
14 • VIRUS BULLETIN NOVEMBER 1996

VIRUS BULLETIN ©1996 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /96/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

FEATURE

‘In the Beginning was the
Word...’
Andrew Krukov

The twentieth century has been one of innovation and new
technology, seeing the popularization of the so-called
‘thinking machines’ we call computers. A side-effect of this
development is the computer virus: today, approaching the
end of 1996, viruses have been infiltrating machines for over
ten years, replicating, crashing systems, and corrupting data.

Physics teaches us that every action has an equal and opposite
reaction – so, following close on the heels of viruses, along
came the anti-virus industry. Many hundreds of people the
world over work for dozens of research companies and
hundreds of sales/support sites which, with varying degrees
of success, protect users against computer bugs.

Millions of dollars are lost to virus action, and millions are
spent to recover data, or to buy anti-virus and other security
soft- and hardware. Hackers write viruses, other hackers
create new anti-virus programs, publishers print them,
distributors distribute, end-users buy. And life goes on…

The End of the Beginning

What would happen if the world woke up one sunny
morning, and viruses had disappeared overnight? Perhaps
not much of significance. Users would be happy, the
anti-virus industry would put its expertise into other fields,
and Grandma would tell small children old myths about the
nasty viruses which used to run rampant through the
computers of the world.

Is it possible to kill viruses off forever? To do this, everyone
would have to use operating systems that do not support
viruses. Granted, viruses may be written for any popular OS;
but to write viruses and spread them internationally, two
things are necessary:

• a well-documented OS, which makes the writing easy

• many people exchanging executables for that OS

Only one OS meets both requirements: the very popular
(and remarkably fully-documented) DOS. DOS viruses are
the only ones, in the last ten years, to have created problems
daily for users in every corner of the planet. Windows
viruses were discovered in the wild only in 1996, and the
Tentacle variants are the only ones to make any impact so
far. No Windows 95 or OS/2 viruses are in the wild.

Moreover, compared with the circa ten thousand DOS viruses,
the number of viruses for other operating systems is paltry:
100–200 Mac viruses, fewer than twenty Windows viruses,

three Windows 95 viruses (all are variants of Boza), and a
handful for OS/2. So, there are over 100 times as many DOS
viruses in existence as the total of all other viruses.

Therefore, it seems that to break the circle of virus writing,
users must stop using DOS and turn to one of the plethora of
new operating systems. Viruses will then die, as will the
anti-virus industry.

Not so.

A Totally New Concept

WinWord.Concept overturned these beliefs. This infector
was the first in the new breed of Word macro viruses;
viruses for which the old rules do not apply. They are
application-specific, multi-OS viruses; spreading only
within Word documents, but under all OSs for which a
version of Word is available.

They are at the same time simple and complex: simple,
because they are written in a variant of Basic, so it is not
necessary to look at long listings of assembler instructions to
analyse them; complex, because locating the infected macro
in the document, detecting the virus and disinfecting the
document is a complex task. To make matters worse, Word
macro viruses spread like wildfire – after all, Word docu-
ments are a standard method of data exchange.

So anti-virus researchers began to direct their considerable
resources and intellect against the new ‘visitors’. To detect
and disinfect these viruses, it is necessary to parse the
MS Word format, then go through data structures, calculate
pointers, follow these pointers, and examine a considerable
amount of data – and all this simply to find the macros in a
given document!

The binary format of a Word document is more complex
than that of a conventional executable. A Word document
looks like an entire filing system, with its own FATs,
directories, blocks of data, etc. Researchers have spent a
great deal of time, and used many different techniques, to
reverse-engineer this format; to understand this most
undocumented of file formats. Now many scanners can do
this, and detect and remove viruses elegantly and quickly
from Word documents.

Not so long ago we were still awaiting the next hit, which
was bound to be an Excel macro virus; nevertheless, the
appearance of Laroux in the wild shocked many anti-virus
researchers. Detecting the Laroux virus presents a much
more complex problem than detecting the Word viruses, as
the Excel internal binary format is more complicated. The
parsing procedures have to manipulate different tables of
information, different sequences of pointers, and different
data formats.

