
ISSN 0956-9979

THE INTERNATIONAL PUBLICATION ON COMPUTER VIRUS PREVENTION, RECOGNITION AND REMOVAL

AUGUST 1997

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. /97/$0.00+2.50 No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form without the prior written permission of the publishers.

CONTENTS

EDITORIAL

A Word in Your Ear 2

VIRUS PREVALENCE TABLE 3

NEWS

1. Integralis Challenges Patent 3
2. Errata 3

IBM PC VIRUSES (UPDATE) 4

FEATURES

1. Future Imperfect 6
2. The French Connection 10
3. Do you Know the Way to VBA? 17

VIRUS ANALYSIS

1. Protected Mode Supervisor? 12
2. SlovakDictator 15

PRODUCT REVIEW

SWEEP for Windows NT v2.97 20

END NOTES AND NEWS 24

Editor: Nick FitzGerald

Editorial Assistant: Francesca Thorneloe

Technical Editor: Jakub Kaminski

Consulting Editors:

Ian Whalley, Sophos Plc, UK
Richard Ford, IBM, USA
Edward Wilding, Network Security, UK

IN THIS ISSUE:

• Legal Trends: Trend Micro is in the news again because
of its court cases and claims over its email virus-scanning
patent. Our lead news article on p.3 has more details.

• This might be a virus: Anti-virus developers are turning
again to heuristic scanning methods to reduce resource-
intensive disassembly and analysis work but keep their
products’ detection rates up. Carey Nachenburg looks at
some of the issues on p.6.

• Parisian pursuits: Our occasional series on the the state
of things viral in various countries, focuses on France this
month. François Paget’s report is on p.10.

2 ¨ VIRUS BULLETIN AUGUST 1997

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

EDITORIAL

A Word in Your Ear
In the News column last month, VB reported that Word macro viruses had topped the 1000 mark.
Although we did not report this detail, if the listing maintained by the University of Hamburg’s
Virus Test Center (VTC) is used, the date this auspicious event occurred was 20 June. In announc-
ing the June monthly update of the VTC macro malware list, Professor Klaus Brunnstein, head of
the centre, reported that June had seen a slow-down in the rate of appearance of both new macro
virus families and new variants. June saw only slightly more than half the growth recorded in May.
However, a few days ago I saw an indication that July is likely to have been ‘catch-up month’ for
the macro virus writers.

A recent macro virus detector update, dated 21 July, listed 1201 known viral, dropper and Trojan
macros. As one of that program’s developers is closely involved in maintaining the VTC macro
malware list, I assume July saw the world’s macro virus writers return to business as usual. If the
last few months’ growth-rate (around 200 to 250 per month) remains steady, the number of known
macro viruses will more than double in the last six months of 1997.

Fortunately, to date, it has been relatively easy to add detection and (usually) disinfection of new
macro viruses to most anti-virus products. This may be changing, however, with the appearance of
increasingly complex polymorphism in macro viruses and with likely changes in the macro
environment – the latter could be the most important factor. Microsoft is under pressure from a
significant (though arguably not large) group of third-party or ‘aftermarket’ developers. This group
makes a tidy living creating customized office ‘applications’. Using schedulers, automatic data
collection tools and the like, and by gluing these to components of the Microsoft Office suite via
DDE and OLE, and often using some fiendish Word and Excel macros, these developers provide
custom data collection and reporting applications.

This group, amongst others, wants Microsoft to provide better protection for their handiwork.
Why? Because their macros contain tricks not easily gleaned from the Visual Basic Programmer’s
Guide. These developers see part of their value in this specialist knowledge, and they wish to
maintain the advantage that knowing such things brings them. They also know that it is trivial to
work around the protection Microsoft has thus far provided. The solution many such developers
want is robust encryption of macro code to protect their investment. Fortunately, a non-encrypted
representation of a macro must be available so the macro can run, and to date anti-virus developers
have been able to reverse-engineer the macro language to code mapping. They have not, however,
had much timely cooperation from Microsoft, if reports I hear from developers are reliable.

Can anything be done to alleviate the situation? Pressure Microsoft. Let the lads in Redmond know
that as IT administrators, security consultants, CIOs and concerned users, you want the ability to
prevent Word securely from ever loading and running macros from document files. Templates are a
different matter, but most system administrators I’ve talked with agree there is no need for macros
in document files within their organizations. Others want to retain their document-based macros,
but would be happy to see options to prevent macros usurping internal Word commands and to
prevent auto-macros from running. Given the apparent structure of much of Word’s internals, I
suspect these are less likely to be delivered, but the former would make a lot of network adminis-
trators and support staff very happy. For reasons it doesn’t seem prepared to discuss, Microsoft
seems to have refused to make such changes in Word. They had the perfect opportunity with Word
8 and missed it, but with Windows 98 looming over the horizon, and with the reasonable presump-
tion of an Office upgrade on its heels, it may almost be too late to influence Microsoft for the
better. If you are concerned about these issues, find and twist an important Microsoft ear now!

Having been so harsh on Microsoft, it should be pointed out that they do seem willing to talk about
these issues with the anti-virus research and developer community, but tend to do so under non-
disclosure, which doesn’t suit some vendors. A new initiative, involving the NCSA and EICAR, is
being established, and I wish it luck in its dealings with the Microsoft Office developers.

the number of
known macro
viruses will
more than
double in the
last six months
of 1997

“

”

VIRUS BULLETIN AUGUST 1997 • 3

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

NEWS

Integralis Challenges Patent
On 9 July 1997, Integralis Inc filed a complaint against
Trend Micro Inc, claiming Trend’s earlier move to have a
court ruling stop Integralis Inc and its UK parent Integralis
Ltd is based on an invalid patent. The basis of the Integralis
claim is what is known as a prior-art defence.

Integralis Inc’s complaint was filed in the United States
District Court in Seattle. It requests a judgment of invalid-
ity and noninfringment of Trend Micro’s patent, citing
interference with Integralis’ business relationships and
unfair business practices. Integralis filed the complaint
after Trend Micro received a US patent for a ‘virus detec-
tion and removal apparatus for computer networks’ and
threatened Integralis with a charge of patent infringement
directed at Integralis’ MIMEsweeper product.

‘One of the reasons we do not believe Trend’s patent is
valid,’ explained Victor Woodward, president of Integralis
Inc, ‘is that Integralis was shipping MIMEsweeper in
Europe months before Trend applied for its patent. For a
patent to be valid, the technology must be novel and
unique, and that was not the case here.’

Trend Micro has recently sued McAfee and Symantec with
the same charge of patent infringement. ‘This series of
lawsuits and barrage of news releases provided the impetus
for filing our complaint,’ stated Woodward. ‘We do not
want our customers or business partners to be influenced or
intimidated by threats.’ If the complaint is successful, the
Trend Micro patent will be ruled not infringed, invalid and
unenforceable. Also, an injunction will be issued prohibit-
ing Trend Micro Inc from further claims regarding infringe-
ment. Monetary damages may be awarded to Integralis if
Trend is found guilty of unfair business practices❚

Errata
Several unfortunate test result errors crept into the July
DOS scanner comparative review. These errors will be
corrected in any subsequent VB reprints or other republish-
ing of those test results.

First, the IBM AntiVirus and Cybec VET speed results for
the two passes of the clean file set were transposed. IBM
AntiVirus generates checksums in the first, relatively slow,
scan, but this is compensated for with subsequent scans
being much faster if no infection has occurred.

We also reported that Symantec’s Norton AntiVirus failed to
detect two Byway variants and Dir_II. This was due to an
oversight in our testing method. Re-testing the product
shows that it clearly detects the samples of these viruses in
the ‘In the Wild File’ test-set, making Norton AntiVirus’
correct ItW File score 99.7% and ItW Overall score 99.8%.

Prevalence Table – June 1997

Virus Type Incidents Reports

CAP Macro 22 17.9%
NPad Macro 15 12.2%
Concept Macro 12 9.8%
ParityBoot Boot 11 8.9%
AntiEXE Boot 10 8.1%
AntiCMOS.A Boot 8 6.5%
Form.A Boot 5 4.1%
AntiCMOS.B Boot 3 2.4%
Appder Macro 2 1.6%
DZT.B Macro 2 1.6%
Empire.Monkey.A Boot 2 1.6%
Empire.Monkey.B Boot 2 1.6%
Laroux Macro 2 1.6%
ShowOff Macro 2 1.6%
V-Sign Boot 2 1.6%
Wazzu Macro 2 1.6%
Wazzu.X Macro 2 1.6%
Boring Macro 1 0.8%
Concept.AL Macro 1 0.8%
Date.B Macro 1 0.8%
DMV.B Macro 1 0.8%
EXEBug Multi 1 0.8%
Flip Multi 1 0.8%
Johnny Macro 1 0.8%
Junkie Multi 1 0.8%
Kampana File 1 0.8%
Kompu.A Macro 1 0.8%
MDMA Macro 1 0.8%
Natas Multi 1 0.8%
NYB Boot 1 0.8%
Quandary Boot 1 0.8%
Sampo Boot 1 0.8%
ShareFun Macro 1 0.8%
Stoned Boot 1 0.8%
Viruz.729 File 1 0.8%
WelcomB Boot 1 0.8%

Total 123 100%

A similar oversight, affecting results on all test-sets but the
ItW Boot one, meant the results for DrWeb from Dialogue-
Science were also incorrect. Results for DrWeb should read:

ItW Boot 94.4% ItW File 99.2%
ItW Overall 97.2% Standard 97.8%
Polymorphic 100.0% Macro 99.5%

DrWeb’s clean file scan time was also misreported; how-
ever, not having access to the exact test machine, the
considerably longer time cannot be accurately retested❚

4 ¨ VIRUS BULLETIN AUGUST 1997

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

C Infects COM files

D Infects DOS Boot Sector
(logical sector 0 on disk)

E Infects EXE files

L Link virus

Type Codes

M Infects Master Boot Sector
(Track 0, Head 0, Sector 1)

N Not memory-resident

P Companion virus

R Memory-resident after infection

IBM PC VIRUSES (UPDATE)

The following is a list of updates and amendments to
the Virus Bulletin Table of Known IBM PC Viruses as
of 15 July 1997. Each entry consists of the virus name,
its aliases (if any) and the virus type. This is followed
by a short description (if available) and a 24-byte
hexadecimal search pattern to detect the presence of
the virus with a disk utility or a dedicated scanner
which contains a user-updatable pattern library.

Andry.565 CR: An appending, 565-byte virus containing the texts ‘ViRuZ by Andry Christian’ (this message
appears twice; at the beginning and at the end of infected files). The virus infects only files starting with
E9h (near jump) and recognizes infected programs by the word 6956h (‘Vi’) at offset 0006h.
Andry.565 FB3D BEBA 7504 B8DC ACCF 80FC 4B74 03E9 6A01 5053 5152 5657

Awake.1099 CR: An encrypted, appending, 1099-byte virus containing the text, displayed on 8 December, ‘Awake
Shake dreams from your hair My pretty child, my sweet one. Choose the day and choose the sign of
your day The day’s divinity First thing you see. A vast radiant beach in a cool jeweled moon Couples
naked race down by it’s quiet side And we laugh like soft, mad children Smug in the wooly cotton
brains of infancy The music and voices are all around us. Choose they croon the Ancient Ones The time
has come again Choose now, they croon Beneath the moon Beside an ancient lake Enter again the sweet
forest Enter the hot dream Come with us Everything is broken up and dances. Jim Morrison’. Infected
files have their time-stamps set to 00:00:00.
Awake.1099 81EB 6701 BE82 0103 F3BA AF05 03D3 8134 ???? 463B F275 F7E9

Babilon.1000 CER: A stealth, appending, 1000-byte virus containing the text ‘BABILON’. All infected COM files
have the word 5058h (‘XP’) at offset 0003h.
Babilon.1000 B462 CD21 3C03 7405 E844 03EB F381 C6D0 038C C22E 813C 4D5A

BatmanII.3372 ER: A stealth, appending, triple-encrypted, 3372-byte virus containing the text ‘Bat Man II’. It infects
on Find First/Find Next calls (e.g. the DIR command). Infected files’ time-stamps are set to 62 seconds.
BatmanII.3372 BF0E 022E A100 002E 3105 4747 81FF 2602 72F5

Blin.1457 ER: An encrypted, polymorphic, 1457-byte virus containing the texts ‘[Treblinka V 3.01 by Blas
Pascal] . Argentina . xx/08/1995 .’ and ‘anti-vir.’. All infected files have byte 1Eh at offset 0010h
(initial SP value). The following template can be used to detect the virus in memory.
Blin.1457 3DCA B075 038B F8CF C1C8 083D 4B00 7407 86C4 2EFF 2EB3 00E8

Cheap.828 CEN: An encrypted, appending, 828-byte virus containing the text ‘ChEaPeXe v2.0 Virus by WârßläDÉ
’97 USA’. Infected files have the word 4257h (‘WB’) at offset 0003h (.COM) or 0012h (.EXE).
Cheap.828 565D 81ED 0801 2E8A 9640 048D B627 01B9 1903 2E28 1446 E2FA

