
The International PublicationThe International PublicationThe International PublicationThe International PublicationThe International Publication
on Computer Virus Prevention,on Computer Virus Prevention,on Computer Virus Prevention,on Computer Virus Prevention,on Computer Virus Prevention,
Recognition and RemovalRecognition and RemovalRecognition and RemovalRecognition and RemovalRecognition and Removal

SEPTEMBER 2003

CONTENTS IN THIS ISSUEIN THIS ISSUEIN THIS ISSUEIN THIS ISSUEIN THIS ISSUE

IS
S

N
 0

95
6-

99
79

GENERAGENERAGENERAGENERAGENERATIONTIONTIONTIONTION
GAPGAPGAPGAPGAP
A bug in Mimail’s
replication routine allows
determination of the time
elapsed between virus

generations. Gabor Szappanos has all the details of
the virus that dethroned Klez.H from the prevalence
charts.
page 4page 4page 4page 4page 4

BLASTER CASTBLASTER CASTBLASTER CASTBLASTER CASTBLASTER CAST
The first Win32 worm to use a command shell
attack has arrived, and it is not only the corporate
servers that have borne the brunt of the attack –
Win32/Blaster demonstrates ‘buffer overflow for the
masses’. Peter Ferrie, Frédéric Perriot and Péter
Ször set out the worm’s vital statistics.
page 10page 10page 10page 10page 10

FORMAL FORMAL FORMAL FORMAL FORMAL CHALLENGECHALLENGECHALLENGECHALLENGECHALLENGE
As researchers in academia and industry begin to
develop anti-virus technologies founded on formal
methods of analysing programs, Arun Lakhotia and
Prabhat K. Singh look at the promises and the
pitfalls of formal analysis.
page 15page 15page 15page 15page 15

2 COMMENTCOMMENTCOMMENTCOMMENTCOMMENT

Salvage operation

3 NEWSNEWSNEWSNEWSNEWS

Watching and waiting for Sobig

Patching made child’s play (mandatory)

3 VVVVVIRUS PREVIRUS PREVIRUS PREVIRUS PREVIRUS PREVALENCE TABLEALENCE TABLEALENCE TABLEALENCE TABLEALENCE TABLE

VIRUS ANALVIRUS ANALVIRUS ANALVIRUS ANALVIRUS ANALYSESYSESYSESYSESYSES

4 Checking Mimail

7 Your Mumu.B don’t dance…

10 Blast off!

FEAFEAFEAFEAFEATURESTURESTURESTURESTURES

12 Digital sign: the next target?

15 Challenges in getting ‘formal’ with viruses

20 PRODUCT REVIEWPRODUCT REVIEWPRODUCT REVIEWPRODUCT REVIEWPRODUCT REVIEW

Sophos MailMonitor for Exchange 2000

24 END NOTES & NEWSEND NOTES & NEWSEND NOTES & NEWSEND NOTES & NEWSEND NOTES & NEWS

22222 SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

COMMENT

Editor:Editor:Editor:Editor:Editor: Helen Martin

TTTTTechnical Consultant:echnical Consultant:echnical Consultant:echnical Consultant:echnical Consultant: Matt Ham

TTTTTechnical Editor: echnical Editor: echnical Editor: echnical Editor: echnical Editor: Jakub Kaminski

Consulting Editors:Consulting Editors:Consulting Editors:Consulting Editors:Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
Ian Whalley, IBM Research, USA
Richard Ford, Florida Institute of Technology, USA
Edward Wilding, Data Genetics, UK

SALSALSALSALSALVVVVVAGE OPERAAGE OPERAAGE OPERAAGE OPERAAGE OPERATIONTIONTIONTIONTION
In September 2001 I was Senior Manager of Worldwide
Software Support at a supplier of process control and
yield management solutions for the semiconductor and
related microelectronics industries. The Nimda and
FunLove viruses had been introduced into the market in
September 2001 and November 1999, respectively. The
corporate standard AV protection within the company
was a product from one of the top three anti-virus
vendors, and had received the signature file updates
within a day or so of the original outbreak. The signature
updates were implemented company-wide within
minutes of receipt.