VIRUS BULLETIN NOVEMBER 1996 • 15

VIRUS BULLETIN ©1996 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /96/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

These new problems have initiated a new wave of anti-virus
activity around the world: at present, the disinfection mecha-
nisms are still under construction. At the moment, there is no
standard method of disinfecting Excel spreadsheets.

The conclusion? Viruses will not die, nor will the anti-virus
industry. Users will not be properly protected. Word and Excel
viruses are just the current chapter in this never-ending story.

Languages

Two products from one company, one ‘office’, but each with
a completely different macro language. The different
development paths of Word and Excel are all too clear to
those who have played extensively with the two applica-
tions’ respective programming languages.

Any programming language built in to an application
intended for manipulating documents and allowing automated
document and data processing must clearly have access to
the application’s internal data. In the Office suite, there are
two methods to access internal data: using functions and
procedures, and using object-oriented programming.

Both languages discussed here (WordBasic and Excel
VisualBasic) have the same parent, Basic, but use com-
pletely different methods for accessing the application’s
internal data. All internal objects in WordBasic are accessed
by functions and simple statements. For example, this
statement would modify the current style’s font attributes:

FormatDefineStyleFont.Points = “12”, .Bold = 1

Statements are extensions of normal Basic, and represent
procedures with named arguments. In contrast, Excel
VisualBasic uses an object-oriented method of access. All
internal data is organized into an object hierarchy, and each
object has its own methods and properties. The root object in
this hierarchy is referred to as ‘Application’. The following
commands set the font attributes for the object ‘myObject’:

myObject.Font.Bold = True
myObject.Font.Size = 12

Whilst the statements given above for the two languages
may appear remarkably similar, they actually function in a
completely different way.

Another big difference between the two is the ability to use
user-defined named constants in macros, a feature present
only in Excel VisualBasic. Both languages can invoke
external routines stored in a Windows dynamic-link library
(DLL). This feature allows the programmer access to all
system resources via the Windows API, offering huge
flexibility and power, with similarly-proportioned risks.

Editing and Hiding

Excel offers an enhanced environment for source-code editing;
it provides real-time syntax highlighting, and checks each line
of code as it is typed for syntax errors. By contrast, Word
only checks the syntax of a macro whilst it is being executed.

Both languages can make the source code for macros
inaccessible to the user; WordBasic achieves this by setting
the ‘Execute Only’ flag whilst the macros are being copied,
whereas in Excel the same feat is accomplished by setting
the sheet’s ‘Visible’ property to ‘xlVeryHidden’.

Documents, Templates, Sheets, Workbooks…

Only Word templates can contain WordBasic macros. A
WordBasic macro is a set of functions and procedures – one
of the procedures must be called MAIN, and will be
executed when the macro is invoked. MAIN, like all other
functions and procedures, can of course call functions and
procedures from any macro in any loaded template. It is
possible to create procedures and functions within a macro
which are only accessible by other macros, not by the user.

Any Excel file can contain any number of macro sheets,
each of which can contain any number of procedures/
functions. Operations with macros from macro level are valid
only for the macro sheet as a whole.

Macro Activation: Executing the Victim

Both Word and Excel have the unfortunate ability to run
macros automatically on specified events. The first method
by which this can be done is identical on both systems. By
giving a macro a special name, the application can run it
automatically when a user performs an operation such as
opening/closing a document. Word and Excel recognize the
following names as automatic macros; the now-infamous
‘auto’ macros:

Event Word Excel

Open a document AutoOpen Auto_Open
Close a document AutoClose Auto_Close
Application start AutoExec -
Application quit AutoExit -
Create a document AutoNew -
Activate a sheet - Auto_Activate
Deactivate a sheet - Auto_Deactivate

Another method of macro activation provided by WordBasic
is the interception (or ‘hooking’) of built-in commands. By
giving a macro the same name as a Word built-in command
(for example, FileSave or ToolsMacro), Word will run it
instead of the original command. For example, if a macro
called FileOpen has been installed, it will be executed when
the user selects the Open item from the File menu, or when
he presses the Open button on the toolbar. Also, a program-
mer has the ability to determine the name of the command
or macro assigned to a menu item or toolbar button – that is
to say, he can modify the Open button to have a completely
different purpose, including calling a custom macro.