Cheap.1052 EN: An encrypted, appending, 1052-byte virus containing the texts ‘ChEaPeXe v1.0 ...by WârßläDÉ/LT…’
and ‘I loved you, I always loved you, but it was nothing but a waste of time. May you burn in the Hell,
if it really exists, my little slut, or suffer what you made my fragile and tender heart suffer. This should
be the right Doom for each fucking cheater if it was, it wouldn’t be this one the Hell. Ti amavo
poiche’ mi facevi tenerezza....adesso ti odio poiche’ mi fai schifo a proposito: Tanti Auguri, Valentina’.
All infected files have the word 4257h (‘WB’) at offset 0012h.
Cheap.1052 8DB6 0D01 B9FC 012E 8B96 0605 2E31 1446 46E2 F9C3

Coconut.1323 CN: An encrypted, appending, 1323-byte, fast, direct infector containing the text ‘[Virus coconut, by
The King Lizard]’.
Coconut.1323 E8ED FF83 3EDB 0500 740E AD2B C133 C1D3 C0AB FF0E DB05 EBEB

Coconut.1940 CN: An encrypted, appending, 1940-byte direct infector containing the texts ‘Hey! Look here! You've
got a virus!!!’, ‘[by King Lizard]’, ‘Virus coconut wishes you a merry christmas and a happy new
year!!’ and ‘*.COM’. All infected files have the word 4E49h (‘IN’) at offset 0003h.
Coconut.1940 3E83 BE93 0800 740F AD2B C133 C1D3 C0AB 3EFF 8E93 08EB E9C3

Coconut.2015, 2071 EN: Encrypted, appending, direct infectors containing the texts ‘V I R U S C O CO N U T G R E E T S
Y O U !’, ‘(C) King Lizard (Spain-1997)’ and ‘*.EXE’. Infected files have the word 4C4Bh at offset 0012h.
Coconut.2015 B9B2 0374 088B F7AD 86E0 ABE2 FAC3 E8A1 FFE8 E3FF B40B 80F4
Coconut.2071 B9C4 0374 088B F7AD 86E0 ABE2 FAC3 E8A1 FFE8 E3FF B40B 80F4

VIRUS BULLETIN AUGUST 1997 • 5

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Coconut.2099 EN: An encrypted, appending, 2099-byte direct infector containing the texts ‘[(c) King Lizard]’, ‘Virus
coconut wishes you a merry christmas and a happy new year!’ and ‘*.EXE’. All infected files have the
word 4C4Bh (‘KL’) at offset 0012h.
Coconut.2099 C380 BE11 0900 740F B997 068D B662 028B FEAC F6D0 AAE2 FAC3

Coconut.2324 CEN: Similar to Coconut.2015, but also contains the text ‘*.COM’. Infected COM files have the word
4C4Bh (‘KL’) at offset 0003h.
Coconut.2324 8DB6 3601 B968 088B FEAC F6D0 AAE2 FAC3 E803 FAC6 86ED 0901

Coup.1957 MCER: A multipartite, 1957-byte virus that contains the encrypted text ‘Coup De Main : In Childhood
taught me to Love Now that I Love Frenzied,Said me Forget !!!’.
Coup.1957 8B1E 8600 8306 8600 0483 2E13 0404 B800 9F50 0750 891E 8600

Dada.786 CR: An appending, 786-byte virus. The ‘Are you there?’ call (AX=ABBAh, Int 2Fh) returns AX=DADAh.
Dada.786 FCF3 A4B8 BAAB CD2F 3DDA DA75 03E9 8C00 8BFB B821 35CD 212E

Daffodil.525 ER: An encrypted, appending, 525-byte virus containing the text ‘Hallo world!’. All infected files have
the word DFDFh at offset 0010h.
Daffodil.525 9C5D F7C5 0001 75F6 5D55 81ED 0300 8DB6 0300 B9E9 002E 8134

Deltaplus.1331 CER: A stealth, encrypted, appending, 1331-byte virus containing the text ‘I love you! Let me guide
you through life Let me be your best friend Tell me & Bring me all your problems Let me take care of
you And get an eternal life full of joy and peace of mind Jesus Christ$Delta Plus Virus - 03/97£.’. The
virus marks all infected files by adding 100 years to their time-stamps.
Deltaplus.1331 07BE 0700 03F5 8BFE B908 053E 8AA6 0F05 FCAC 32C4 AAE2 FAC3

Die.387 CER: An appending, 387-byte virus containing the text ‘FRODO LIVES’.
Die.387 5E83 EE03 56F8 B8FE FECD 2172 2C8C D848 8EC0 2683 2E03 0023

EEM.103.B CEN: An appending, 103-byte virus infecting one file at a time. It converts all infected EXE files to
COM-structure programs.
EEM.103.B B440 B167 8BD7 81EA 6700 E80A 004F B440 B103 8BD7 CD21 C3CD

Exorcist.617 CN: An encrypted, appending, 617-byte virus containing the texts ‘ [ODIUM RELAPSE] ’, ‘Relapse The
Cronic Odium’,’[Exorcist!dc^96]’ and ‘*.com’. Infected files have the word 4344h (‘DC’) at offset 0003h.
Exorcist.617 CD21 CD19 80FA 057F 0BB8 085F B200 CD21 B201 CD21 5A2E 8137

Glitter.1462 CR: An encrypted, appending, 1462-byte virus containing the texts ‘Glitter ver 1.03 , Coded by
DDISARTHH, Hi Avi Guess Who? Greetings From Siddharth, Mumbai 400 092’, ‘Wish you a Happy
Birthday Love Guess Who ?’ and ‘CHKL*.*’. Apart from COM programs, the virus infects DOS
driver (SYS) files. Infected files have their time-stamps set to 30 seconds.
Glitter.1462 83EE 050E 07C6 441D 908A 5420 B98E 05BB 2300 3010 43E2 FBC3

HLLC.16052 EN: A companion, 16052-byte virus written in Turbo C++. The virus infects one file at a time and only
on drive C. It does not hide the newly created COM programs. Apart from the standard compiler
messages, the virus contains the text ‘Welcome TO S.R.M Engg. College Your Computer May be
infected by Some virus Contact:- Ebi Joyel Dhas.Y , Lecturer Department of Computer Science and
Engg. Press ‘E’ to contine:’.
HLLC.16052 E883 1059 807E FE0A 7409 807E FE14 7403 E902 0133 C050 E850

HumanGreed.666.B EN: An encrypted, overwriting, 666-byte virus containing the texts ‘That is not dead Which can eternal
lie Yet with strange aeons Even death may die LiVe AfteR DeATH...Do not waste your time Searching
For those wasted years! (c) Thanks to Raver and Metal Militia/IR Maria K - Life is limited, love is
forever... Open to reality, forever in love... Program too big to fit in memory ***HUMAN GREED***
The answer of all evil on earth! Do You Belive?Farwell!’, ‘*.EXE’ and ‘*.COM’.
HumanGreed.666.B BE31 018B 1617 01B9 2301 902E 3114 83C6 02E8 0300 E2F5 C3C3

Island.3551 MCER: A multipartite, polymorphic, stealth, 3551-byte virus containing the texts ‘TIME’, ‘TBDSK’,
‘.EXE.COM’, ‘ADINF’, ‘ANTI’, ‘AIDS’, ‘DRWEB’, ‘TB’, ‘SCAN’ and ‘CHK’. The virus inserts
120 bytes of its polymorphic decryptor inside the original program and appends the rest of its code.
Island.3551 C1B9 3129 A199 1109 8179 F1E9 6159 D1C9 4139 B1A9 2119 9189 (files)
Island.3551 A32C 7C06 8EC0 B808 02BA 8000 33DB B90A 00CD 1307 EA32 0400 (MBR)

Morph.3500 CER: A stealth, polymorphic, appending, 3500-byte virus containing the texts ‘RELIGIOUS VOMIT!
MORPHINE-A VIRUS 0.6.4’, ‘[Morphine-A] 0.6.4 by Ren Hoük BA.Argentina’, ‘ANTI-VIR.DAT’,
‘CHKLIST.MS’, ‘CHKLIST.CPS’, ‘ZZ##.IM’ and ‘Greets to: PJanes,Rat,Largus & the girls Kill the
talking bastard! kill him! Juap! ok..rec-tunn stolen from Vlad Mag.’ Infected files time-stamps are set to
56 seconds. The template can be used to detect the virus in memory.
Morph.3500 3DFE 5425 F681 FE89 6B75 F0B4 FFBE CDAB CFB9 F600 2E83 3677

Zahak.906 CER: An appending, 906-byte virus, containing the texts ‘C:\COMMAND.COM’, ‘CHKLIST.MS’,
‘CPS’ and ‘Zahak!’. The payload triggers randomly and overwrites the contents of a hard disk. The
virus infects COMMAND.COM by overwriting its last 906 bytes (usually filled with zeros).
Zahak.906 80BC 0901 AA75 03E8 DB00 CD2D 81F9 AAAA 7403 E884 0258 8ED8

6 ¨ VIRUS BULLETIN AUGUST 1997

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

FEATURE 1

Future Imperfect
Carey Nachenberg
Symantec AntiVirus Research Center

The word heuristic comes from the Greek heuriskein
meaning ‘to find’. Today, within computer science, the term
is almost exclusively used to describe sets of rules that tend
to solve complex problems quickly. Such heuristics may
yield suboptimal solutions, but tend to offer the benefit of
speed improvements. For instance, the ‘Travelling Sales-
man Problem’ is a classic in computer science, for which
many heuristic solutions have been devised.

Englebert the Twine Salesman and Heuristics

Englebert, a twine salesman, has to visit a number of
different cities just once and wishes to minimize his travel
time. If Englebert had to fly to Los Angeles, Oregon, Paris,
and Rome, he would minimize his journey time by visiting
LA first, then Oregon, followed by Paris and then Rome. If
he travelled from LA to Rome, back to Oregon and then to
Paris, he would spend a great deal more time in the air.
Obviously, the first solution is better; in any case, it seems
like a trivial task to plan Englebert’s travel schedule.

However, what if Englebert had to travel to 500 cities? To
find the absolute ‘best’ itinerary would take today’s fastest
computers years. Spending this much time on a calculation
is infeasible, so computer scientists devised heuristic
algorithms to help solve such problems faster. A heuristic
algorithm makes assumptions about a given problem which
allow it to cut down on computation time and still produce
acceptable results. Many heuristic algorithms yield near-
optimal solutions but there are no guarantees. Surely,
Englebert will be satisfied to travel 100,055 miles if the
best he could do would be 100,000 miles, especially if he
doesn’t have to wait several hundred years for his itinerary.

So, why the digression into computer science theory and
twine salesmen? Well, the anti-virus field has its own set of
problems to solve – some of which are considered unsolvable.
In other words, it is impossible to come up with the exact,
best solution to the problem in any finite amount of time!
Heuristic algorithms lend themselves to such problems.

Virus Detection: An Inexact Science

The task of determining whether a computer program is a
virus is unsolvable. It is provably impossible to write a
program that is capable of determining, with a 100%
success rate, whether any program is infected or not,
considering all the possible viruses that could ever be or
have been written. Were it possible to solve this problem,
the major anti-virus vendors and MIS personnel would be
dancing gleefully in the streets! It would mean the end of

costly-to-develop and difficult-to-distribute virus updates,
and no more troublesome false positives.

Consequently, anti-virus researchers have devised several
innovative heuristic methods to help detect the tens of
thousands of known computer viruses, and more impor-
tantly, the future, currently unknown ones. The most
familiar technique is known as signature scanning. Most
people do not think of signature scanning as a heuristic
technique, but it is.

An anti-virus program that performs signature scanning
searches for a number of ‘signatures’ in each potentially
infected object. Signature scanners have a different signa-
ture for each virus they can detect; a signature is a short
sequence of bytes extracted from the body of a given virus.
Anti-virus companies employ automated systems and
dozens of researchers to analyse viruses and extract viable
signatures. This sequence of bytes should be unique to the
virus and represent only a small proportion of the total
virus. The uniqueness reduces the likelihood of the anti-
virus program falsely identifying noninfected programs as
infected. The small size prevents anti-virus data files
growing to hundreds of megabytes in length (in essence,
the signature data file would have to include a full copy of
every detected virus if this condition were not met).

A signature scanner can identify whether a given program
contains one of its many signatures, but cannot guarantee
that the program is actually infected with the associated
virus. Users trust the guess of the anti-virus program, since
the odds are in its favour. However, the identified program
could contain random data that coincidentally resembles the
virus or actual legitimate program instructions that by
chance match the bytes in the virus signature. So, while
there is an extremely high probability that an identified
program is a virus, a signature scanner cannot confirm this.
Consequently, we could call signature scanning a heuristic
algorithm. [That no developers elect to do completely exact
identification does not mean it is impossible for many
viruses. Exact identification, properly implemented using
scanning techniques, could not be labelled ‘heuristic’. Ed.]

Signature scanning is the technique most widely used in
anti-virus programs today. While it does have its faults, it is
very effective at detecting viruses for which the anti-virus
program knows a signature. Unfortunately, virus writers are
vigilant, constantly creating new viruses. In most cases,
signatures added to the anti-virus data files in order to
detect earlier viruses are powerless to discover new ones.
With the ubiquitous nature of the Internet, new viruses can
be made widely accessible within minutes. These factors
contribute to the need for anti-virus technology capable of
detecting viruses without signatures, and without the slow
and expensive process of virus analysis.