Should be OK, right? Unfortunately there was a massive
infestation of viruses that was deeply embedded
throughout the company. This was the problem: updating
signature files was successful in preventing new
instances of viruses from being introduced into the
company, but the virus was already inside the company.
Nimda incorporated new technology designed
specifically to defeat the ‘detect and quarantine/delete’
philosophy of most of today’s anti-virus products.

These were the first viruses designed to spread via the
IP layer, and they were smart enough to leverage illegal
drive mappings and share points to keep spreading back
to computers even after they had been cleaned. The

number of infected files within the company was
enormous. Quarantining or deleting all of this data was
unacceptable.

The company was at a point where it potentially needed
to cease operations, shut the whole network down,
company-wide, and clean every portion of the network
completely before being able to bring it back up. Six
months had been spent on repair efforts already, and at
least $1M dollars in hard costs on the clean-up effort,
and the problem was still not resolved. On top of that,
the loss of critical data had been huge.

Clearly, the virus author of today does not sit at home,
thinking of how to write another virus that can easily
be solved by most of the world’s anti-virus products of
today. They want to create billions of dollars of damage.
The extent of the damage is how they will measure
their success.

They know today’s anti-virus programs, and they study
these programs to figure out how to achieve their goal.
They are trying to figure out how to beat the current state
of anti-virus technology. There is no such thing as a safe
solution. And failure to understand this environment can
cost an enterprise millions of dollars, and significant
losses in market share.

Eventually a solution was found that helped the situation
and, over a period of months, the company’s virus
problem was brought under control. The solution
provided the ability to repair files (e.g. critical data) and
recover 100 per cent of the content from the files.

Future major viruses will get into the enterprise, and
will infect critical data files. The loss of that data will be
a huge expense and cost billions of dollars worldwide.
The IT landscape is changing constantly, and there are
new doorways opening for virus authors – such as web
services and wireless handheld devices.

We can’t anticipate the doorway that the next major
virus author will find. Just know that they will find one.
And when they do, the mission-critical task will be to
figure out how to recover the data from the files that
have been infected.

Truly recovering data and repairing the file so it is
restored to its exact original form before the virus
infection is a major philosophical shift in anti-virus
architecture. It requires a completely different approach
and requires tens of man-years of engineering effort to
accomplish. It cannot be achieved by re-architecting an
existing solution but must be developed from scratch.

The company in this case paid a heavy price to learn
this lesson. Let’s hope that it comes easier for the rest
of us!

‘Truly recovering data and
repairing the file so it is restored
to its exact original form is a
major philosophical shift in
anti-virus architecture.’

Stephen WillisStephen WillisStephen WillisStephen WillisStephen Willis
USA

33333SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

VIRUS BULLETIN www.virusbtn.com

NEWS
WWWWWAAAAATCHING AND WTCHING AND WTCHING AND WTCHING AND WTCHING AND WAITING FOR SOBIGAITING FOR SOBIGAITING FOR SOBIGAITING FOR SOBIGAITING FOR SOBIG

As the final touches were being made to this month’s issue
of VB, anti-virus experts and sysadmins worldwide waited
to discover what events, if any, would unfold when Sobig.F
began a synchronized attack at 1900h GMT on Friday 22
August 2003 and subsequent second phase of attack at the
same time on Sunday. The worm was set to contact 20
predefined IP addresses (encrypted within the virus body)
on UDP port 8998, which would then redirect infected
machines to a URL from which an unknown program would
be downloaded and run.

In the event, the attack failed: all 20 of the IP addresses
were inaccessible during the first phase. With reported
assistance from the FBI and Royal Canadian Mounted
Police, 19 of the 20 servers were taken offline and there
were no signs of the virus being able to connect to the one
remaining server. Two days later, the second stage of attack
was equally unsuccessful: although four of the servers
started responding to pings just before the attack began –
three of which were listening on port 8998 – none of them
responded when sent the worm’s eight-byte activation code.

Theories and rumours abound as to the identity of the
author of Sobig.F and its predecessors: a number of experts
believe the worm is the work of email spammers attempting
to build an infrastructure for a spam attack of epic
proportion; others believe that a highly organized group of
hackers has orchestrated the attack, while it has even been
speculated that an individual likened to comic book villain
Lex Luther is behind the worm. Unfortunately for would-be
superhero AV researchers, all theories currently remain
speculation. Meanwhile, a detailed look at the Sobig family
is planned for next month’s issue of Virus Bulletin.