The third method of activation is via the OnTime statement.
For example, this command would run a macro called
‘WakeUp’ at 10:00:

OnTime “10:00”, “WakeUp”

16 • VIRUS BULLETIN NOVEMBER 1996

VIRUS BULLETIN ©1996 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /96/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

At any given time, only one macro can await execution – the
scheduling is lost if Word is closed before the given time. In
addition, the timer is not reactivated when Word is restarted.

Excel has a more complex and convenient system for
processing events; it is possible to attach a macro to most
Excel objects to allow event processing on that object. This
information is accessible only at the macro level and is
saved with the document.

The name of the event-processing macro is a property of
many Excel objects, and macros can read and write to it.
This table describes some properties and methods related to
event processing:

Property/method Applies to Event description

OnAction most visible objects object is clicked

OnKey Application particular key/key
combination pressed

OnTime Application specified future time

OnData Application, Worksheet DDE- or OLE-linked
data arrives in Excel

OnDoubleClick most visible objects object double-clicked

OnSheetActivate Application, object activates
Workbook, Worksheet...

OnSheetDeactivate Application, object deactivates
Workbook, Worksheet...

Undocumented Documents: Going Inside…

Both applications save their documents in the OLE2 (Object
Linking and Embedding) file format, a complex file system
with directories and files (streams) which will not be
described here. Word templates (remember, only a template
can contain macros) are held in the OLE stream named
‘WordDocument’ within the file.

This stream contains all the information placed in the template
by editing – including text, macros, toolbars, menus and styles.
A pointer to the template area is stored at offset 118h from
the beginning of the stream (not the beginning of the file!).

The template area consists of multiple variable-length
records, each of which begin with signature bytes. A
signature of 01h means that this record is a macro table. The
macro table is further subdivided into records, each of which
contains the offset of the macro from the beginning of the
OLE stream.

If the OLE2 file contains an Excel file, things are more
complicated: the OLE2 directory VBA_PROJECT contains
all streams related to macros in an Excel document. It
consists of one stream named ‘dir’ and at least one macro
sheet stream.

The ‘dir’ stream contains references to object libraries, and
objects called the ‘small macro sheet table’, the ‘macro
sheet table’ and the ‘global name table’. The ‘macro sheet
table’ describes all the macro sheets: each record in this table
contains the name of the OLE2 stream containing the macro
sheet, and an offset to its name in the global name table.

The ‘global name table’ is a set of variable-size (10 or 12
bytes long) records. Each record describes one name which
is used somewhere in the macros within the document, and
each contains a pointer into an array of strings. Every
name used in any macro is described somewhere in this
name table.

Each macro sheet has a corresponding macro stream. The
structure of this stream is:

header
static area
macro area

line descriptor table
macro body

The ‘static area’ consists of variable-size records. Each
record can describe a declared variable, constant, function or
procedure. References to the static area used in some
statements (for example, Dim and Sub). The ‘line descriptor
table’ contains each line of source code (with the line
indent) and the offset to the compiled code for that line in
the macro body, and a flag marking it as executable.

Code Representation

WordBasic uses a simple coding scheme to convert the
macro source code into byte code by tokenizing. The usual
form of a WordBasic token is a one-byte prefix code, which
is followed by a variable amount of data relating to that
prefix code.