VIRUS BULLETIN AUGUST 1997 • 7

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Enter Heuristics

As we have seen, even the most commonly-used anti-virus
products employ some form of heuristic logic. However, in
the anti-virus industry, the term ‘heuristics’ is invariably
used to describe programs that detect viruses based on
analysis of code structure, behaviour and other attributes.
For the rest of this article, the terms ‘heuristic scanner’ and
‘heuristics’ will be used to denote such technology.

There are two ways to catch a criminal. Police officers can
dust a crime scene for fingerprints. If they find any they can
check against the database back at the station. If a match is
found they can pursue and arrest the suspect.

Unfortunately, many criminals are first-time offenders and
have not yet been fingerprinted. The officers can try a
different tactic. They can observe each person they come
into contact with and assess the likelihood of them being a
criminal. The officers can make a reasonable assessment
that a person wearing a bullet-proof vest and carrying a
shotgun is up to no good, and arrest them. On the other
hand, the officers would probably only take a quick glance
at a nanny carrying a bouncing baby before moving on. Of
course, they might inadvertently arrest an innocent person
and occasionally miss some wrongdoers, but a well-trained
officer is likely to have a high success rate.

Anti-virus programs that employ heuristics use an analo-
gous approach to detect computer viruses. Each time they
scan executable code, they scrutinize its overall structure,
programming logic and computer instructions, any data
areas it contains, and a number of other attributes. They
then make an assessment of the likelihood that the code is
virus-infected. Like the police officers, the heur-istic
scanners will fail to detect or recognize some of the
‘baddies’, and will occasionally identify innocent programs
as being infected.

According to industry insiders, today’s state-of-the-art
heuristic scanners achieve 70 – 80% detection of new and
unknown viruses. These rates are commendable given the
difficulty of the problem. While most heuristic scanning
technologies have achieved similar new virus detection
rates, they vary widely in their propensities for falsely
identifying clean programs as suspect. Some popular anti-
virus products which falsely identify many clean programs
with their heuristic engines have given heuristics a bad
reputation, which is not necessarily deserved.

A big plus for heuristic scanning is that it can detect viruses
before they can run and infect a computer. As with signa-
ture scanners, you can initiate an ‘on-demand’ heuristic scan
of a new program or diskette before it is used. If you run an
‘on-access’ scanner with heuristic scanning technology, it
can detect a high percentage of new viruses as they arrive
from the Internet or are saved from email attachments.

In contrast, other generic anti-virus technologies such as
‘behaviour blocking’ and ‘integrity checking’ require that
the virus executes on the host computer and exhibits

suspicious (and potentially harmful) behaviour before it can
be detected and stopped. Both heuristic and signature scan-
ning get a positive checkmark in their ability to stop a virus
before it has a chance to wreak havoc on your computer.

How do Heuristics Work?

Heuristic analysis techniques researched to date can be
classified into ‘static heuristic’ and ‘dynamic heuristic’
architectures. There are heuristic scanning programs that
are hybrids of these schemes. The primary difference
between the two is the use of CPU emulation to search for
virus-like behaviour. For now, we will discuss the attributes
common to both architectures.

The typical heuristic scanner (if there is such a thing) has at
least two phases of operation. In the first, the aim is to
catalogue what behaviours the program is capable of
exhibiting. The scanner starts by determining the most
likely location for a virus to attach itself to the code. This is
important because some programs are many kilobytes or
even megabytes long. Performing detailed heuristic
analysis on such large programs would be excruciatingly
slow. Given that most DOS-based computer viruses are
only a few kilobytes in length, a well-designed heuristic
scanner can significantly limit the areas to scrutinize in a
file. Most often, these regions will be the first and last few
kilobytes of the file.

Once the heuristic scanner identifies the likely area of viral
infection, it analyses the program logic from that region to
determine the capabilities of the code. This is itself an
extremely difficult problem since there are so many
different ways to write a given program. For instance,
consider the following two sequences of instructions.

Example 1:

B8 00 4C MOV AX, 4C00
CD 21 INT 21

Example 2:

B4 3C MOV AH, 3C
BB 00 00 MOV BX, 0000
88 D8 MOV AL, BL
80 C4 10 ADD AH, 10
8E C3 MOV ES, BX
9C PUSHF
26 ES:
FF 1E 84 00 CALL FAR [0084]

Both snippets cause a program to terminate and return to
the DOS prompt. However, the sequences of machine code
bytes look entirely different. The first code sequence calls
the operating system using a simple, common technique,
while the second uses a much more roundabout approach.

Given that there is an infinite number of ways to write such
a snippet of code, it may seem impossible to examine the
sequence of bytes to glean any information at all. Luckily,
most DOS viruses use straightforward techniques like the
first example above. In any case, how is a heuristic scanner

8 ¨ VIRUS BULLETIN AUGUST 1997

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

to detect this type of behaviour? Static and dynamic
heuristic implementations accomplish this task using
markedly different techniques.

A static heuristic scanner recognizes various program
behaviours in several ways. It can maintain a database of
byte sequences like those above, associating each sequence
with its functional behaviour. The scanner can use simple
wildcards to help match bytes that may vary from virus to
virus. The following sets of byte sequences illustrate this
for two common program functions:

Terminate program:

B8 00 4C CD 21
B4 4C CD 21
B4 4C B0 ?? CD 21
B0 ?? B4 4C CD 21

Open file:

B8 02 3D BA ?? ?? CD 21
BA ?? ?? B8 02 3D CD 21

These strings should look strikingly similar to the virus
signatures published monthly in VB, and for good reason.
They are! However, standard virus signatures are used to
define a specific virus strain. Signatures like those above
help to identify whether a program contains the logic to
exhibit a given behaviour. If a heuristic scanner locates
such a string, it does not necessarily mean that the program
is viral, but indicates that the program may be capable of
the associated behaviour.

In addition to a database of behaviour signatures, static
heuristic scanners may also use more elaborate logic to
seek out and recognize other complex behaviours. For
instance, encrypted and polymorphic viruses often have
simple decryption loops to unscramble the virus when an
infected object is launched. The byte sequences comprising
these decryption loops can vary widely in appearance; even
so, it is possible to write fairly simple subroutines to
recognize a large percentage of them. If the ‘decryption
loop’ detecting subroutine of a heuristic scanner locates
one, it will catalogue this behaviour.

While static heuristic scanners rely on behaviour signatures
and code analysis algorithms to catalogue code behaviour,
dynamic heuristic scanners use CPU emulation. After initial
sanity checks, a dynamic heuristic scanner loads the suspect
code into a virtual computer and emulates its execution. While
the program runs, its behaviour is monitored.

Any time the virtual operating system is called by the code
in the emulator, the scanner notes the behaviour then allows
the emulated program to continue executing. This gives the
dynamic scanner an advantage over its static heuristic cousin.

An analogy may help. Assume I am the ambassador (and a
crafty spy) at the US embassy in Votslovia. I can take many
different paths to spy on the top Votslovian nuclear scientist
who works four blocks away. I could go one block north,
two blocks east, and one block north again. Alternatively, I

could go one block west, two blocks north, and three blocks
east. Both routes would get me there. There are many other
paths to his lab, just as there are many possible sequences
of computer instructions to achieve the same goal.

A Votslovian intelligence official could determine that I
was spying in several different ways. Firstly, he could
choose to monitor a likely route between the embassy and
the lab. If he observed me there, he could report it to the
authorities. If I took some other route, he would probably
miss me. Of course, he could choose to recruit an additional
agent to monitor another route. However, there are many,
many possible routes that I could take.

Alternatively, the officer could stake-out in the scientist’s
laboratory, hiding behind the ficus tree in the back office.
Doing this, he has no need to concern himself with how I
get to the nuclear lab. Instead, he just snaps a picture
showing that somehow I arrived there.

The former strategy is analogous to that employed by static
heuristic scanners during the code analysis phase. They
look for different behaviour and their success is highly
dependent on how the suspect code implements its logic. If
the code being analysed uses an obfuscated method of
calling the operating system, a static scanner may fail to
detect this behaviour, just as the intelligence officer might
miss my prying if he monitored only a few routes to the lab.

The latter strategy is analogous to that used in dynamic
heuristic scanners. The dynamic scanner lets the program
run freely within the virtual machine. The program can use
any logic it likes to get its job done, but eventually it will
call on the operating system, and when it does, the results
of all its computations and machinations will be made clear.

Thus, it seems that dynamic heuristics should be much
more effective in analysing and identifying the behaviour of
a program. However, they can also be much slower than
their static counterparts. CPU emulation is a relatively slow
process, and is usually more protracted than scanning for
signatures in selected regions of code. Furthermore, CPU
emulation is susceptible to the logic and whims of the code
being emulated. For instance, what if we wanted to detect
the following virus using dynamic heuristic techniques?

Virus pseudo-code:

1. If current hour is even, goto 3
2. Goto 2
3. Infect a new program using simple,

identifiable computer instructions.
4. …

A dynamic heuristic scanner would emulate the program
within its virtual computer. The emulator would execute the
first instruction, and if the current hour happened to be odd,
it would then execute instruction two indefinitely, and not
observe any of the virus’ other behaviours. If the emulator
fails to provide the virus with what it wants, the virus’ logic
may prevent it from executing its telltale behaviours and
giving itself away.

VIRUS BULLETIN AUGUST 1997 • 9

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

On the other hand, our static heuristic scanner would detect
all the behaviours in the above program since it is not
constrained by the program’s logic. The static scanner looks
throughout the virus’ body for behaviours, regardless of
whether or not they would be reached during a typical
execution of the virus.

After analysing the program’s logic and instructions, the
heuristic scanner searches for any suspicious data or strings
stored within the likely viral regions. Virus writers often
include expletives or the word ‘virus’ in their code. Since
most programs do not contain such words, their presence is
an indicator that a program may be infected. The heuristic
scanner logs these strings and other telltale signs of
infection for use during the second phase of the process.
[One would hope such ‘signs’ are given a very low weight,
if used at all! Ed.]

Once a heuristic scanner has obtained a set of behaviours
and attributes, the second phase begins: analysis of the
observed behaviours. In general, the second phase is much
the same for both dynamic and static heuristic scanners.
From its list of code attributes and behaviours, the heuristic
scanner must decide if what it has ‘observed’ is virus-like
or not. This is another extremely difficult problem!

The heuristic scanner must know, for instance, that append-
ing COM viruses may use the following behaviours when
infecting a new executable file:

• find a new COM file in the current directory
• open the file
• seek to the end of the file
• seek to the top of the file
• modify the instructions at the top of the file by

writing out three or four bytes to the top of the file
• seek to the end of the file
• write several hundred bytes at the end of the file
• close the file

If all these behaviours were observed during the first phase,
it could report with high confidence that it had detected an
appending COM virus. Unfortunately, the first phase rarely
obtains such a complete list. Code analysis technology –
static or dynamic – has its flaws, and will occasionally fail
to detect some behaviours of the target code. Therefore, the
second phase must be able to make educated guesses as to
how much like a virus the code is.

For instance, what if only the fourth through last of the
behaviours above were observed during the first phase? For
most virus researchers, this subset of behaviours would still
raise a big red flag. However, it is one thing for the heuris-
tic scanner to report a possible infection to a researcher
who can examine the code and verify the assessment. It is
another thing entirely for the scanner to report this to an
end-user who is unlikely to have virus analysis skills.

Given that the set of observed behaviours may be incom-
plete, the behaviour analysis component of the heuristic
scanner must be designed with care. If this component is

too stringent in its requirements, it will have difficulty
detecting a significant number of viruses. On the other
hand, if the analyser is too lenient, the resulting product
may be overly susceptible to false identifications. You can
now see why some anti-virus products with heuristics
frequently cry wolf; their designers opting for higher
detection rates with fewer behavioural requirements at the
expense of higher false alerts.

To date, a number of approaches have been used in making
this behavioural assessment. For example, IBM AntiVirus’
boot virus heuristic scanner uses a neural network to
analyse behavioural information. Symantec’s Bloodhound
technology, however, uses an expert system to analyse the
catalogued behaviours and assess the likelihood of viral
infection. There are probably as many different behaviour
analysers as there are heuristic scanning products, but this
technology will evolve significantly over the coming years.

Conclusions

Heuristic virus detection is becoming increasingly impor-
tant, due to the ever-growing number of computer viruses
and their ease of transmission over the Internet. In its
infancy, and with an unfortunate reputation for being slow
and prone to false positives, heuristic scanning will un-
doubtedly mature and become even more effective. The
explosive growth of viruses has made one-by-one virus
analysis extremely costly and as anti-virus developers strive
to protect their customers better and reduce costs, heuristics
will become more and more prevalent.