PPPPPAAAAATENTLTENTLTENTLTENTLTENTLY CHANGING HANDSY CHANGING HANDSY CHANGING HANDSY CHANGING HANDSY CHANGING HANDS

Symantec has paid $62.5m for the infamous US Patent
No. 5,319,776, which has been the bane of major players
in the anti-virus industry for the last six years. In 1997,
software company Hilgraeve Inc. filed suits against
Symantec and McAfee, alleging that the companies’ email
scanners infringed its patent, granted in 1994 (see VB,
October 1997, p.3). The patent covers searching for virus
signatures in data that is being copied between media to
inhibit virus infection automatically. Most of the big players
in the anti-virus industry have run into the patent at some
point – NAI, Trend Micro and IBM settled with Hilgraeve,
while a number of other companies including Computer
Associates, Aladdin Knowledge Systems and Clearswift are
still in litigation. Symantec is reported to be reviewing which
of its competitors are infringing its newly acquired patent,
and will consider the possibility of litigation of its own.

Prevalence Table – July 2003

Virus Type Incidents Reports

Win32/Opaserv File 9064 38.09%

Win32/Sobig File 5749 24.16%

Win32/Bugbear File 1799 7.56%

Win32/Dupator File 1687 7.09%

Win32/Klez File 1360 5.71%

Win32/Yaha File 932 3.92%

Win32/Funlove File 532 2.24%

Win32/Fizzer File 462 1.94%

Win95/Spaces File 397 1.67%

Fortnight Script 167 0.70%

Win32/Kriz File 142 0.60%

Redlof Script 131 0.55%

Win32/Deborm File 128 0.54%

Win32/Ganda File 125 0.53%

Win32/Mofei File 111 0.47%

Win32/Lovelorn File 103 0.43%

Win32/Gibe File 102 0.43%

Win32/Magistr File 96 0.40%

Win32/Holar File 71 0.30%

Win32/Mylife File 63 0.26%

Win32/SirCam File 57 0.24%

Win32/Lovgate File 55 0.23%

Win32/Hybris File 38 0.16%

Win32/Nimda File 34 0.14%

Others[1] 394 1.65%

Total 23798 100%
[1]The Prevalence Table includes a total of 394 reports across
70 further viruses. Readers are reminded that a complete
listing is posted at http://www.virusbtn.com/Prevalence/.

Script
1.45 %

Boot &
 Other
0.06 %

File
 98.28%

Macro
 0.21 %

Distribution of virus types in reports

VIRUS BULLETIN www.virusbtn.com

44444 SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

CHECKING MIMAILCHECKING MIMAILCHECKING MIMAILCHECKING MIMAILCHECKING MIMAIL
Gabor Szappanos
VirusBuster, Hungary

I-Worm.Mimail appeared on the first of August 2003. It
used Windows vulnerabilities to run. Although the worm
was not extraordinary in itself, the vulnerabilities it used
and the generation data collected on the worm proved
interesting enough to warrant a detailed analysis – besides
which, any worm that can kick Klez.H off the top of the
virus charts deserves a mention.

The worm spreads in an interesting compound sandwich
file. It is essentially a MIME file, where the MIME
attachment is the worm binary in straight binary storage.
This means that, in the message, the worm is not BASE64
encoded, as we are used to.

Appended to this MHTML file is a short JavaScript dropper
code. All of this arrives at the potential victim as a ZIP
attachment containing an HTML message. When the HTML
file is opened, Microsoft’s HTML parser will skip the
lengthy kilobytes of the binary worm, find the script and
execute it. The script will extract and execute the binary
worm. The binary worm then repackages itself and spreads
to new targets.

SCRIPT COMPONENTSCRIPT COMPONENTSCRIPT COMPONENTSCRIPT COMPONENTSCRIPT COMPONENT
The script component makes use of two known Windows
vulnerabilities that are described in Microsoft security
bulletins MS02-15 and MS03-14.

