
12 • VIRUS BULLETIN SEPTEMBER 2000

VIRUS BULLETIN ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2000/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

FEATURE 1

Tools of the DDoS Trade
Aleksander Czarnowski
Avet, Poland

Every once in a while we see a ‘new technology’ emerging
which turns out to be nothing more than a bunch of old
ideas in new packaging. This is the case with Distributed
Denial of Service tools.

Like with viruses, the first versions of these tools were
relatively simple – we had to wait a few months to see
something more advanced, like TFN2000. Due to the
widely available source codes of these tools, we can assume
the existence of many ‘private’ versions which have never
been used in the wild. This fact also made it easy to port
tools like trinoo to the Win32 platform.

The Mechanism

Denial of Service (DoS) attacks are based on a very simple
assumption that every system has limited resources. On the
other hand, we tend to run more and more complicated
network applications. More complicated applications
usually mean more bugs and design/implementation flaws
which can be exploited by an attacker.

It is worth mentioning that although it is possible to
perform a DoS attack as a local user, in most cases such
attacks are performed remotely. More often than not there is
no point in crashing your machine locally while you are
logged on to it.

DDoS Evolution

The first DoS tools were simple programs that exploited the
misconfiguration of network services or bugs in the
network application or TCP/IP stack. The next phase of
their evolution was to create a shell from which an attacker
could run few different DoS attacks. This method made it
easier to perform an attack, but an attacker was still
required to compile all the DoS attack tools.

Then came another generation of DoS tool – Targa. Targa
was a compilation of a few different DoS attack tools
integrated into one application. This made it easier to
compile and run and to perform an attack. At this point it
appeared that nothing more could be done to such tools
except perhaps adding other types of attack and integrating
them into one piece of code.

However, evolution must go on. The next logical step was
the use of a distributed model to perform attacks. Again,
this is nothing new. Distributed models have already been
used in many security applications like intrusion detection
systems or automatic virus analysis systems.

The Advantages of Distributed Models

Why would anyone want to use a distributed model to crash
a machine remotely or to render the network connection
unusable? The simple answer is that nowadays an attacker
can bring down almost any network connection. Let me go
back a little. To make a machine unusable remotely one has
two choices; exploit some bugs in the configuration on the
network application or flood the connection so that the
machine or connection will exceed its limit.

The first choice is often used as it is very easy to find an
exploit for a chosen platform. However, it can happen that
there are no known bugs or that the machine is configured
correctly. Sometimes there is quite simply no exploit to use
against the machine. Even if there is an exploit, an attacker
needs to identify the system platform that the machine is
running. Not every exploit will work on every version of
software. Some attacks can be blocked on an external router
so it will never reach any machine in the Demilitarized
Zone (DMZ) or LAN.

The second choice will always work: you only need to
generate a stream of packets. If you can generate a number
of packets greater than the target machine can handle, you
have just performed a successful DoS attack. This can be
seen sometimes with sites that have a high volume of
traffic. They can be slow, or sometimes it is not possible to
get a connection with the site. From an attacker’s point of
view the only challenge is the amount of network traffic
that he must generate in order to bring the site down. Even
in the case of middle-sized e-commerce sites it is not
possible to flood the connection or external routers using a
modem connection. More importantly, by using a distrib-
uted model, an attacker can remain unknown to the victims.

It is extremely hard to trace the origin of an attack but it is
possible with the use of spoofed source IP addresses that
are inserted into flooding packets. IPv4 allows such tricks.
So, without the help of ISPs and telecommunications
companies it is almost impossible to trace the real route of
incoming packets. Since the attacker does not need to
communicate with the victim machine, he also does not
care about the packets received. An attacker can certainly
spoof IP addresses, but from time to time he will need to
use a real one.

Construction of DDoS Networks

To perform DDoS attacks an attacker needs to build a
DDoS network. Such networks are built from three different
types of component. The first component is an ‘attacker’.
Each network needs only one attacker. The attacker can
then communicate with a ‘handler’ and an ‘agent’. The
attacker machine can only communicate with the agent
through the handler – there is never any direct

VIRUS BULLETIN SEPTEMBER 2000 • 13

VIRUS BULLETIN ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2000/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

communication between attacker and agent. This is signifi-
cant because it means that an attacker does not leave any
information about his identity on an agent’s machine.