While heuristic scanning is likely to become a standard
component in anti-virus products, it will never entirely
replace signature scanning technology. Why? In addition to
replicating, many computer viruses intentionally or inad-
vertently corrupt data and programs on the computer. The
One_Half virus, for instance, encrypts the host computer’s
hard drive two cylinders at a time on each boot-up. While a
heuristic scanner can indicate that there is probably a virus
present, and a heuristic repair system may even be able to
remove the virus generically, such a generic anti-virus
product would have no idea that the hard drive has been
encrypted, how to decrypt the drive, or what other damage
might have been caused. It would be a tragedy for the user
to remove the virus, only to find next time they turn on
their computer that all their data was lost.

Some combination of signature and heuristic scanning may
be able to detect and repair simple variations of existing
viruses. It is unlikely, however, that a heuristic product will
ever be capable of generically detecting and repairing such
complex corruption on its own.

Carey Nachenberg is a programmer and anti-virus
researcher holding the position of Chief Architect at
Symantec AntiVirus Research Center, Santa Monica,
CA, USA. Carey was the subject of a recent Insight
article –see VB, April 1997, p.6.

10 ¨ VIRUS BULLETIN AUGUST 1997

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

FEATURE 2

The French Connection
François Paget
McAfee, France

France is the largest country in Western Europe, represent-
ing approximately one-fifth of the European Union area.
Sixty million inhabitants share fifteen million microcom-
puters, with approximately two-thirds of these in businesses
and the rest in the home.

The first serious study concerning the evolution of compu-
ter viruses in France was begun at the end of 1992 by the
association for Recherches et Etudes sur la Criminalité
Informatique Française (RECIF). At that time, when there
were 2600 viruses worldwide, the total number of viruses in
the wild in France did not exceed forty. To date, more than
450 viruses have been responsible for all reported virus
attacks in France.

In 1995, before the macro virus infestation began, RECIF
estimated that 2% of French microcomputers had experi-
enced a virus attack in the past year and that the ensuing
damage topped US$40 million (200 million francs).

Since 1992, RECIF has recorded the following number of
virus alerts in France:

1992 1993 1994 1995 1996
410 720 1300 3150 6120*

*The 1996 figure is courtesy of ‘Confdentiel Sécurité’.

With the advent of macro viruses, however, the virus
reporting rate has grown dramatically. For example, in
June 1997, all the major French corporations seem to have
contracted WM/CAP.A. It has not been exceptional to find
more than 8000 infected files in one company.

The number of viruses believed to have been written in
France is near seventy. For most, the creation year is known:

1988 89 90 91 92 93 94 95 96 97
1 0 3 3 7 15 6 19 8 4

Classified by type, it is clear that, as with viruses in
general, most French-written viruses are file infectors:

File infector 52
Boot infector 11
Multipartite virus 1
Macro virus 4

The first French virus was the boot infector E.D.V. Discov-
ered in the city of Le Havre in 1988, it was first named
Cursy. Later, in January 1990, it was rediscovered and
given the name E.D.V. or Stealth Virus. It was one of the
earliest viruses to use stealth techniques and was first
featured in VB in March 1990.

Various virus encyclopædias indicate three French viruses
created in 1990 – Mardi_Bros, TCC and Paris. However,
reports of these have been rare. Also, one of the first virus
generator kits, GenVirus, originated in France that year.

In May 1991, a popular computer magazine distributed a
cover diskette infected with the Israeli virus Frodo (alias
4096). Seventy thousand infected diskettes were probably
involved, but only two companies affected by this virus
lodged a complaint! However, as a result, two people
working in the duplicating firm that made the diskettes
were severely punished, receiving a two year suspended
sentence and a 100,000 franc fine, in addition to a damages
charge of more than three million francs. In 1995, this
sentence was overturned. The Supreme Court of Appeal
quashed the appeal in 1996 and reopened the case. Six
years after the event, this lawsuit is still not concluded.

Until the end of 1992, the twenty or so French viruses were
fairly harmless. In fact, the Malaise family internally
documents how to disable its reproductive capability!

Welcome into the virus
© 1990 by InfoViruses Laboratories
V-IVL110 (COM & EXE)
To inactivate me, just set to “*” the byte in
brackets: [#]
Next time, be more prudent!

This tradition of deliberately non-damaging French viruses
was broken with the Fichv clan. Fichv.2_0 and Fichv.2_1
are destructive in March, Fichv.Fexe in April. The payload
consists of overwriting the first six sectors on each head of
the hard drive. The first four sectors contain the repeated
message, which translates to ‘Fichv 2.1 has had you’:

****Fichv 2.1 vous a eu**

The first large-scale infections traceable to French viruses
began in 1993. The less virulent ones were due to file
infectors like the families Dual_GTM (aliases Beware, and
Greviste or Striker in English) and Chaos_3 (alias
Chaos_Years), and Com2S, and Hidenowt (distributed by
many hypermarkets through boxes of pre-formatted
diskettes containing an infected DE.EXE file).

Chaos_3 is destructive, setting a random trigger date to
fewer than three months after the initial infection. The
payload consists of hard disk overwriting followed by
display of the message:

YOUR DISK HAS BEEN DESTROYED BY THE “CHAOS
YEARS” VIRUS…

ACCEPT MY SINCERE SYMPATHY !
SIGNED : THE DARK AVENGER.!

The first French virus to spread worldwide was Jumper.B.
This quite unoriginal boot sector virus, described in VB in
April 1995, was discovered early in 1993 near Rouen and

VIRUS BULLETIN AUGUST 1997 • 11

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

regularly features on wild-lists and virus prevalence
reports. In most cases, Jumper.B only replicates. However,
on slow computers, when the virus payload activates, it
effectively locks the machine by repeatedly displaying the
character ‘∈’. Jumper.B has numerous aliases, which has
led to some confusion: Jumper.B, Boot_FR, 2KB, Silly_BP,
Epsilon, Neuville, VIRESC, BFR, PM5, and French_Boot.

Anecdotally, Neuville is the name of a commune near the
city of Rouen and VIRESC is the acronym of ‘VIRus de
l’Ecole Supérieure de Commerce’ (Virus of the Higher
School of Commerce). In 1994 and 1995, before the macro
virus infestation began, more than 20% of virus alerts in
French territories were due to Jumper.B. There are three
Jumper variants, but two of them have almost disappeared
because they damage the boot sector of floppies.

Later, in September 1993, AntiEXE appeared in France
(see VB October 1994). The virus’ origins are contested; for
example, VSUM indicates Russia. In my opinion, this boot
sector virus has a Parisian origin. In 1994 and 1995 it was
also one of the commonest viruses here (at that time 80% of
virus alerts involved system viruses, of which 75% were
Jumper.B, AntiEXE, Form and Parity_Boot).

Few new French viruses appeared in 1994, with just a few
written by someone nicknamed Turbo Power. These file
infectors were Failure, Cowa-Bunga and above all Zarma.
The latter pair contain an encrypted message about Claudia
Schiffer. This name is spelt ‘Schieffer’ in Cowa-Bunga – an
error much mocked by the French underground community.
Zarma rectified this spelling mistake and is of interest for
some of the anti-debugging techniques it employs.

The French virus writers’ most prolific year was indisput-
ably 1995, with the Werewolf pack of viruses fully de-
scribed by Igor Muttik in the February 1997 issue of VB.
These viruses have been commonly reported in France
because their author used numerous BBSes to spread them.

The Werewolf variants, encrypted or not, contain clear
statements of their creation dates. According to these
claims, the first Werewolves date from 1994 and the last
from 1996. In fact, they all appeared between November
1995 and January 1996. Far behind boot sector viruses and
macro viruses, the Werewolf viruses are the file infectors
most encountered in France (they are in twenty-second
position in the latest RECIF statistics).

During 1995, two boot viruses affected the East of France
particularly badly. Initially nicknamed Goering, these
viruses are now known as Form.G and Form.N. When their
payloads trigger on 1 January 1997, they immediately
destroy the first physical sector of the hard disk and thus
can spread no more.The following message is present in
both viruses:

This is the Hermann GOERING Virus. Heil
HITLER !

Thanks to Martin BORMANN, Joseph GOEBBELS,
Heinrich HIMMLER and Rudolf HESS.
Sieg! »

The early macro viruses were mainly dependent on the
national language version of Word in use, and thus were not
a great threat in France, as most were produced for the
English version of Word. This early isolation of French
Word users from macro viruses was aided by the relatively
low Internet usage in France.

However, within the last six months, the situation in France
has changed – macro viruses account for more than 70% of
alerts. We seldom see file viruses, and boot sector infectors
are increasingly rare. The viruses most commonly reported
now are CAP.A, MDMA, NPad, Jumper.B, AntiEXE,
Parity_Boot, Form, Appder, and Wazzu.

Despite macro viruses changing the virus report patterns, to
date, only four macro viruses seem to have been created in
France. These are Concept.B:FR, Nuclear.B, Wazzu.AF,
and Appder.A (aliases FunYour, NTTHNTA). Only the
latter is regularly encountered here. Concept.B:FR is a
laboratory virus, created in a French bank, and conse-
quently never seen in the wild.

Thus far, French virus creators have not been organized, but
this situation seems to be changing. Groups like SLAM and
MJ13 now have some French members.

Although creating viruses is not illegal in France, the
authorities take a keen interest in the phenomenon. Both
services of the Criminal Investigation Department (Police
Judiciaire) have the ability to tackle the problem. The
Home Office also has a virus specialist section in the
Directorate for Surveillance of the Territory (DST).

Two professional associations represent the principal actors
in the French anti-virus field. Already mentioned, RECIF is
only interested in computer malevolence. French anti-virus
specialists, including computer security managers from
large French companies and Ministries belong to RECIF.

Club de la Sécurité Informatique Français (CLUSIF) is
interested in all aspects of computer security. With approxi-
mately 270 members, it principally represents distributors,
service providers and security product manufacturers. Its
Logical Attack Commission addresses anti-virus concerns.

Over the last ten years, CLUSIF statistics show a continu-
ous increase of malevolence, which accounts for 62% of
computer disasters in France (24% are due to accidents and
14% to system or user error). The frequency of virus
reports has increased, but the consequences are better
controlled than in the past. Few deliberate software attacks
have been reported to CLUSIF.

Looking to the future, CLUSIF predicts further increases in
reported computer malevolence. Contributing causes
include France’s continuing economic crisis, perceived
instability in some areas of computing, the emergency in
the telecommunications sector, and the lack of computer
ethics education. The communications ‘explosion’, particu-
larly with the Internet, may also have an impact on the
virus phenomenon in France in the future.

12 ¨ VIRUS BULLETIN AUGUST 1997

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

VIRUS ANALYSIS 1

Protected Mode Supervisor?
Igor Daniloff
DialogueScience

Since their introduction, PCs have become increasingly
complex through advances in both hardware and software.
Computer viruses are also becoming more complex and
intricate as their authors try to adapt them to changes in the
computing environment.

Now there are viruses that infect PC boot sectors, DOS,
Windows, Windows 95, OS/2, Macintosh and Linux program
files, as well as documents created in Word and Excel.
Virus authors have devised stealth techniques to help avoid
detection, and anti-debugging and anti-antivirus mecha-
nisms to make initial detection, then analysis more difficult.
They have incorporated polymorphism in boot sectors,
files, and memory, to make detection more laborious and
time-consuming for anti-virus designers. Since the release
of i386 processors, viruses have begun to use 32-bit
instructions. Some polymorphic viruses employ 32-bit
operands in their decryptors.

Ultimately, viruses aim to survive and gain the upper hand
under existing conditions, using all conceivable software
and hardware techniques. With the emergence of 286, and
later 32-bit i386 processors, came protected (or virtual)
mode operation. Thus far, virus authors have not success-
fully harnessed protected mode. Some have tried to master
it, but their attempts have been unsuccessful because of
clashes with important operating system components.

In 1994, the boot virus PMBS was the first to tackle
protected mode, but could not cope with other applications
or drivers (EMM386, Windows, OS/2) also using that mode.
In the same year, the viruses Evolution.2761 and Evolu-
tion.2770 succeeded in tapping part of the power of
protected mode, but only when the processor was in real
mode. These viruses replaced the actual interrupt vector
table with their own interrupt descriptor table (IDT), which
they loaded with an IDT register. How did the Evolution
viruses use this technique in everyday life? I doubt there is
a PC user who runs their i386 – Pentium in real mode.

Although the i386 processor made its debut long ago,
viruses have still failed to master its powerful protected
mode. I believe that virus designers have cherished this
hope for some time, and that one among them finally
appears to have realized it.

PM.Wanderer, apparently written in Russia, is a file
infector which uses a crude form of protected mode. It is
surprisingly stable, interacting more or less correctly with
other programs that utilize this mode. The name is derived
from the string ‘WANDERER,(c) P. Demenuk’.

A resident polymorphic virus, PM.Wanderer installs its
resident part in memory and toggles the processor to
protected mode by utilizing the documented virtual control
program interface (VCPI) of the extended memory supervi-
sor (EMS, EMM386).

Installation

On starting an infected program, the polymorphic decryptor
decodes the virus body and passes control to it. The virus
code determines a location in the upper addresses of DOS
memory, writes itself to this memory, and hands control to
the copy higher in memory. Then it restores the code of the
infected file in the program segment (for EXE files, it also
configures the addresses of relocated elements) and begins
to install its resident component.