The first is the ‘Local Executable Invocation via Object tag’
vulnerability, which (according to the security bulletin)
allows the execution of any file on the local file system,
with the following restrictions:

• The vulnerability would not enable the attacker to pass
any parameters to the program.

• An attacker could only execute a file on the victim’s
local machine. The vulnerability could not be used to
execute a program on a remote share or website.

• The vulnerability would not provide any way for an
attacker to put a program of his choice onto another
user’s system.

• An attacker would need to know the name and location
of any executable on the system in order to invoke it
successfully.

The vulnerability exists in Internet Explorer versions 5.01,
5.5 and 6.0. Although, at the time of the appearance of the
worm, IE 5.01 was the only version that was not vulnerable
with the latest available patch, the default installations of

Windows 98SE and Windows 2000 come with an unpatched
version. As a result, all current out-of-the-box Windows
systems are vulnerable to this attack.

To exploit the vulnerability, an object has to be created
in the script, with codebase pointing to the file stored on the
local file system. But how long can that embedded
executable be? Internet Explorer is very generous in this
sense. In my tests, Windows PE executables of up to 2 MB
could be embedded and executed in a MIME package in the
same way as the virus. It would be possible to push higher –
but unnecessary, as this size limit is more than sufficient for
all contemporary Windows malware.

What can be embedded in the package? Windows PE
executables and old DOS MZ executables can be used
(but not COM files, even if they are renamed to have
EXE extensions).

The MS01-15 vulnerability has been used by a couple of
simple Trojans and in some of the GFI MailSecurity test
email messages.

But the MS02-15 vulnerability allows the execution of
programs only from the local file system, and the worm
binary is still in the MIME email. At this point, the
MS03-14 vulnerability steps in to help. It allows the
referencing of the MIME attachments embedded in the
MIME file in the following form:

mhtml:{path}\\message.html!File://foo.exe

where {path} is the directory from which the code is
running, and which is where Outlook stores the temporary
HTML message. It is a routine task – used in many
samples – to extract this working directory, and then the
full path can easily be constructed.

The vulnerability regarding the MIME messages resolves
this reference to the actual attachment, then passes it as the
codebase. As a result, the attachment will be executed. And
because the MHTML URL now points to a local file, it
will be opened in the Local Security Zone, with higher
permissions than in the case of an HTML mail opened in
Outlook Express.

In fact, when Windows resolves the reference, it will save
the MIME attachment into the {TEMP} folder. As there is
no end boundary in the Mimail sample, anything following
the MIME header (namely the binary worm and the dropper
script) will be dumped into a temporary file and this will be
executed. This temporary file (with the script appended)
will be returned by the GetModuleFileName API call. This
will be important later.

MHTML URLs can be opened directly from the Run…
element of the Start menu. In this case the URL must be
‘mhtml:file://c:\message.html!File://foo.exe’, just as the
worm constructs it. Note that in this case a warning is

VIRUS ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

55555SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

displayed, offering to save or execute the program. If
execution is selected, another warning is displayed, stating
that the application is not properly signed (although,
depending on the OS version, this warning may not appear).
These warnings are bypassed if foo.exe is accessed from
script, as done by the worm (though an error message may
be appended to setupapi.log in the Windows folder – but
who checks this file regularly?).

This method for dropping and executing a program had
been used before the Mimail worm, for dropping two
Trojans. The script code was very similar, except that
the Trojans in question used BASE64-encoded MIME
attachments, instead of the plain binary coding used by
this worm. Either method is applicable; the virus writer
probably found it simpler to append the script than to
implement a BASE64 encoding.

THE BINARTHE BINARTHE BINARTHE BINARTHE BINARY WORMY WORMY WORMY WORMY WORM

The original size of the UPX-packed binary was 12,320
bytes, in each generation it is increased by the length of the
script dropper (536 bytes). When executed it registers itself
as a service process first, thus it will not be visible on the
task list in Windows 9x systems.

After activation the worm copies itself into the Windows
directory as videodrv.exe.

Then it adds the registry value “VideoDriver”=”%Windir%\
videodrv.exe” to the registry key

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\
CurrentVersion\Run

to ensure automatic startup. If the copy operation has been
successful (i.e. the virus can open videodrv.exe in the
Windows folder for write access) then the worm executes
that copy and exits, otherwise (if it is already running from
the Windows folder) it will spread. Instead of a mutex,
Mimail uses this method to ensure that only one copy is
spreading actively at the same time.

