,
before the main body of the virus is executed.

This means that the standard method of calculating a virus�
offset in a file cannot be used, and many anti-virus scanners
still do not detect the virus correctly (at least, not when they
are run in their default modes).

Now a new virus has appeared - a polymorphic, multipartite
sample �à la Commander Bomber�. Like that virus,
One_Half (the name comes from its internal text string, �Dis
is one half�) writes polymorphic code into random positions
in the file. These �spots� of code not only pass control to the
main virus code, but also contain a loop which decrypts the
main body of the virus.

Commander_Bomber is not encrypted, and can be found
simply by scanning the whole file. The One_Half virus, on
the other hand, is, and cannot be detected using a simple
hexadecimal search string. Moreover, the decryption routine
is broken up into several pieces, making decryption tricky.

Execution of Infected File

When an infected file is executed, control passes to the
decryption code. The decryption loop contains ten blocks of
code which are placed at random locations throughout the
host file: the first five initialise registers for the decryption
loop; the rest decrypts the virus body. Each block contains
only one function, on completion of which there is an
immediate near JMP to the next block. The last block passes
control to the virus� installation routine.

The virus� first action is to issue an �Are you there?� call
(Int 21h with AX=4B53h). If a copy of the virus is already
memory-resident, the value 454Bh is returned in AX. If the
call is answered, the memory image of the host file is
repaired and control passed to it.

If the virus is not already memory-resident, it tunnels the Int
13h vector and reads the MBS to check for the virus�
presence, comparing the word at offset 0025h with value

00D3h. If this condition is met, the virus skips the infection
routine and returns to the host program. A similar test is
made for the value of 072Eh at offset 0180h in the MBS.
This part of the boot sector does not contain viral code, and I
see no reason for the virus not to infect such disks, unless to
prevent conflict with another program. Another possibility is
that it might have been used by the virus author to keep his
own computer clean during development of the virus.

Next, the virus checks disk parameters, using function
Int 13h, AH=08h, and saves the original MBS (and its own
unencrypted complete code) in the last eight sectors of track
0. If the disk has been partitioned in the usual way, these are
the sectors before drive C�s DOS Boot Sector. It then copies
29h bytes of code (which read the virus code from the
infected sectors and pass control to the virus) into the
original MBS, and writes the MBS back to disk.

�the hooked Int 13h performs two
functions � the first is the trigger

routine, the other, the stealth
mechanism code�

After hard drive infection, One_Half modifies the Memory
Control Blocks (MCBs) in the standard manner, disguises
itself as a copy of COMMAND.COM (by copying the
�COMMAND� string into the MCB �program name� field),
and hooks Int 21h. This routine is somewhat unreliable - the
virus did not become resident on my test computer during
normal operation, functioning correctly only when executed
under the control of a debugger.

Finally, the virus restores the infected host program, and
passes control to it. If the file is in EXE format, the virus
reads the file header and corrects the words to which the
Relocation Table points, in addition to returning the
decryption blocks to their original form.

The last part of this process is necessary due to the fact that,
on infection, the virus overwrites randomly-selected bytes of
the host program and may corrupt bytes containing informa-
tion on the Relocation Table.

Loading from the Hard Drive

When the machine is booted from an infected MBS, the
virus� header decreases the size of system memory (offset
0000:0413), copies the virus body into the memory area thus
reserved, and passes control to the copy.

The installation routine hooks Int 13h and Int 1Ch, then
reads the original MBS and passes control to it. Several
other multi-partite viruses use Int 1Ch in a similar manner:

10 • VIRUS BULLETIN OCTOBER 1994

VIRUS BULLETIN ©1994 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel. +44 (0)1235 555139. /94/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

the code checks the Int 21h handler address; if changed (as it
will be when DOS is loaded), it saves its current value and
points the new Int 21h vector to the virus code.

The hooked Int 13h performs two functions; the first is the
trigger routine, the other, the stealth mechanism code. On
accessing the infected MBS through READ and WRITE
functions (Int 13h, AH=02h,03h), the virus redirects the call
to return either the uninfected MBS or a buffer full of zeros.