First, the virus checks whether there is an extended
memory manager (EMM) in the system. It does this by
retrieving the address of Int 67h (Extended Memory)
through Int 21h function AX=3567h (Get Interrupt Vector),
and checking whether the characters ‘EM’ exist in the EMS
header. Then the virus verifies whether its resident part is
already installed by calling function AX=BABAh of
Int 21h and looking for the answer AX=FA00h.

If there is no active EMM, or the resident part of the virus
is already installed (and in subsequent operations, if there is
no VCPI or an error occurs installing the resident copy), the
virus frees the memory reserved for installing the resident
copy and passes control to the host program. This com-
pletes the life cycle of the virus in the system. However, if
environmental conditions are favourable, the virus inter-
cepts Int 01h and traces Int 21h looking, for the word
9090h (two NOPs) in the original Int 21h handler code of
MS DOS versions 5.00 – 7.00.

If this word is detected, the virus retrieves the address of
the Int 21h handler kernel, which is usually located in the
high memory area, and writes this address into its body.
This is subsequently used for calling the Int 21h handler
kernel directly, while infecting files.

Then the virus verifies the presence of VCPI and reserves
the physical addresses of four memory pages. It next
retrieves the addresses of the VCPI, page table, and GDT
(Global Descriptor Table. This consists of three elements:
the first is the code segment descriptor, and the other two
are used by the VCPI driver.). The virus writes a reference
to the pages allotted by the VCPI driver into the page table,
and retrieves the physical address of the memory page of
the segment in which the virus is currently located. It also
records the GDT and IDT registers. Next, the virus creates
three (code and data) descriptors and a descriptor for the
task state segment (TSS) in GDT.

VIRUS BULLETIN AUGUST 1997 • 13

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Finally, it prepares the values for the registers CR3, GDTR,
IDTR, LDTR (Local Descriptor Table Register), TR (Task
Register), and the address CS:EIP of the protected mode
entry point. Using VCPI tools, the virus toggles the
processor into protected mode with the highest privilege
level, known as supervisor.

In protected mode, the virus corrects IDT by creating two
segment descriptors, then searches for the TSS descriptor.
Next the virus defines two breakpoints, one at the first byte
of the code of the current Int 21h handler (0000:0084h) and
the other at the first byte of code at 0FE00:005Bh (linear
address 0FE05Bh). This BIOS location usually holds the
‘near jump to reboot’. The virus then corrects IDT to set
debug exceptions at Int 01h and Int 09h. It also defines two
handler descriptors; trap gate and interrupt gate.

After these preliminaries, the virus writes its code to the
memory page and switches the processor back to virtual
mode in order to free the DOS memory in upper addresses
and to return control to the infected program. From this
instant, the infected program begins its ‘normal’ work, but
Int 01h and Int 09h have been redefined by the virus as trap
gate and interrupt gate respectively.

Keyboard Handler

On receiving control, the virus-defined Int 09h handler
verifies whether the two virus-defined breakpoints exist,
and restores them if either has been zeroed. Using the
register DR7, the virus checks whether the two breakpoints
(0 and 1) are defined, without verifying their linear ad-
dresses. If either of the breakpoints is missing, the virus
calls a procedure that instantly restores both to their initial
status. The virus-defined Int 09h handler also keeps a close
watch on the pressing of Ctrl-Alt-Del and ‘resets’ all
breakpoints when this key combination is used.

Debug Exception Handler

The virus-defined debug exception handler verifies whether
either of the virus breakpoints has been reached by check-
ing the command address. If control passed to this handler
from the ‘near jump to reboot’ in the BIOS, the virus resets
all breakpoints just as the virus-defined keyboard handler
does when the key combination Ctrl-Alt-Del is pressed.

If the exception was caused by the breakpoint in the
original DOS Int 21h handler, the virus analyses the AX
register to determine the function of Int 21h, and behaves
accordingly. Prior to analysing this, the virus sets the
resume flag (RF=1) in the stack’s EFLAGS register that is
intended to return control to the breakpoint. This flag is set
should a debug exception take place while returning control
to the breakpoint.

If Int 21h is called with AX=BABAh, the virus recognizes
this as its ‘Are you there?’ call. If PM.Wanderer is installed
it writes the value FACCh in the AX register and returns
control to the original DOS Int 21h handler. On exiting

from the DOS handler, the AL register is set to zero. The
register value AX=FA00h informs the non-resident virus
that a copy is already active.

If Int 21h is called with either AX=4B00h (start program),
or AH=3Dh and the lower 4 bits of AL set to zero (open file
for reading), the virus decides to infect. The virus writes its
code to 9000:0000h (linear address 90000h), prepares a
stack, and toggles the processor to 8086 virtual mode with
an IRETD command at the third and least privileged level.

File Infection

In virtual mode (V-mode), the virus code verifies the last
two characters (OM or XE) of the filename extension,
creates a polymorphic copy, and infects files longer than
4095 bytes. PM.Wanderer does not infect if the seconds
field of the file’s time-stamp is 34, assuming that the file is
already infected, nor does the virus alter file attributes.
Therefore read-only files are not infected. Further, the virus
does not infect a particular program with a seven-character
filename. I could not find the name of this file: the virus
defines it implicitly by computing the CRC of its name.

The virus does not take over Int 24h (DOS Critical Error
Handler), so when critical errors (for example, writing to
write-protected disks) occur during infection, the standard
DOS query –Retry, Ignore, Fail, Abort? – is displayed. The
virus infects a file by calling the DOS Int 21h handler
directly, using the address obtained from tracing Int 21h at
installation. The virus code is prepended to the header of
COM files and inserted into the middle of EXE files,
immediately below the header. Prior to this, the relocations
field in the header is zeroed by moving the original pro-
gram code to the file end. The ‘real working code’ of the
virus is 3684 bytes long, but the size of infected files
increases by more than 3940 bytes.

Exit from the V-mode of DOS-machine

The virus uses a smart technique to exit V-mode and to
transfer control to the breakpoint of the DOS Int 21h
handler that called the debug exception, so that DOS
functions normally. Were the virus to infect a file while in
P-mode, everything would be simple – it would be suffi-
cient to execute the IRETD command. Since the virus has
toggled to V-mode with privilege level three, it is not
possible for the debug exception handler to switch back to
P-mode. Therefore, the virus plays an elegant trick to
surmount the situation.

If an error occurs during infection or while exiting from
virtual mode, the virus calls Int 21h with AX=4B00h.
When Int 21h is called with AX=4B00h, control jumps to
the first command of the DOS Int 21h handler. This
command contains a virus-defined breakpoint. Control
must now be transferred to the debug exception handler in
P-mode. However, the V-mode monitor discovers the need
to process the next debug exception. The point is that the
virus debug exception handler has not returned control to

14 ¨ VIRUS BULLETIN AUGUST 1997

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

the breakpoint and is still busy processing the current debug
exception. Therefore, the V-mode monitor terminates the
Int 21h call, aborts processing the current debug exception,
and returns control to the breakpoint with the values stored
in the registers of the previous Int 21h call.

Payload

If the debug exception handler is passed AX=3506h (such a
call for getting the Int 06h address usually exists in all
programs compiled from high-level languages, such as C
and Pascal), PM.Wanderer scans the linear address space
0 – 90000h looking for a string that obviously belongs to
the Russian integrity checker ADinf. If this string is found,
the virus modifies it in order to disable the alerts ADinf
usually raises on detecting changes to files and disks.

Search for the Virus in Memory

It is clear from the above that conventional memory
scanning methods are incapable of detecting the resident
copy of the virus at level zero privilege in protected mode.
The resident copy can be detected only after toggling to the
highest privilege level of protected mode with the help of
GDT or IDT. However, this virus can be trapped by other
conventional methods. Here, the linear addresses of the first
two breakpoints (0 and 1) must be determined and com-
pared with the values described above. The possible
presence of PM.Wanderer in memory can be decided from
these addresses. It is imperative that such operations be
carried out only in a DOS session. In assembler language,
this can be done as follows:

.8086
MOV AX,0BABAH ;simulate the virus checking
INT 21H ;its presence
CMP AX,0FA00H ;did resident copy respond?
JNE ExitCheckMemory
.386P
MOV EAX,DR7 ;read register DR7
AND EAX,20AH
CMP EAX,20AH ;are 2 breakpoints defined?
JNE ExitCheckMemory
MOV EAX,DR1 ;read linear address of

;breakpoint 1
CMP EAX,0FE05BH ;set at 0FE00:005BH in BIOS?
JNE ExitCheckMemory
.8086
MOV AH,9
MOV DX,OFFSET VirusIsFound
INT 21H ;alert possible presence of
CLI ;virus in the memory
JMP $+0 ;’hang up’ system
ExitCheckMemory:
INT 20H ;terminate operation

Test

After infecting several thousand files, the virus behaves
like a ‘lodger’ with all infected files remaining operative. A
file becomes inoperative only if, after infection, its stacks
are located within the virus code. When infecting EXE

files, PM.Wanderer does not modify the initial SS:SP
values in the EXE header. As already mentioned, the virus
is capable of reproduction only if EMS (EMM386) is
installed in the system. If EMM386 is installed with the /
NOEMS option, when the virus toggles the processor to
protected mode, the system will reboot. The computer may
also reboot at this point if QEMM386 is installed.

The virus loses its ability to replicate under Windows 3.1x
and Windows 95. These operating systems cut off an
already resident PM.Wanderer, because while loading they
install their own handlers in the IDT and zero all break-
points. Prior to terminating a session and returning to DOS,
Windows restores the previous status of the interrupt
descriptor table. On pressing a key in a DOS environment,
the virus gets control, installs its own breakpoints, and
continues its activities. Due to the absence of VCPI in a
DOS session within Windows, the virus cannot return to
protected mode there. For the same reason, the virus is also
inoperative under OS/2.

Conclusion

PM.Wanderer is the first virus to utilize i386 protected mode
and not conflict with the dominant Microsoft operating
systems which also use that mode. It is possible that future
viruses may completely overwrite the supervisor with their
own code supporting the DPMI, EMS/VCPI, XMS, and
Int 15h extended memory interfaces. Who knows?

PM.Wanderer

Aliases: None known.

Type: Memory resident in protected mode,
polymorphic.

Infection: COM and EXE files.

Self-recognition in Memory:
See description.

Self-recognition in Files:
Seconds field of time-stamps set to 34.

Hex Pattern in Files:
The virus is polymorphic, and there is
no usable hex pattern.

Hex Pattern in Memory:
Virus works in protected mode; see
description.

Intercepts: In IDT: Int 09h for enabling breakpoints,
Int 01h for infection.

Payload: Patches the integrity checker ADinf in
memory, disabling its alerting functions.

Removal: Under clean system conditions, identify
and replace infected files from clean
backups or by reinstalling the software.

VIRUS BULLETIN AUGUST 1997 • 15

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

VIRUS ANALYSIS 2

SlovakDictator
Dr Cai-Gong Qin
Sophos Plc

Since the first Word macro virus, Concept, came to light in
1995, the computing community has observed that macro
virus problems are getting worse. Although most anti-virus
products are now honed to detect and disinfect a number of
known macro viruses, Word macro viruses stand consist-
ently at the top of virus prevalence reports (see recent
issues of VB, p.3). The number of new Word macro viruses
recognized by anti-virus companies is also increasing
dramatically. This phenomenon represents a trend which
sees virus writers turning their attention to macro viruses.

Soon after Concept was released, polymorphism became a
real feature of macro viruses. The first reported ‘polymor-
phic’ macro virus, Outlaw, could only play with macro
names by assigning different names with each replication,
while the body of the viral macros remained the same (see
Virus Bulletin, November 1996, p.12).

However, SlovakDictator stands out as being a truly
polymorphic macro virus; considerably more complex than
Outlaw. Although the virus contains a macro with the fixed
name AutoClose, its body changes with each replication.
So, how does its polymorphic engine work?

Overview

Unlike the Concept virus, which uses the macro AutoOpen,
SlovakDictator uses AutoClose to receive control whenever
a document is closed.

Most Word macro viruses are encrypted within an infected
document using Word’s execute-only feature. However, the
macro AutoClose in SlovakDictator is not, allowing it to be
easily extracted for analysis. That sounds very straightfor-
ward, but hopes of an easy analysis were quickly dashed by
reading the macro source code in WordBasic. The code is
full of confusing ‘words’. For example, a typical for-loop
looks like this:

For DMUBQJVPRCDA = PSOISDGFQR To
GHKAHJVNLNQKEUN : Insert

ACFIDQANBQ$(DMUBQJVPRCDA) : InsertPara : Next
DMUBQJVPRCDA

which is equivalent to:

For K = 0 To 179 : Insert V$(K) : InsertPara
: Next K

The virus uses a number of variables in the macro. The
names of the variables, subroutines, functions and labels,
all consist of ten to nineteen upper case letters from A to V,
each of which changes randomly with every replication.
This complicates analysis of the macro.

Polymorphic Engine and Transient Macro

The AutoClose macro maintains eighteen global variables,
of which there are two string arrays of 31 and 200 charac-
ters respectively. As the variable names are not fixed, I will
refer to the two arrays as array1$ and array2$.