After that Mimail recreates its package in the Windows
directory in the file EXE.TMP. It prepends the MIME
header to the file returned by the GetModuleFileName API,
and then appends the loader script. As the binary component
already has the script at the end, the package in each new
generation will have another copy of the script.

Next, the worm creates a ZIP package containing
EXE.TMP. It will create the necessary ZIP headers for the
package, containing the binary in non-compressed,
‘store-only’ format. This file is also stored in the Windows
directory as ZIP.TMP.

With this finished, the worm creates its window named “ “,
positioned way off the standard display resolution, and the

rest of its actions are performed in the Windows message
handler. If for any reason the window cannot be created, an
error message is displayed and the worm exits.

The main spread procedure is executed as a timer callback
function, every five seconds. It opens additional threads to
accomplish the replication.

The worm calls the gethostbyname API function for the
address www.goggle.com to check that the computer is
connected to the Internet. If the call fails, the replication
routines are skipped for that timer call.

If the call is successful, three new threads are created. In
one thread Mimail collects the email addresses from all
files except with extensions: ‘.bmp’, ‘.jpg’, ‘.gif’, ‘.exe’,
‘.dll’, ‘.avi’, ‘.mpg’, ‘.mp3’, ‘.vxd’, ‘.ocx’, ‘.psd’, ‘.tif’,
‘.zip’, ‘.rar’, ‘.pdf’, ‘.cab’, ‘.wav’, ‘.com’. It searches files
in the ‘C:\Program Files’ folder and folders denoted in the
registry key:

HKCU\Software\Microsoft\Windows\CurrentVersion\
Explorer\Shell Folders

This is a long list of folders, which may include (depending
on the OS version) the browser cache directory, the My
Documents folder of the user, the Favorites, History and
similar folders – the best places to look for email addresses.

In another thread the worm sends out the infected messages.
The collected addresses are stored in the file eml.tmp in the
Windows directory. During the replication the addresses are
read back to memory from this file. For each email address
the worm performs a Mail Exchange lookup for the target
domain using the DNS servers defined for the current host.
If the MX can be located Mimail connects to it and delivers
the mail using SMTP.

If a DNS server is not found, it will default to 212.5.86.163
(the name server of a Russian fashion store, lemonti.ru –
probably related to the virus author, who might be suspected
of being of Russian origin). The worm thus directly contacts
the mail server assigned to the destination address. This
way if someone cares to check out the email headers of an
infected message, it would still seem as if it is coming from
the target domain – the signs of spoofing in this case are not
as obvious as using the usual technique of sending via the
local SMTP server.

The infected messages appear to come from the admin@
account on the local domain (the virus spoofs the sender
address). The messages contain the ‘X-Mailer: The Bat!
(v1.61)’ line in their message header to make it look as if
it has been mailed from an email client. The subject line is
the following:

your account {text}

where {text} is a randomly generated string built using
lower-case characters of the English alphabet.

VIRUS BULLETIN www.virusbtn.com

66666 SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

The body of the message is as follows:

Hello there,

I would like to inform you about important
information regarding your email address. This
email address will be expiring.

Please read attachment for details.

—

Best regards, Administrator

{text}

Here {text} is the same as in the subject.

It is most likely that the random characters are intended to
ensure that the outgoing messages have different subject
lines, in order to bypass spam filters, as spammers often use
this technique.

The virus is attached to the outgoing messages. The
attachment name is message.zip. The content of this ZIP
file is message.htm, which contains the worm and a short
Javascript code that drops and executes it.

The worm also captures text from the foreground windows
and sends this data to specific email addresses.

GENERAGENERAGENERAGENERAGENERATION TIME ANALTION TIME ANALTION TIME ANALTION TIME ANALTION TIME ANALYSISYSISYSISYSISYSIS

From time to time I give presentations about email viruses,
in which I compare their spread with traditional, usually
boot, viruses. The rapid spread of email viruses is attributed
to their large multiplication ratio (they send themselves to
several addresses in a single propagation act) and their short
cycle time (the time elapsed between two replication
cycles). The cycle time depends roughly on how often an
average user reads their mail (and executes the attachment,

whether deliberately or accidentally), and on how fast an
email travels from source to destination (usually only a
matter of minutes).

