
VIRUS BULLETIN AUGUST 2001 • 5

VIRUS BULLETIN ©2001 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2001/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

VIRUS ANALYSIS

Holding the Bady
Costin Raiu
Kaspersky Lab, Romania

After working for over four years with macro and script
viruses, I recently came across a piece of malware which
gave me cause to dig out my old toolbox and blow the dust
off my old disassemblers and debugging tools.

Although the last time I dug out my old toolbox was
actually not such a long time ago (that occasion was due to
another curious piece of binary data – the executable from
the macro virus Class.EZ), this time the reason was not
only a little different, but proved to be much, much trickier,
and harder to figure out in its deeper internals.

The Bug

On 18 June 2001, Microsoft released its 33rd Security
Bulletin for this year, dealing with a simple buffer overflow
in one of the DLLs used by the indexing service ‘idq.dll’.
Credited to the people from eEye Digital Security, the bug
proves, once again, that Windows NT and the server
software running on NT systems are not spared by the most
common security vulnerabilities of Unix systems, the
buffer overflows.

The original security advisory from eEye did not include an
exploit, but it wasn’t long before a couple were written and
started to crawl around. One of them was even posted to the
SecurityFocus Web site, in the exploits section for this
specific vulnerability, therefore becoming generally
available to the masses.

However, by far the most interesting exploit came in the
form of a computer worm, which not only exploits the
vulnerability, but replicates the exploit further, to other
servers from the Internet. Initially, the worm was named
‘Code Red’, but the common name selected by
the AV industry for this worm is ‘Bady’, either in the form
of ‘Win32/Bady.worm’ or the more complex, but even more
CARO-compliant name, ‘worm://Win32/Bady.A’.

The Worm

The worm code is written in Win32 Intel assembler, and is
3569 bytes long, if we count the data used and carried by
the worm along with the executable code.

Due to the nature of this exploit, what was probably one of
the trickiest parts was to transfer control to the worm code
from the instructions that receive control after they smash
the stack. In fact, this is so tricky, that it can work only
under very specific conditions, thus limiting the possibility
for the worm to spread. Also, it was so tricky that it took

6 • VIRUS BULLETIN AUGUST 2001

VIRUS BULLETIN ©2001 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2001/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

four hours before I realized why the worm simply crashed
my test system, and didn’t want to work.

Basically, the worm sends 224 ‘N’ (0x43) bytes via an
HTTP GET request, and it appends a few bytes of execut-
able code after them. The small piece of executable code
is encoded in the URL it sends for processing to the ISAPI
server extensions, and looks like that shown in Figure 1
above.

The buffer overflow will fill the stack with the 224 ‘N’
bytes expanded to two-byte UNICODE representations of
the form {0x4e, 0x0}, which are used as return address
when the subroutine in which the buffer overflow took
place returns.

After that, the execution flow will hopefully hit one of three
eight-byte-long sequences designed to prepare (again!) the
stack for another jump, which is designed to hit the real
worm code. The jump is performed in quite a tricky
manner, and it relies on the fact that at a certain address in
memory we can find a specific instruction, a two-byte-long
‘call ebx’.

However, the respective instruction, which is supposed to
be located in the memory image of the standard system
module ‘msvcrt.dll’ (Microsoft Visual C Runtime Library)
at offset 7801CBD3h, is in its place only if the respective
library is version 6.10.8637 – exactly the one distributed
with Windows 2000, Service Pack 0, which is exactly
295000 bytes long.

So, if either SP1 or SP2 has been installed on the machine,
the worm will be unable to spread. The same is true if the
machine is running Windows NT 4.0, and in all these cases,
the WWW Publishing Service of IIS will simply crash
when attacked.

However, if the system runs the ‘good’ version of
‘msvcrt.dll’, the worm performs the jump correctly, and
reaches its main code, which begins to take the steps
necessary for the worm code to carry the infection further.

First, it will allocate stack space to store 134 (86h)
DWORDs, and it will also take care to wipe it using 0CCh
bytes. Next, the worm tries to obtain the location of the
very useful API GetProcAddress, using a method which is
actually very common to most PE infectors. For this, the
worm scans the memory range 77E00000h–7800000h,
incrementing in steps of 64K, looking for a ‘MZ’ signature.
Obviously, this check attempts to find the memory image
of ‘kernel32.dll’ (which, for example, is found at offset
77e80000h in the initial release of Windows 2000).

If the worm does not find the ‘MZ’ signature of
‘kernel32.dll’ in that range, it will attempt to look for the

“%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801
%u9090%u9090%u8190%u00c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u00”

Figure 1.

same thing starting from 0BFF00000h, obviously assuming
that maybe the system is not NT, but Win9X (for example,
in Win98 the ‘kernel32.dll’ module is located at the
address: 0BFF70000h).

Check and Cross Check

After finding the possible address of the ‘kernel32.dll’
PE image in memory, the worm will perform a couple
of additional checks to be certain that it is indeed the
‘kernel32.dll’ module. For this, it will check that it is a PE
file and then find the export table to check if the module
name matches ‘KERNEL32’.

If the respective checks fail, the worm code continues
scanning. It’s amusing to note how careful the author was
here to find the correct address of the kernel module image
in memory while, a few instructions ago, it simply assumed
that ‘msvcrt.dll’ contains a {0FFh, 0D3h} sequence (call
ebx) at 7801CBD3h. I think this was due to the author
using the respective code from some PE virus, and he/she
didn’t bother to remove the Win9X part. Also it seems
useless to perform such careful checks for the ‘kernel32.dll’
module, when the earlier assumption regarding ‘msvcrt.dll’
has already been made.