These arrays are used as two archival tables and assigned
string values in a subroutine. Array1$ preserves the names
of identifiers for all the variables, subroutines, functions
and labels in the current instance of the macro. Therefore,
the virus can readily employ Word’s ‘find-and-replace-all’
function to replace each identifier’s name with another
randomly generated name.

The first 180 elements of array2$ are assigned string
values; each of them is actually an encrypted text. In the
same way as encrypted DOS viruses, the virus macro
preserves the encryption key for the purpose of self-
decryption whilst executing. The encryption key here is an
integer, randomly selected, between four and thirteen. The
encryption itself is quite simple: each character is encoded
into one whose ASCII code equals that of the original
character plus the encryption key. In one instance,

array2$(87)="If MacroName$(i, j) =
@@AutoClose@@ Then CheckInstalled = 1"

is encrypted into

array2$(87)="Pm’ThjyvUhtl+/p3’q0’D’
GGH|{vJsvzlGG’[olu’JoljrPuz{hsslk’D’8"

with the encryption key seven. In fact, if all of the string
values of array2$ are decrypted and put together with
‘@@’ being replaced by ‘''’, they will form another macro.
This is a hidden and transient macro which contains the
payload and resides briefly in the global template.

In Operation

Like many other macro viruses, SlovakDictator attempts to
protect its operation and remain unnoticed. To this end, it
prevents the user from interrupting its operation by pressing
the ESC key, so that it can execute completely. It also
suppresses screen updates while running and disables
built-in auto macros. Next, the viral AutoClose checks the
version of Word. If it is not version 7, the macro simply
terminates. Otherwise, it grabs the encryption key and
decrypts the string values stored in array2$.

The virus then silently makes a macro in the Normal tem-
plate by inserting the decrypted string values of array2$
into the new macro and substituting ‘''’ for ‘@@’. Also, the
virus uses the WordBasic ‘find-and-replace-all’ function to
replace each identifier’s name with a new name. This new
name consists of randomly-chosen letters between A and V
with a random length between ten and nineteen characters.

16 ¨ VIRUS BULLETIN AUGUST 1997

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

The assignment statements for array1$ and array2$ are
appended to a subroutine in the macro. Then the hidden
macro is invoked. This transient macro contains a non-
malicious payload: a dialog box will pop up on the 4th and
11th of each month. This is the only obvious manifestation
of SlovakDictator’s presence most victims would notice.

The main task of the transient macro is to replicate the
virus. Similar to an ‘Are you there?’ call in a DOS virus,
the macro checks whether the Normal template and the
active document are already infected. This infection check
is made by comparing ‘AutoClose’ with the name of each
macro associated with both the Normal template and the
active document.

If the global environment is not infected, the transient
macro creates an AutoClose macro in the Normal template
and copies the viral code into it. The current string values
of array1$ are inserted, a random number between four and
thirteen is generated as the encryption key, and the key is
copied along with the newly-encrypted string values of
array2$ into the macro. Then the transient macro exits.

Should the Normal template be infected and not the active
document, a similar process results in the document’s
infection. To ensure that the macro in the newly-infected
document will activate, the document is saved as a template
file-type.

Immediately after the transient macro in the Normal
template has finished, the calling routine deletes the macro.
Finally, the virus restores the previously-disabled functions,
including screen updating, auto macro invoking and macro
interrupting. Thus, a Word user may not notice anything
abnormal following SlovakDictator’s execution.

Summary

SlovakDictator represents a new breed of macro viruses,
implementing techniques thus far common in their DOS
counterparts; namely polymorphism, encryption and
stealth. As far as typical Word users are concerned, poly-
morphic macro viruses are of little interest and pose no
additional threat. However, SlovakDictator and its kind
certainly set new challenges for anti-virus workers. Macro
viruses are clearly becoming more complicated, though are
currently less sophisticated than their DOS counterparts.

SlovakDictator

Aliases: Slovdic, Slow.

Infects: Word 7 documents and templates.

Self-recognition:
Checks documents and templates for
the presence of an AutoClose macro.

Hex Pattern in Files:
240C 673B 8005 0664 67D7 0073
0100 0C6A

This may be unreliable, but a longer
constant pattern is not available.

Trigger: Displays a dialog box when infecting on
the 4th and 11th of any month.

 The dialog box displayed by SlovakDictator.

VB’97 – The Anti-virus Conference

The Virus Bulletin international conference is now in its seventh year. This annual conference is recognized as the
world’s leading event addressing the computer virus threat. VB’97 will run as two parallel tracks, one corporate
and one technical, and is being held at The Fairmont Hotel, San Francisco, USA on 2/3 October 1997. Over three
hundred delegates are expected to attend the presentations led by a panel of internationally renowned virus
experts. The VB’97 exhibition, featuring the world’s leading anti-virus vendors, will run alongside the conference
programme. Exhibitors include McAfee, Dr Solomon’s Software, Sophos, Command Software, NCSA, IBM,
Integralis, Trend, DataFellows, and Elsevier Science.

The conference provides delegates with good opportunities to meet the industry experts and speakers. The social
programme includes a welcome drinks reception and the spectacular black tie Gala Dinner. An interesting
partners’ program is available for delegates’ partners and/or family.

A brochure for VB’97 was included with this copy of Virus Bulletin, but if a colleague has already used it, or if
you would like further information on VB’97, please contact Alie Hothersall at VB (email alie@virusbtn.com) or
visit the Virus Bulletin web site; http://www.virusbtn.com .

VIRUS BULLETIN AUGUST 1997 • 17

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

FEATURE 3

Do you Know the Way to VBA?
Nick FitzGerald

Over the last few months, a debate has raged behind the
scenes in the anti-virus industry. At issue have been the
merits of anti-virus researchers ‘up-converting’ Word and
Excel macro viruses from earlier Microsoft Office files to
Office 97 formats.

At times the tenor of the discussion became more strident
than some were comfortable with, and the language used
was more like that usually reserved for describing virus
writers, rather than anti-virus colleagues. What caused this?

Follow the VBA Road…

The heart of the issue seems simple enough: some Word
macro viruses that have, to date, only been seen in files
with formats native to Word 6/7 (the versions that came in
Microsoft’s Office 4.x and Office 95 respectively), success-
fully replicate when opened in Word 8 (from Office 97) and
remain infective. The same is true of several Excel viruses,
which have only been seen in files from the earlier versions
but will spread when opened in Excel 97.

But didn’t Microsoft put virus protection into its Office 97
products to prevent this? Yes, some protection, but it is easy
to either turn off those options, or just click the ‘Enable
Macros’ button when Word or Excel detects it is opening a
document or spreadsheet containing macros. Not all Word
documents or Excel spreadsheets containing macros contain
viruses.

In some workplaces, users have become accustomed to
clicking away the ‘Warning’ dialog with the ‘Enable
macros’ button when opening ‘internal’ standard company
documents. The risk here is they will become blasé about it
for ‘other’ documents. Worse, for those to whom the
incessant clicking quickly becomes an irritant, Microsoft
thoughtfully placed a check-box for turning this option off
right there in the dialog box such users come to loathe.
Uncheck ‘Always ask before opening documents with
macros or customizations’ and the frustration is gone for
good. For simplicity’s sake, the rest of this article will refer
to Word and documents, but the same principles apply to
Excel and its spreadsheets.

There have already been some Word 8 up-converts from
‘ordinary’ user sites that appear to have originated through
processes similar to the above.

There is a second, though now much less common, route
for macros to be up-converted. Due to the inclusion of the
macro virus protection features very late in the develop-
ment cycle, and the wide distribution of pre-release and

beta copies that do not have any of the protection features,
there are still copies of Office 97 around without these
features. In fact, probably the first Word 8 macro virus was
a Wazzu.A up-convert from Microsoft’s WWW site early in
February this year, prepared with a beta version of Word 8.

The third up-convert route is manual transcription, where
the source code of a macro virus from an earlier version of
Word is typed or pasted into Word 8. Such up-converts are
usually dismal failures without significantly restructuring
the macro code (viral or not!) because of the changes
necessitated with the move from the simpler WordBasic of
earlier versions of Word to Visual Basic for Applications
(VBA5) used in the Office 97 suite. This sort of exercise is
more akin to porting a program from one operating system
(or environment) to another.

Should we be Worried?

OK – so ‘old’ Word macro viruses can be upgraded to new,
whizzy VBA5 macro viruses. Is there a problem here?

Well, in a word, yes. Just because JammyScan detects
WM/Wazzu.A does not (necessarily) mean it will detect
W97M/Wazzu.A. ‘Why not?’ several of you gasp, sur-
prised. The answer is easy –because VBA5 is a different
macro language from WordBasic, even macro code that has
exact functional equivalents in both is represented differ-
ently in the byte-stream that stores the macro within a Word
document. A reasonable analogy is with compiled high-
level languages. Syntactically correct C source code, for
example, will (generally) result in four different binary
representations when run through four different compilers.

You may now be feeling relieved, safe in the knowledge
that you have the very latest version of JammyScan, and it
is an acknowledged macro virus master. Comforted by this
belief, many, many users of anti-virus software are unaware
of a fundamental assumption almost hidden here. If you use
Word 8, or are likely to move to it soon, ask yourself this:
Have the developers of my chosen anti-virus products
checked their detection rate against all existing Word 6/7
macro viruses when infected files are opened in Word 8?

Better yet, ask the developers of your chosen anti-virus
products or their vendors.

The truth is that some developers have not done this, or
have only done it for a small subset of extant macro
viruses. However, probably even more surprising is that
some developers have avowed that they will not do this!

I believe that this is a short-sighted and indefensible
position. Macro viruses exist. Their prevalence is increas-
ing rapidly, as are the number of known virus families and
variants. Many people are already using, or moving to,

18 ¨ VIRUS BULLETIN AUGUST 1997

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Office 97. Most current macro viruses are for Office 4/95
applications (at least by family and variant count). Some
existing Office 4/95 macro viruses successfully replicate in
the new Office 97 environment and some remain infective.

To me, that spells ‘clear and present threat’. Security-
conscious developers should be considering such things
when designing their products. They can be sure security-
conscious consumers will be. For me, these are compelling
reasons for anti-virus developers to go into the lab, run
Word 8 and start opening their macro virus samples from
earlier Word versions, and to add that step to their tests and
analysis of new macro viruses.

Once the current backlog is cleared, this should not add
unduly to the time it takes to analyse new Word 6/7 viruses.
Some developers proudly claim that it only takes five to ten
minutes to add most new macro viruses to their products.
Assuming an average of twelve new macro viruses per
work day, adding an up-convert test would add two hours
of analysis time per day. In practice it would not, as many
(even most) up-converts will not remain viable and thus
will require less analysis time.

Et tu, Brute?

Why are some developers not doing this? The answer to
this is where things started getting contentious. Some
developers not working on up-converted macro viruses
argue that opening ‘old’ Word macro viruses in Word 8
creates new viruses. Anti-virus developers have faced the
largely bogus, though commonly repeated, claims that the
anti-virus industry created and then drummed up the virus
threat to protect their jobs. Some developers feel strongly
that any claim they have ever created a virus is so undesir-
able that they should take all possible steps to avoid having
this label applied to themselves.

This is understandable, and on the face of it, surely a
reasonable stance? It is reasonable – in fact, I encourage
anti-virus developers not to develop and distribute new
viruses. But to claim that up-converting macro viruses
opens the industry to charges of being the virus writers is
not a valid argument.

Notice, above, I said ‘develop and distribute new viruses’.
The virus writers the anti-virus industry is concerned about
are the ones that distribute (even to one other person) the
viruses they write and I am advocating that up-converts
should be made by bona fide anti-virus researchers under
controlled conditions in their test labs. I am not encourag-
ing the distribution of such up-converts, even between these
professional researchers. In fact, I disagree with such
exchange of lab-generated viruses.

Let’s look at another computer security field; system
security specialists. They advise clients about known and
future/possible security threats. They monitor installed
systems to ensure that their recommendations have been
properly implemented and that no new threats have arisen.

Sometimes they ‘watch’ attempted attacks progressing to
learn new tricks from the attackers. At their client’s request,
and with appropriate authorization from suitably senior
management of the organizations concerned, they will
attempt to hack a system from outside to test the security
implementation and that internal procedures for when an
attack is suspected or discovered, are followed.

Some may claim this as evidence that system security
analysts create their own industry niche, but it would be a
difficult argument to sustain. Exactly the same relationship
holds between responsible anti-virus developers and claims
that the anti-virus industry created and maintains itself. A
few spotty-faced, ethically underdeveloped ‘hacker
underground’ types might claim the industry is self-
preserving, but their opinions are based on largely unin-
formed conjecture that touches on an unfortunate grain of
truth that once applied to a very small number of early
and/or insignificant anti-virus developers.

Arguing that making up-converts sets us on the slippery
slope of facing such claims is a cop-out – like it or not we
are already on that slope. Better to be known for acting
impeccably and doing everything one could to ensure anti-
virus consumers had the best possible protection against
known, current risks than for denying that the anti-virus
industry has a few skeletons in the closet and a few differ-
ently-pigmented sheep in the back pasture.