Until now I had only subjective estimates of the latter
figure, placing it between 30 minutes and an hour. However,
Mimail gave us a real-life ‘measurement’ of this cycle time.
As a result of a bug in the replication routine, the worm
appends its script to itself each time it replicates. Therefore,
simply by counting the occurrences of this script in the
infected message we get its generation number.

Using data collected by MessageLabs (thanks to the
generous help of Alex Shipp, who provided me with first
occurrence data for each generation), it is possible to
determine how long it took for the virus to jump from
one generation to the next.

The table shown below summarizes the results from
generation 1 to generation 25, listing the relative appearance
of each generation from the first, in hour:minute format.

Generation 0 1 2 3 4 5 6 7 8 9 10
Rel. time
from start 0:00 1:40 1:35 4:12 3:10 2:52 3:40 4:07 3:47 4:09 4:18

Generation 11 12 13 14 15 16 17 18 19 20 21
Time 4:29 4:27 4:59 5:12 5:19 5:59 6:23 6:40 6:30 7:17 7:31

Generation 22 23 24 25
Time 8:15 8:36 8:42 10:18

Using this data some nice charts can be drawn, as illustrated
opposite.

Although we do have data up to generation 33, the part
missing from this table cannot be used for evaluation
purposes. The reason is simply because the virus appeared

• • • • • Two-day conference programme featuring presentations by leading AV experts

• Exclusive exhibition featuring world-class AV vendors

• Full social and entertainment programme

Register online at wwwRegister online at wwwRegister online at wwwRegister online at wwwRegister online at www.vir.vir.vir.vir.virusbtn.comusbtn.comusbtn.comusbtn.comusbtn.com

Join us at VB2003 in TJoin us at VB2003 in TJoin us at VB2003 in TJoin us at VB2003 in TJoin us at VB2003 in Torororororontoontoontoontoonto

VIRUS BULLETIN www.virusbtn.com

77777SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

on a Friday afternoon, and the later generations appeared
over the weekend, during which time ‘normal’ users (i.e.
the targets of the virus) were not spreading the virus.
During this period larger time lags were observable – more
than a day elapsed between generations 30 and 31. Also,
the data for the first five generations is strongly biased as
a result of the low number of viruses in circulation in
these generations.

Generations 5 through 25 can give us an excellent estimate
for the cycle time of the worm – which, using some
regression analysis proved to be 18.3 minutes (more
precisely, the cycle time is between 16.2 and 20.4 minutes,
with 95% confidence level).

It turned out that my original estimate (30–60 minutes) for
the cycle time of a typical email worm was an overestimate,
and in reality it takes only about 18 minutes for a worm to
make a full infection circle. Because of the ZIP packing this
virus required additional clicks for activation (compared
with many other worms), so this cycle time could be even
lower for an average worm, but not too much.

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

Some worms make use of Windows security holes to execute
attachments without the need for the user to double-click.
Other worms, like Mimail, use social engineering to achieve
the same goal. In this case the users were made to believe
that the message came from the sysadmin of their domain.

Even though the virus was packed in a ZIP archive, users
carried out the extra two mouse clicks (either using
applications like WinZIP or the native ZIP support of
Windows XP) that were needed to activate the attachment.
Mimail easily bypassed Klez.H on the top of virus
prevalence charts, proving that social engineering can
sometimes be more effective than automatic activation.

YOUR MUMU.B DON’T DANCE…YOUR MUMU.B DON’T DANCE…YOUR MUMU.B DON’T DANCE…YOUR MUMU.B DON’T DANCE…YOUR MUMU.B DON’T DANCE…
Rodelio Fiñones, Jaime Lyndon ‘Jamz’ A. Yaneza
TrendLabs, Trend Micro Inc., Philippines

In June 2003, we were alerted by a number of customer
inquiries regarding the release of a new variant of the
MUMU worm.