File Infection

One_Half intercepts a long list of Int 21h functions: the file
infection routine is called from the Int 21h handler. On calls
to FINDNEXT and FINDFIRST functions (AH=11h, 12h,
4Eh, 4Fh), the virus calls a semi-stealth routine which
�decreases� the apparent file length. On opening, renaming
or execution of a file (AX=3D??h, 4B00h, 56??h), the
infection routine is called. If a file is created (AH=3Ch,
5Bh), the virus stores its name and infects it when closed.

Before infection, the virus checks the file name, only
infecting files with a COM or an EXE extension. Then it
checks for the strings SCAN, CLEAN, FINDVIRU,
GUARD, NOD, VSAFE, MSAV: if any of these is found,
the file will not be infected. The virus looks particularly
carefully for the CHKDSK utility and disables the semi-
stealth routine during execution of that program, preventing
CHKDSK from raising an alarm over lost disk space.

One_Half then checks the file�s date and time stamp, which
is returned in two registers, CX and DX. The CX register,
contains the date stamp (year, month and day); the DX
register, the time stamp (hour, minute, seconds). One_Half
divides the DX register (time stamp) by 30, and if the result
equals the seconds stamp, that file will not be infected.
Oddly, one time in 30 the virus does not mark infected files,
so it is likely that some files will be multiply-infected.

If the date/time stamp allows infection, the virus executes its
polymorphic routine. This selects several random offsets in
the file, copies the code from the offsets, overwrites that
code with parts of the decryption loop, and encrypts and
saves the virus body at the file end. The virus code is at a
constant offset from the file end, so a scanner can detect the
virus by checking the end of the file, rather than the file
header - a useful weak point. Unfortunately, the code is
encrypted with a randomly-selected key, and a special
routine must be written to �x-ray� it and catch the virus.

The Trigger Routines

There are two trigger routines: the first is complex, and
many attempts to execute it failed. When this routine is
called, the virus analyses the size of the DOS primary
partition or the extended partition, if present, and encrypts
part of the latter with an XOR instruction and a randomly-
selected key. The virus decrypts partition sectors �on-the-
fly� before writing or after reading. The partition is available
under an infected system, and lost after virus removal. I can

just hear the telephone calls to anti-virus vendors: �Your
software disinfected the virus, but we lost all data on the
hard drive!�

The second routine is called when the virus is installed in
system memory. The virus checks a generation count and
tests the system timer value: if these conditions are �good�,
the virus displays the message:

Dis is one half.
Press any key to continue...

and awaits a keystroke. It also contains the internal string
�Did you leave the room ?�

Conclusions

One_Half poses many problems to the developers of anti-
virus software. The most pressing of these is the difficulty in
removing the virus from infected disks: the usual simple-
minded approach of replacing the disk�s Master Boot Sector
is not enough. This makes it worthy of further attention, and
extreme care should be taken when removing it from an
infected disk. Any predictions for the next new threat?

One_Half

Aliases: Free Love.

Type: Memory-resident, multi-partite, polymor-

phic. 3544 bytes long.

Infection: COM and EXE files, MBS of hard drive.

Self-recognition on Disk:

Checks the word at offset 0025h for the

value 00D3h.

Self-recognition in Files:

Checks the file date and time stamp.

Self-recognition in Memory:

Via �Are you there?� call. INT 21h,

AX=4B53h returns 454Bh in AX.

Hex Pattern: No search pattern possible in files.

One_Half-infected MBS:

33DB FABC 007C 8ED3 FB8E DB83
2E13 0404 B106 CD12 D3E0 BA80

One_Half resident in memory:

9CFB 80FC 1174 0580 FC12 752F
EB?? 5306 50B4 2FE8 7FFC 58E8

Intercepts: Int 13h for stealth and trigger routine,

Int 1Ch for installation on loading from

infected MBS, Int 21h for infection.

Trigger: Encrypts sectors of the hard drive,

displays message.

Removal: Can be difficult, due to encryption of

sectors in the DOS partition.