Purchasers of anti-virus software should get the best
protection available. Today we know that some macro
viruses can successfully up-convert to Word 8. More than
being a theoretical possibility, however, some old Word
viruses have been up-converted at real client sites. Some
developers probably brand the users of machines where
such real-world up-converts have happened as ‘virus
creators’ who therefore deserve what they get: the old
‘blame the victim’ approach. A responsible attitude demands
that product developers be responsive to the real threats
faced by real computer users, or at least by those who use
their products. The anti-virus community is aware of this
threat and in this case, reducing the additional risk their
consumers face can be done at minimal cost to the develop-
ers. It is not a question of if, but of when!

If your anti-virus developers expect you will be protected
against Word 8 viruses by the crude and easily circum-
vented ‘protection’ features Microsoft cobbled in at the last
minute, they are being disingenuous. You may think I have
been being rather rude about the built-in ‘protection’
features, but my opinions, as expressed here, reflect those
of the product developers themselves.

When is a New Virus not a New Virus?

Those in the ‘thou shall not up-convert’ crowd still main-
tain they cannot face the moral scourge of being labelled as
virus writers. So let’s look more closely at the issue: does
up-converting a Word 6/7 macro virus to Word 8 make you
a virus creator?

VIRUS BULLETIN AUGUST 1997 • 19

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Technically, it might. As already stated, it is the virus
writers who distribute or release their viruses that we
dislike. This does not make virus writing acceptable: it
seems that few people who have ever created a virus can
contain themselves from giving a sample to their best
friend, their classmates, whoever – witness the number of
so-called ‘research only’ viruses in virus collections. An
anti-virus developer ‘making’ an up-converted macro virus
so as to add detection and disinfection of it to their product,
prior to the virus actually appearing in the wild, does not
increase the total threat. However, adding such a sample to
their virus collections would, as most developers share
samples regularly, and sharing samples made purely for
internal research purposes is not a good idea.

I have thus far avoided a technical issue, and depending on
how you look at this one, the discussion in the last couple
of paragraphs may be moot. Are W97M/Wazzu.A and
WM/Wazzu.A really different viruses? Some of the experts
say they are different, some not. Who is right?

There are good arguments for both sides. You could argue
they are different viruses based on the fact that anti-virus
programs need different definitions for each in their
products. A reasonable counterclaim would seem to be that
relationship between WM/Wazzu.A and W97M/Wazzu.A is
similar to that between the EXE-infecting form of a multi-
partite and its MBR or SYS-file form. Some such viruses
require separate definitions in anti-virus products for each
form, but most researchers have no trouble seeing both
forms as one virus.

One suggestion here is to classify Wazzu.A as a multi-
partite, or even a cross-platform, virus. If you think of it as
cross-platform, you would consider the forms native to each
platform as separate manifestations of the same virus. In
the case of a cross-platform virus, it would seem likely for
the code representations to differ on the different platforms.

To date, the debate over the issue of whether the Word 6/7
and Word 8 forms of, say, Wazzu.A are the same has
revolved around the CARO taxonomy which makes them
different. According to the CARO standard, if the binary
representations of the non-variant parts of the two differ,
they are different viruses. Unfortunately, this has little to do
with the generally accepted definitions of what a computer
virus is. These definitions focus on behaviour, not code
representation. It seems perfectly plausible, in fact likely,
that a cross-platform virus will have different representa-
tions for its different platforms but manifest the same
behaviour on those platforms.

The CARO taxonomy is surely convenient and immensely
practical. It means that painstaking, expensive behavioural
analysis of every different virus need not be undertaken. To
date, it probably has not mattered that the CARO taxonomy
has ignored cross-platform issues because there have been
very few, if any, cross-platform viruses until now. However,
given that it ignores such issues, and that what is under
discussion is a cross-platform virus, the fact that the CARO

naming scheme labels the Word 6/7 manifestation of this
virus as WM/Wazzu.A and the Word 8 manifestation as
W97M/Wazzu.A does not justify or validate claims that they
are different viruses.

If you accept that a macro virus that viably up-converts to
Word 8 is a different platform manifestation of the same
virus as its Word 6/7 relation, then there is no issue here for
the moral stalwarts who argue that anti-virus researchers
should never create new viruses. Laboratory-generated up-
converts are thus much like the tens of thousands of
polymorphic samples that most researchers generate to test
their product’s detection of that polymorphic engine.

To Test or not to Test?

That is a tricky question, and where the heated discussion
mentioned at the beginning of this article began. It was
suggested that the NCSA should include up-converts in its
test-sets. For the meantime the NCSA has backed away
from this idea, which is probably prudent.

What is Virus Bulletin’s position on including up-converts
in test-sets? For now I am against the idea of including
self-made up-converts, but not so much on principle, but
because of VB’s testing procedures. It is unfair to test a
virus detection product, publish results saying it missed X
and then withhold X from the developer. If VB-made up-
converts were included in a test, they should be sent to a
developer whose product missed them, and I disagree with
distributing a virus that I have made, regardless of the
standing and reputation of the receiving party. Samples
replicated from naturally occurring up-converts are a
different story: recently some of these have been added to
VB’s In the Wild File test-set.

There is a good technical reason too. There are many
different releases of Word 8 in the world – all the different
language versions plus the betas and some earlier pre-
releases. There may have even been unannounced code
revisions at some point in the short history of the product.
For example, was the Office 97 code released for sale in
Australia and New Zealand before Christmas 1996 really
identical to the other ‘International English’ releases in
February 1997? The upshot of all this is that up-converts in
your Word 8 may not result in exactly the same macro code
representations as those in others. It may be possible to work
around such problems once all the possibilities are discov-
ered, but this means that lab-generated up-converts will not
necessarily match up-converts of the same virus that will
eventually arise in the outside world. That said, most users
of a given version of Word are unlikely to have tweaked the
options known to result in different up-conversions, so lab-
made up-converts can still be a useful indicator.

I look forward to the results of further research in the area
of Word macro up-conversions. Once more is known about
these specifics, we will be better placed to decide the role
of up-converts in formal testing. For their customers’ sakes,
developers should be working with up-converts now.

20 ¨ VIRUS BULLETIN AUGUST 1997

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

PRODUCT REVIEW

SWEEP for Windows NT v2.97
Martyn Perry

This month’s product is from Sophos. SWEEP has been
available for a number of years now and I was most
interested to see how the product had migrated over to
newer environments. The version under evaluation is
SWEEP for NT v2.97 released on 1 May 1997. It claims to
handle 10650 viruses.

The server licence can either be purchased separately or
incorporated into a site licence including workstations.

Presentation and Installation

It makes a pleasant change to receive a full shipping set of
the product, as this provides an opportunity to see the
support material available.

The product submitted for review came with disk sets for
Windows NT, Novell NetWare and Sophos’ InterCheck. As
far as documentation is concerned, SWEEP is shipped with
user manuals for Windows NT, Windows 95 and DOS
clients. The packing is completed with quick reference
cards for running the scanner in these environments, sample
sheets of labels to show a PC has been scanned, and
warning labels to indicate that a PC is infected. There is
also a mouse mat.

Finally, there is the ‘Data Security Reference Guide’. This
book, besides acting as a brochure for the various services
and products from Sophos, contains a very clear and
comprehensive virus tutorial, which I thoroughly recom-
mend to any newcomer to the world of computer viruses.

SWEEP for NT now comes as a three-diskette set, with two
diskettes holding the GUI version and one the command-
line scanner. Opinions vary over the need for command-line
utilities in our increasingly GUI world, so whatever your
view on the matter, SWEEP for NT gives you the choice.

On running the installation program, you are first presented
with a choice of Local Installation/Upgrade or Central
Installation/Upgrade. The Central Installation option makes
a copy of the installation files on a server so they can be
used for installation on remote servers and workstations.

If you choose the Local Installation option, you may enable
InterCheck support and scheduled scanning across the
network separately. A local installation was used for this
review. The folder ‘C:\Program Files\Sophos SWEEP for
NT’ is the default installation location.

Once you have set these basic options, the setup program
presents your configuration for checking, giving you the
option of going back to change things. This screen, some-
what puzzlingly, implies that choosing to create short-cuts
in the Start Menu and, significantly, allowing SWEEP to
appear in the Add/Remove Programs control panel are
configurable options – perhaps in the next version?

On clicking the final OK button in the Setup dialog,
SWEEP is installed and the opportunity provided to run the
scanner immediately.

Although not the configuration tested in this review, I
looked at the central location installation procedures. Not
surprisingly, somewhat different configuration options are
offered. The settings now include auto-upgrade from a
server, and prevent removal via the Add/Remove Programs
control panel (the default is to allow removal). The default
central installation folder is ‘C:\Program Files\Sophos
SWEEP for NT\NTInst\i386’. The options selected here are
recorded and used as the defaults for any subsequent client
installations run from this directory. Again, there is a
confirmation screen listing your selections and allowing
you to go back and change things before starting the
installation. Subsequent client installation from this source
was not tested.

Electing to continue, files were then copied to the server
from diskettes labelled Installation, Library, InterCheck,
and DOS. There is an option to skip the last two diskettes.
This means pressing the skip button the requisite number of
times for each file on each skipped disk.

SWEEP’s main screen with an Immediate scan in progress.

VIRUS BULLETIN AUGUST 1997 • 21

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

With InterCheck activated, another tab appears on SWEEP’s
main window.

During the installation process, a warning message may be
displayed: ‘SWEEP for Windows NT setup program was
running on the machine for more than 5 minutes. Do you
want to exit?’ This option allows an ‘out’ for autoinstall on
clients, should they stall or fail for some reason. In a
corporate environment you would now be ready to run
SETUP.EXE from the server on each of your clients.

Scanning with SWEEP

SWEEP has three scan modes –Immediate, Scheduled and
InterCheck. The latter is Sophos’ real-time protection
component and, taking a different approach from most
on-access scanners, is covered in more detail a little later.

An immediate scan can be started and stopped from the
console. If stopped then restarted, the scan returns to the
beginning of the directory structure rather than resuming.
Progress is displayed on a typical ‘thermometer gauge’.
Being someone who likes to know things are progressing,
it may sound a little perverse to say that there is a useful
option to disable this progress indicator. However, on large
network drives, SWEEP may take several minutes making
its initial count of the items to scan before beginning the
scan itself.

By default, this version scans files with extensions of ADD,
BID, COM, DLL, DMD, DOC, DOT, DRV, EXE, FLT, I13,
IFS, MOD, OV?, SCR, SYS, TSD, VSD, VXD, and XL?.

You have the choice of either Quick or Full modes of
operation, where Full mode examines the complete contents
of a file while Quick mode just checks the areas where
viruses are most likely to be found. To minimize the impact
of scanning a server, you can set SWEEP to run as a low-

priority background task. Further options include the ability
to check executables compressed with PKLite, LZEXE and
Diet, and checking for Macintosh viruses.

SWEEP provides the following actions in the event that it
detects a virus:

• disinfect boot sector

• disinfect documents

• rename to non-executable

• delete infected executables

• ‘shred’ (delete and overwrite) infected executables

• move to quarantine folder

• copy to quarantine folder

The last two options use the folder INFECTED, below the
main SWEEP program folder.

Each scheduled scan is set up as a ‘job’. Each job defines
the scan mode and actions. Essentially, the scheduled scan
has the same modes, actions and reports as the immediate
scan. The only exception is that floppy drives cannot be
included in a scheduled scan. However, CD-ROM drives
can be, and this could provide a method of scanning a new
CD overnight if necessary, although a CD-ROM containing
629 MB scanned in about four minutes in a 3-speed drive.

Multiple scheduled jobs can be configured and saved, but
only one can run at a time. If a job is scheduled to start and
another has not completed, the second one is queued and
starts immediately the first finishes. As with immediate
scans, scheduled jobs can also be set to run at a lower
priority if required.

Defining a scheduled scan, you can choose to run it at start-
up or at regular intervals. If the latter option is taken, you
select the start time and date for the initial scan and the
subsequent days to run it at that time.

Real-time Scanning with InterCheck

InterCheck is a separate component which provides
on-access or real-time scanning. InterCheck helps reduce
the workload on a server and network when virus-checking
files. This is done by avoiding the need to check files every
time they are accessed, and is achieved by passing them
through an ‘authorization’ process. The first time a file or
diskette is accessed, the scanner checks it, and if it is clean
the file or diskette is authorized (a checksum is made and
stored). On subsequent accesses, checksums are compared
and a scan initiated only if the object has changed.

In day-to-day operation, a file or diskette is checked to see
if it has been authorized. If it has, then operations proceed
as normal. However, if a file or diskette is new and has not
been authorized, SWEEP is called to scan the object. If it
scans ‘clean’ it is checksummed and its value added to the
authorized list; otherwise, an infection warning is issued.
This has the effect of creating an overhead when a product
is newly installed or updated. However, once the task is

22 ¨ VIRUS BULLETIN AUGUST 1997

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

completed, the scanner is only used when new files or
diskettes are accessed. This reduces the on-access scanning
overhead. It also traps files that suddenly ‘appear’ on a
network, be they Internet downloads, decoded email
attachments or those neat little utilities a visiting consultant
feels you really must have.