The prefix represents Basic keywords such as ‘If’ or
‘While’, in addition to language constructs such as user-
defined names, labels, internal function calls, and state-
ments. Below is a list of some of these special prefixes:

Prefix Optional data Description

0x51 none space

0x52 none tab

0x64 none new line

0x65 string alphanumeric label

0x66 word integer label

0x67 word internal function name

0x68 8 bytes double integer constant

0x69 string name

0x6A string string constant

0x6B string comment (with ')

0x6C word integer constant

0x6E byte several spaces

0x6F byte several tabs

0x70 string comment (with REM)

0x73 word named argument of statement

Excel VisualBasic uses partially compiled code, which is
intended for direct execution on a stack machine, in the
same manner as Forth. This method is faster on execution,
but significantly slower on editing, than the method

VIRUS BULLETIN NOVEMBER 1996 • 17

VIRUS BULLETIN ©1996 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /96/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

WordBasic uses. Excel
compiles the macro code
line-by-line while the macro
is edited. Each line of source
code is compiled into a set of
micro commands for execu-
tion by the stack machine.

Each micro command consists
of a two-byte command
identifier followed by optional
data aligned on a two-byte
boundary. To illustrate this,
the diagram at right reproduces
the decompilation process of
one line of VisualBasic for
Applications (VBA) code.

Each micro command
controls both the token
representation and the stack
machine. The stack machine
is controlled through two
pseudo-commands:

• push – put decoded token
onto stack

• pop – get token from stack

Careful analysis obtains a
strange result – the micro
command ‘pop’ does not only
get tokens from the top of
stack! I have no words for the
language creators…

Not all names in a macro are
contained in the global name
table. Micro commands can
include Basic keywords and
some internal Basic functions
such as Format or Error.

What’s Next?

In version 5.0, Excel acquired
VisualBasic, as well as the
Excel 4.0 macroing language.
Both types of macro sheets
are supported in Excel 5.0 and
later. WordBasic was changed
in Word 6, and macros from previous versions must be
converted (automatically or manually) before use.

These modifications did not affect the two products equally.
Excel has a more convenient, professional and powerful
language, the next version of which (VBA5) will be the
standard application language in Office 97. An analysis of
PowerPoint data files showed the presence of VisualBasic
macros in those files.

0000003C: 00A3 0001 == push 1
00A3 - opcode 'push integer'
0001 - constant value

Stack: 1
00000040: 00A3 0002 == push 2

00A3 - opcode 'push integer'
0002 - constant value

Stack: 2
1

00000044: 00AD 0006 == “sheet1” push
00AD - opcode 'push string'
0006 - constant length

Stack: "sheet1"
2
1

0000004E: 00AD 0005 == “book1” push
00AD - string constant
0005 - constant length

Stack: "book1"
"sheet1"
2
1

00000058: 0024 0782 0001 == Workbooks(pop arg)push
0024 - name(arguments)
0782 - pointer into global name table
0001 - number of arguments

Stack: Workbooks(“book1”)
"sheet1"
2
1

0000005E: 0025 078C 0001 == pop.Worksheets(pop arg) push
0025 - pop.name(arguments)
078C - offset to name in global name table
0001 - number of arguments

Stack: Workbooks(“book1”).Worksheets(“sheet1”)
2
1

00000064: 0025 0798 0002 = pop.Cells(pop 2 args) push
0025 - pop.name(arguments)
0798 - offset to name in global name table
0002 - arguments count

Stack: Workbooks(“book1”).Worksheets(“sheet1”).Cells(1, 2)
0000006A: 0020 05A4 == push n

0020 - name
05A4 - pointer into global name table

Stack: n
Workbooks(“book1”).Worksheets(“sheet1”).Cells(1, 2)

0000006E: 000B == pop + pop push
000B - pop plus pop

Stack: Workbooks(“book1”).Worksheets(“sheet1”).Cells(1, 2) + n
00000070: 0027 0194 == a = pop

0027 - name = stack; end decode
0194 - pointer into global name table

Stack: none

Result: a = Workbooks(“book1”).Worksheets(“sheet1”).Cells(1, 2) + n

Unfortunately, Excel and Word are not the only applications
which make it possible to create macro viruses. AmiPro also
has macros, and one virus has been written for that system
[Green_Stripe; see VB, March 1996, p.11]; however,
AmiPro documents are not widely exchanged.

Do other systems exist that will allow the easy creation and
subsequent widespread replication of yet more brand new
viruses and virus types?