Like its other variants, this version of the worm spreads
through the Windows NT, 2000, and XP-based system
default administrative shares. It propagates by scanning the
whole Class C network and connects to systems with weak
administrator accounts and passwords using a dictionary
attack. The first variant of the worm, BAT_SPYBOT.A,
used a collection of batch files and hacking utilities to
infiltrate vulnerable systems, while this variant embeds all
its components in a single Win32 executable and extracts
them along the way. The later variant also contains new
features such as key logging and process termination.

AND IT’S TIME TO GO TO TOWN…AND IT’S TIME TO GO TO TOWN…AND IT’S TIME TO GO TO TOWN…AND IT’S TIME TO GO TO TOWN…AND IT’S TIME TO GO TO TOWN…
Upon execution, the worm creates two mutexes, named
‘qjinfo1mutex’ and ‘qjinfo2mutex’. This is to ensure that
only one instance of the worm is running on the system.

While active in memory, the worm parses its resources to
extract the following components:

• %System%\last.exe (20,480 bytes)

• %System%\kavfind.exe (30,208 bytes)

• %System%\IPCPass.txt (510 bytes)

• %System%\psexec.exe (36,352 bytes)

• %System%\mumu.exe (294,912 bytes)

The file LAST.EXE is executed immediately as a child
process. It is responsible for the key logging and process
termination routines. KAVFIND.EXE (which is detected by
Trend Micro as TROJ_HACLINE.A) is a UPX-compressed
and multi-threaded hacking tool that can be used for
scanning IPC shares on remote machines. It uses the file
IPCPass.txt as an optional input file to contain the list of
usernames and passwords. Trend detects the file IPCPass.txt
as BAT_SPYBOT.A.

PSEXEC.EXE is a legitimate remote process tool produced
by SysInternals, albeit compressed by UPX. Finally,
MUMU.EXE is a copy of the original worm that is distributed
on the vulnerable systems in the LAN.

When the file, LAST.EXE, is active in memory, it
decompresses and creates another mutex named
‘qjaashyuhv1.0’. Next it extracts the embedded components
%System%\bboy.dll (36,864 bytes) and %Windows%\bboy.exe

VIRUS ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

88888 SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

(20,480 bytes), as well as creating the following auto-run
registry entry:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\
CurrentVersion\Run]
Kernel =”%Windows%\bboy.exe”

This ensures that this worm component is executed on
system startup. Since most of the worm functionalities are
performed by components, the main worm program does
not need to be registered in any auto-run keys.

Furthermore, this component remains resident in memory
until the system has been rebooted or until a user terminates
it manually. While in memory, it drops the file BBOY.EXE
continuously and creates the above-mentioned registry entry.

Under Windows 9x systems, the worm registers itself as a
service process such that its process name is not visible in
the Windows TaskList (which is visible by pressing
CTRL-ALT-DEL).

WHEN EVENIN’ ROLLS AROUND…WHEN EVENIN’ ROLLS AROUND…WHEN EVENIN’ ROLLS AROUND…WHEN EVENIN’ ROLLS AROUND…WHEN EVENIN’ ROLLS AROUND…
The keylogging and process termination process begins
by loading BBOY.DLL in the address space of the current
process using the LoadLibrary API. Then it retrieves
the entry-point of the BBOY.DLL exported function
InstallHook and invokes it at once. The InstallHook API
initiates monitoring by invoking the SetWindowsHookEx
Windows API, which then installs an application-defined
hook procedure in the hook chain. The worm specifically
monitors messages that are posted in the Windows message
queue – those that are associated to all the threads running
in the same desktop as the calling thread (in this case
LAST.EXE/BBOY.EXE thread). Subsequent calls to
GetMessage and PeekMessage APIs will allow the worm to
retrieve the information from these messages. All recorded
information is stored in the file QJINFO.INI.