InterCheck’s operation is controlled by options configured
by a workstation’s administrator. These determine how
InterCheck operates at start-up as well as during runtime.
Of special interest should be the setting that detects
Windows program files and OLE files by their contents,
rather than just depending on their file extensions.

Administration and Extras

SWEEP for Windows NT is ‘NT security aware’, and
recognizes members of the Administrator group, letting
them modify its settings. Non-administrator users can only
start and stop SWEEP scans.

The Virus Library provides information on the viruses in
the detection set. A search can be made for a name or alias.
If this is not known, selections can be made as to the type
of infection that is occurring. Having made a selection, a
shortform display of the characteristics of the chosen virus
is presented. More detailed information can be selected
which includes advice on eradication. For those amongst us
with less than 20:20 vision, there is a toggle switch to
increase the text size.

A compressing backup utility, SB.EXE, is also provided.
This is needed to decompress the VIRPATS.SB file which
contains the virus descriptions. These are compressed with
this utility, which makes use of Sophos’ encryption technol-
ogy (SPA) to ensure no tampering has occurred.

Reports and Activity Logs

The default location for report files is the REPORTS folder
in the SWEEP installation directory. Report files have the
extension .REP. Scheduled jobs generate reports with a
filename matching the job name and reports from immedi-
ate scans have names matching the user who invoked them.
Event logging can cover all jobs or just specific ones, with
the notification level configurable for no messages, viruses,
viruses and errors or all messages.

Alerts can be sent to specific desktops, or broadcast
network-wide. They can also be sent using the SMTP
Internet email protocol if your network supports this.

Command-line Support

Some companies appear to be shy about any command-line
interface their products may have. Perhaps they feel that it
has no place in our increasingly GUI environment. I feel
there is still a place for such a facility, and I am particularly
pleased to see a command-line interface version, replete
with ‘-options’ retained in this version. The options include
those from other platform versions as well as some specific
to Windows NT. These options include controlling the
priority of the scanner and the writing of information the
Windows NT event logs. Also, using the command-line
interface allows remote servers to be scanned.

These various options can be stored in a text file and run
with the @ option. For example:

NTSWEEP @SAMPLE.TXT

where SAMPLE.TXT contains the scan options. This
allows different configurations to be defined without
having to do screeds of retyping.

Updates

SWEEP is updated monthly. Updates are installed by
running the installation program on the supplied diskettes
and selecting the ‘Upgrade existing installation’ option.
The installer will detect older versions of SWEEP, and if
one is found prompt whether to retain the existing settings.
If the InterCheck option is selected, the scanner will be run
once the upgrade installation completes.

Urgent, interim virus definition updates, between the
monthly upgrades, are distributed in plain ASCII files.
These so-called IDE files, if stored in the SWEEP program
directory, are automatically loaded when the service starts.
This means you have to stop and restart the service compo-
nent to activate such updates.

Detection Rates

The scanner was checked using the usual test sets – In the
Wild Boot, In the Wild File, Standard, and Polymorphic –
and against the new Macro test-set. See the product
summary box for more details.

Want details on all memory-resident, companion viruses? This
search-by-virus-feature option may help.

VIRUS BULLETIN AUGUST 1997 • 23

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

SWEEP for Windows NT v2.97

Detection Results

Test-set[1] Viruses Detected Score

In the Wild File 527/527 100.0%
In the Wild Boot 90/90 100.0%
Standard 772/774 99.7%
Polymorphic 13000/13000 100.0%
Macro 710/710 100.0%

Overhead of On-access Scanning:

The tests show the time (in seconds) taken to copy
200 COM and EXE files (21.2MB). Each test was
repeated ten times, and an average taken.

Time Overhead

Baseline 14.5 –
SWEEP & IC loaded, inactive 15.0 3.5%
IC active, no purge 18.9 30.3%
IC active, purge 21.0 45.0%
SWEEP & IC active, no purge 40.0 175.8%
SWEEP & IC active, purge 58.6 304.4%
SWEEP & IC unloaded 15.1 4.3%

Technical Details

Product: SWEEP for Windows NT, v2.97.

Developer: Sophos Plc, The Pentagon, Abingdon, OX14 3YP,
England. Tel +44 1235 559933, fax +44 1235 559935,
email sales@sophos.com, WWW http://www.sophos.com/.

Price: Single NT workstation £195. NT Server with up to
24 clients £495, NT Server with 25 – 199 clients £895. For site
licensing and bulk purchases, contact Sophos’ sales team.

Hardware Used: Compaq Prolinea 590 with 80 MB Ram,
2 GB Disk, NT 4.0 with service pack 1.
[1]Test-sets: For a complete listing of all the viruses used, see
VB, July 1997, p.16.

The tests were conducted using the program’s defaults for
file extensions and for the Quick scan mode. SWEEP was
set to delete infected files. The residual files were then used
to determine the detection rate. The results were excellent.

Using the default Quick scan mode, SWEEP failed to detect
only the two samples of Positron from the Standard test-set.
However when the test was repeated with Full scan, 100%
success was achieved: this is because Positron inserts its
code in an area not covered by the Quick scan option. This
suggests running a Full scan initially and a Quick scan on
subsequent, scheduled runs.

Real-time Scanning Overhead

A significant issue for on-access scanners is their impact on
overall workstation performance – few people would
tolerate a virus detector that ground their computers into
the dust, even if it was a top performer, in terms of detec-
tion. To measure scanner overhead, 200 clean COM and
EXE files, comprising 21.2 MB, were copied from one
folder to another using XCOPY. The default NT scheduling
setting of ‘Maximum Boost for Foreground Application’
was used for consistency.

Because of the different processes which occur within the
server, these tests were run ten times at each setting and an
average taken. The tests were:

• Neither SWEEP nor InterCheck loaded. This estab-
lishes the baseline time for the copying process.

• SWEEP and InterCheck loaded but inactive. This
measures what impact the applications have in a
quiescent state.

• SWEEP loaded, InterCheck active with Purge List set
to No. This tests the impact of InterCheck in a normal
workstation configuration.

• SWEEP loaded, InterCheck active with Purge List set
to Yes. This tests the impact of InterCheck when
recalculating the checksum each time the copy is run.

• SWEEP loaded, InterCheck active with Purge List set
to No and Scan running. This tests the impact of
InterCheck without recalculating the checksum each
time the copy is run.

• SWEEP loaded with InterCheck active but with Purge
List set to Yes and Scan running. This tests the impact
of InterCheck recalculating the checksum each time the
copy is run.

• SWEEP unloaded. This is run after the other tests to
check how well the system returns to its former state.

The detailed results are presented in the product summary
box.We can see the impact of InterCheck running in its
usual mode (no purging of checksums) and how it can help
to keep real-time overhead down. Also shown is the effect
of having to calculate the checksums and the performance
hit that can be expected the first time InterCheck is run
after upgrading the scanner.

Summary

The scanning results were excellent, maintaining the
tradition of consistently high detection rates over a number
of years. The use of InterCheck to help ease the load on
day-to-day access is a good approach which is not compro-
mised by new files appearing on the network.

The one area of concern is that there is still no facility for
managing a domain of multiple servers and workstations,
although remote servers can be scanned from both the GUI
and command-line scanners. The Auto-update feature
partly addresses this, with its ability to update all servers
and workstations attached to the distribution server, but this
does not allow for flow-on upgrades from servers that are
themselves auto-upgraded. With the developers having
achieved so much with the product – excellent scan results
combined with low overhead – it can only be a matter of
time before this is addressed.

24 ¨ VIRUS BULLETIN AUGUST 1997

VIRUS BULLETIN ©1997 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /97/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

ADVISORY BOARD:

Phil Bancroft , Digital Equipment Corporation, USA
Jim Bates, Computer Forensics Ltd, UK
David M. Chess, IBM Research, USA
Phil Crewe, Pera Group, UK
David Ferbrache, Defence Research Agency, UK
Ray Glath, RG Software Inc., USA
Hans Gliss, Datenschutz Berater, West Germany
Igor Grebert , Trend Micro Devices, USA
Ross M. Greenberg, Software Concepts Design, USA
Alex Haddox, Symantec Corporation, USA
Dr. Harold Joseph Highland, Compulit Microcomputer
Security Evaluation Laboratory, USA
Dr. Jan Hruska, Sophos Plc, UK
Dr. Keith Jackson, Walsham Contracts, UK
Owen Keane, Barrister, UK
John Laws, Defence Research Agency, UK
Rod Parkin, RPK Associates, UK
Roger Riordan, Cybec Pty Ltd, Australia
Martin Samociuk , Network Security Management, UK
John Sherwood, Sherwood Associates, UK
Prof. Eugene Spafford, Purdue University, USA
Roger Thompson, NCSA, USA
Dr. Peter Tippett , NCSA, USA
Joseph Wells, IBM Research, USA
Dr. Steve R. White, IBM Research, USA
Ken van Wyk, SAIC (Center for Information Protection), USA

SUBSCRIPTION RATES

Subscription price for 1 year (12 issues) including first-
class/airmail delivery:

UK £195, Europe £225, International £245 (US$395)

Editorial enquiries, subscription enquiries, orders and
payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park,
Abingdon, Oxfordshire, OX14 3YP, England

Tel 01235 555139, International Tel +44 1235 555139
Fax 01235 531889, International Fax +44 1235 531889
Email: editorial@virusbtn.com
World Wide Web: http://www.virusbtn.com/

US subscriptions only:

June Jordan, Virus Bulletin, 590 Danbury Road, Ridgefield,
CT 06877, USA

Tel +1 203 431 8720, fax +1 203 431 8165

No responsibility is assumed by the Publisher for any injury
and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or
operation of any methods, products, instructions or ideas
contained in the material herein.

This publication has been registered with the Copyright Clearance Centre Ltd.
Consent is given for copying of articles for personal or internal use, or for
personal use of specific clients. The consent is given on the condition that the
copier pays through the Centre the per-copy fee stated on each page.

END NOTES AND NEWS
CompSec 97 will be held in London from 5 – 7 November 1997. The
conference aims to help highlight the risk to IT systems, assess
security shortcomings, and protect against fraud, disaster, and
negligence. Information is available from Amy Richardson at Elsevier
Science; Tel +44 1865 843643, fax +44 1865 843958, or email
a.richardson@elsevier.co.uk.

The 24th Annual Computer Security Conference and Exhibition
will be held in Washington DC from 17–19 November 1997. This
event features over 120 sessions covering such topics as Network
Security, Encryption, and Product Issues. Information can be found on
the CSI’s Web site; http://www.gocsi.com/.

The Roderick Manhattan Group has announced a major push into
the UK consumer and small office/home office market by Compu-
ter Associates with its Cheyenne AntiVirus v4.0 for Windows 95. RMG
is distributing Cheyenne AntiVirus through such well-known resellers
and retailers as Byte, Dixons, Electronic Boutique, PC World, Staples,
Software Warehouse and Watford Electronics.

Australian anti-virus developer Cybec has formed an alliance with
UK-based Integralis Ltd. The OEM deal will see Cybec incorporate
its VET virus detection technology with the network connectivity
specialist’s mail unpacking and scanning technology, MIMEsweeper.
NT-based VET Mail is available now, claiming to intercept, decode
and virus-scan all incoming, outgoing and internal SMTP mail. More
information is available on the WWW at http://www.cybec.com.au/.

Would your organization survive a crisis? Flood, fire, earthquake,
the year 2000? The 9th Annual Business Continuity in Action
Conference and associated exhibition, to be held at the Bournemouth
International Centre on 5/6 November, focuses on disaster and crisis
planning. Call Survive! on +44 181 8746266 for bookings.

The 7th Annual Virus Bulletin Conference, VB’97 will be held on
2/3 October 1997. Full details are given on p.16 of this issue.

The 20th National Information Systems Security Conference is
being held from 7 – 10 October 1997 at the Baltimore Convention
Center, Maryland, USA. Covering such critical IT issues as secure
electronic commerce, Internet security, and virus detection the
conference attracts more than 2000 participants. For more informa-
tion, visit the conference’s Web site at http://csrc.nist.gov/nissc/,
Tel +1 410 8500272, or email NISSConference@dockmaster.ncsc.mil.

The infamous hacker Kevin Mitnick was recently sentenced to
22 months for parole violations and cell-phone fraud. The charges
relate to his arrest in North Carolina in February 1995. He is still
awaiting trial on a further 25 counts of computer and cell-phone fraud,
and of damaging computer data.

The Secure Computing Tactical Conference, will be held
7 – 9 October 1997 in the Connaught Rooms, London. To quote the
organizers: ‘This conference offers the chance to cut to the heart of the
solutions – no high-blown theory – no waffle – real interactive
discussions and in-depth case studies.’ One of the four conference
tracks is devoted to anti-virus strategies. Contact Norman Bullen;
Tel +44 1792 324000, email nbullen@westcoast.com or visit the
magazine’s Web site; http://www.westcoast.com/.

McAfee, Security Dynamics Technologies, RSA Data Security and
VeriSign have announced SecureONE, ‘the first complete network
security environment’. This initiative comprises a set of alliances and
cross-licensing agreements to ensure that the partners’ products work
well together and the development of a set of APIs to be delivered in
RSA’s toolkits. More details are available from the partners’ Web
sites, for example; http://www.rsa.com/.