After finding the correct address in memory of
‘kernel32.dll’, a short subroutine is called to determine the
offset of the ‘GetProcAddress’ exported entry. This subrou-
tine will simply parse the export table, and verify if any of
the entries is indeed ‘GetProcAddress’.

Next, ‘GetProcAddress’ will be used to obtain the address
of other common APIs, which are LoadLibraryA,
GetSystemTime, CreateThread, CreateFileA, Sleep,
GetSystemDefaultLangID and VirtualProtect. Of these,
LoadLibraryA will further be used to load and obtain
the memory offsets of the images of ‘infocomm.dll’,
‘WS2_32.dll’ and ‘w3svc.dll’. The worm then extracts the
TcpSockSend subroutine address in ‘infocomm.dll’, as well
for the addresses of the ‘socket’, ‘connect’, ‘send’, ‘recv’
and ‘closesocket’ subroutines in ‘WS2_32.dll’.

Replication and Payload

Next, the worm spawns 100 threads in memory which are
designed to carry the main replication code as well as the
payload. However, due to a bug, the worm will try to spawn
even more threads for each thread created, therefore quickly
eating a huge amount of resources, meaning it is less likely
to go unnoticed on an infected server.

Each thread runs exactly the same code, which acts as
follows: first, the worm attempts to open a file named
‘c:\notworm’. If successful, the worm will start to issue

VIRUS BULLETIN AUGUST 2001 • 7

VIRUS BULLETIN ©2001 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2001/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

‘Sleep’ calls of about 24 days, ad infinitum. However, if the
respective file is not found on disk, the worm continues in
its progress.

It will check whether the current day is between 20 and 27
and, if so, it will run the part of the payload which consists
of sending 18000h times one-byte-long TCP/IP packets to
the IP address ‘C689F05Bh’ which, in a more readable
form, is 198.137.240.91, and which currently resolves to
the name ‘www.whitehouse.gov’. [This is no longer the
case, since the IP address of the Whitehouse Web site has
been changed - Ed.]

Next, the worm will run its random number generator
routine, the purpose of which is to provide targets for
infection. The routine uses two things as seeds for the
stream of random numbers: the current second/millisecond
fields of the current system time, and the thread number.

Combined, these two could produce a lot of different IP
streams. I say ‘could’ because of the way the algorithm
works – the entropy provided by the ‘second’ and ‘millisec-
ond’ fields of the current time is lost in the computations,
so that leaves us with exactly 100 possible streams of IP
addresses, which only depend on the thread index, again,
only in the range 0–99.

Therefore, whenever a copy of the worm receives control,
it will start hitting a predictable invariant stream of IP
addresses, thus highly limiting its ability to spread. For
example, the stream of IP addresses generated by the first
thread in the worm will always start with the following
values: 7.107.254.83, 252.118.171.204, 198.83.139.183,
33.250.241.248, and so on.

Interestingly, this mistake seems to have been noticed by
the author too; after the initial version of the worm became
widespread, another ‘fixed’ version was reported. The
second version seems to have its random number generator
routine fixed, thus having much better chances to spread
over the Internet.

The worm has another interesting payload which is run only
if the current system codepage is 0x409, US English.

First, the worm will run a Sleep call set to two hours, and
after that, it prepares to launch the payload. For that, it will
scan the import table of ‘w3svc.dll’ for an API named
TcpSockSend. After finding it, the worm replaces it with a
pointer to a subroutine inside the worm copy which sends a
specific Web page whenever a request to the HTTP server
arrives. The Web page is shown in Figure 2.

It should be noted that, while patching the export table of
‘w3svc.dll’, the worm takes care to write-enable the area of
memory in which the module is stored. This is required in
order to patch the address of TcpSockSend, the function
hooked by the worm. From here, the worm will simply loop
again, trying other IP addresses.

Conclusions

There has been much debate around the fact that this may
be the first modern worm that doesn’t exist at any
time in a file, nor use temporary files during replication, as
for example Linux/Cheese or Linux/Ramen do.

‘Bady’ certainly exists only in memory or as a TCP/IP
stream sent around the Internet, thus making it the perfect
example for everyone’s definition of the term ‘worm’. But
besides that, the truly important thing about it is that the
impact of this worm could have been much, much worse.

If the worm had been written a little more carefully, to
infect more than just Windows 2000 systems running IIS4/5
with the indexing service installed and to use a really
‘random’ stream of target IPs, then stopping it would have
been much more difficult. However, regarding detection,
unfortunately the AV world was, in its majority, unprepared
to handle ‘Bady’. To detect and stop this worm, scanner
plug-ins for firewalls are needed and, unfortunately, these
are not very common. Also, to detect and clean it in
memory, a couple of improvements to the scan engines are
probably needed, such as the possibility to scan the memory
associated with a thread launched in the memory space of a
module attached to a process …

W32/Bady.worm

Aliases:Aliases:Aliases:Aliases:Aliases: Code Red, CodeRed.

Type:Type:Type:Type:Type: Network-propagated worm.

Infects:Infects:Infects:Infects:Infects: Windows 2000 machines running IIS4/
5 with ISAPI enabled.

Payload:Payload:Payload:Payload:Payload: Attempt to flood www.whitehouse.gov
between 20th and 28th of each month
– hooks all HTTP requests on systems
with codepage 0x409, and sends a
custom page back to the clients.

Removal:Removal:Removal:Removal:Removal: Stop the WWW service on the affected
machine, install the MS recommended
patch, then restart the WWW service.

Figure 2: Web page.