First, the attacker finds a handler machine. It must be
sufficiently vulnerable that he can illegally achieve root
privileges. Then the handler application can be copied and
compiled. The next step is to find an agent machine – again
this means breaking into it and installing the appropriate
software. Once the attacker has gained root privileges he
can install rootkits to hide his presence on the system. He
can also install a sniffer to monitor network traffic and to
move further into the network.

It might look very time- and energy-consuming, but in fact
almost every part of this process can be automated. Finding
handler and agent machines can be achieved by scanning a
wide range of IP addresses. It is time-consuming but it does
not need any human interaction. Then a list of vulnerable
hosts (one can look for vulnerable versions of BIND or
SendMail for example – identification of those is relatively
simple and fast) must be generated.

The next step is to exploit a given vulnerability. With Unix,
all this, plus installation and compilation on target ma-
chines can be performed using scripts. Almost the same
functionality can be achieved under Windows NT.

Ready to Attack

When the network is set up, the attack can be launched. By
issuing the appropriate command the attacker tells his
handler to start the attack. The list of handlers is kept on the
attacker’s machine. Subsequently, the handler sends the
same command to its agents. The list of agents is kept on
the handler machine. Agents are always the ones who
actually perform the attack. It is the role of an agent to
generate a stream of packets with spoofed IP addresses.

Handlers do not communicate with each other, they only
communicate with the attacker and their agents. Thanks to
such a set-up, even if we were to find and isolate one
particular agent we would still not know anything about the
associated handlers.

Defending Your Network

A stream of packets will come from different places and all
of the packets are sent to one IP address. Usually, the
stream kills the external router long before it can reach a
firewall. In such cases the firewall mechanism in place to
protect from the attack is rendered useless.

If the stream can reach the firewall it is possible to defend
the network by using techniques like dynamic host block-
ing, but this will only work in the case of several packets
with the same source IP address. If every packet is sent
with a random IP source address this technique will not
work. Even if dynamic host blocking or any other technique
is implemented on the firewall, it is still possible that all the

firewall’s resources will be consumed, again rendering it
unusable. This problem is easy to solve: simply limit the
number of connections being serviced.

Another method of defence is based on routing. The trick is
to switch between two networks. One will be flooded by
packets and the other one can be used normally. The
drawback to this method is the need of ISP support.

If we can manage to disable the handlers, the agents will
become useless. So, the first task is to isolate and remove
the handlers. There are already tools like ZombieZapper
that can send a signal to the DDoS network remotely to stop
an attack. The current version of ZombieZapper works
against trinoo (and its Win32 version), TFN, Stacheldraht
and Shaft. Unfortunately, it will never work against TFN2K
due to the way the TFN2K network communicates with
each particular component.

Host Level Detection

While it is hard to detect such attacks at network level, it is
easy to do it at host level. Furthermore, anti-virus software
is ideal for the job due to the use of powerful and advanced
scanning engines and wide infrastructure. Most scanners
should not encounter problems even if DDoS tools employ
the stealth techniques used currently by viruses or worms,
or if/when polymorphic engines are built into them.

The recent development of worms and other malware for
the Unix platform could pose a real threat. It is simple to
hide a potential DDoS attack in a large chunk of virus code.
If the virus code is analysed by some automatic analysis
system its hidden ‘weapon’ will probably be missed. Even
if a human took on the analysis, it is still possible that it
would be missed.

What is even worse is the fact that viral worms can spread
very quickly. Worms and viruses can be used as a very
powerful method of building huge DDoS networks. The
best case scenario would see a firewall filtering out all the
control requests for DDoS network components like
handlers or agents, rendering them unusable.

What is more important is that most machines are still
running under Windows 9x which is very unstable and not
as powerful as other Unix-based systems. While it is true to
say that Windows 9x is insecure by default, its suitability for
building DDoS network is somewhat limited.

Conclusion

We still do not have one proper method of dealing with
DDoS attacks, and what we have seen up to now might not
be the end of it. The danger from Unix malware is growing.
More and more hacking tools are being ported to Win32. In
too many environments a lack of security policy or incident
response plan is the norm. Security in educational environ-
ments is an almost impossible task and computers will
always have limited resources allocated to them.