Another thread reads the contents of the log file
continuously. Prior to sending the log file, this worm thread
checks for the existence of the process MAIN (the extension
is ignored). Note that this file is not included as one of the
worm’s components. It is possible that this file belongs to
other malicious worms or possibly is one of the components
for the next variant of the worm. It will send the log file
only if this process is running on the system. Using a
separate thread, it sends the file to the email address
specified at fix offset 40H of the current program (it could
be LAST.EXE or BBOY.EXE) via connection to the web
mail site www.58589.com. The email has the following
characteristics:

From: babyj@8848.com

To: terminal2000@163.com

BCC: cq@58589.com

The worm also attempts to terminate the following
processes:

kvapfw.exe

kvfw.exe

DFVSNET.EXE

PasswordGuard.exe

EGhost.exe

Iparmor.exe

pfw.exe

JUST ABOUT TO MOVE IN…JUST ABOUT TO MOVE IN…JUST ABOUT TO MOVE IN…JUST ABOUT TO MOVE IN…JUST ABOUT TO MOVE IN…
In order to replicate in the network, the worm utilizes a
three-year-old ‘NT LsaQueryInformationPolicy() Domain
SID Leak Vulnerability’ (CVE 2000-1200) to retrieve NT
domain’s SID from workstations within that domain. The
SID can then be used to obtain a list of usernames. Showing
similarities with the previous variant of this worm, it also
uses a weak username and password dictionary attack to
penetrate systems. It uses the hacking tool KAVFIND.EXE
with the input file IPCPass.txt to connect to port 139 (SMB
over TCP/IP) of the remote machine within a Class C
network. The following is the list of usernames and
passwords listed in the file IPCPass.txt:

%null% 88888888 public

%username% 5201314 private

%username%12 pass default

%username%123 passwd 1234qwer

%username%1234 password 123qwe

123 sql abcd

1234 database abc123

12345 admin 123abc

123456 root abc

1234567 secret 123asd

12345678 oracle asdf

654321 sybase asdfgh

54321 test !@#$

1 server !@#$%

111 computer !@#$%^

11111 Internet !@#$%^&

111111 super !@#$%^&*

11111111 user !@#$%^&*(

000000 manager !@#$%^&*()

VIRUS BULLETIN www.virusbtn.com

99999SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

Note: <X> is a one-byte random number.

The worm also creates a hidden pop-up window with the
class name ‘Systary’ and adds this registry entry:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\
CurrentVersion\Run

Folder Service = qjinfo.exe

Note: QJINFO.EXE is not included in the worm
components. It is possible that other currently unknown
or forthcoming variants of MUMU will use this file.

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

WORM_MUMU.B proves another point that network-
aware worms, coupled with exploit code, can successfully
wreak havoc in a company’s network. We are seeing a trend
in which standard Windows administrative tools, commonly
used by network administrators for network maintenance,
are being used maliciously against them.

The issue of detection depending on how such tools are
used is now in the minds of users and poses another
daunting task for the anti-virus industry, given the limited
ways in which the nature of these tools could be
ascertained. Should this now be part of the functionality of
an anti-virus product?

The overall success of this worm is a result mainly of what
we call the ‘human element’ – or rather the way in which
‘social engineering’ comes into play. The need to improve
user education and awareness is still of paramount
importance in this situation.

WORM_MUMU.B

Type: Network worm.

Aliases: W32.Mumu.B.Worm,
W32/Mumu.b.worm,
Win32/HLLW.Mumu.A,
Worm.Win32.Muma.c,
W32/Muma.B, Win32.HLLW.Mumu,
Worm/Mumu.B.1, Worm/Muma,
Worm.Win32.Muma.294912.

File size: 294,912 bytes.

Payload: Performs multi-threaded IP
scanning, process termination,
key logging.

Removal: Terminate worm processes. Delete
malicious files. Remove registry
entries added by the worm.

00000000 security KKKKKKK

888888

After two minutes of execution, the worm inspects the
output file IPCFind.txt for the list of remote machines that
can be exploited. The format of the output is

<IP Address> <user name>/<password>

It connects to each exploitable IP address using the
command

net use \\%ip_address%\admin$ “%password%” /
u:”%user_name%”

where

%ip_address% = the IP address of the target machine

%password% = the password obtained from IPCFind.txt

%user_name% = the username obtained from IPCFind.txt.

Note: NET is a legitimate and default-installed Windows
application.

Once the connection is established, the worm MUMU.EXE
is copied to the \\%ip_address%\admin$\system32 folder
and PSEXEC.EXE is used to execute the worm remotely.
The worm uses the command below to accomplish this task:

start /i /min /wait /B psexec \\%ip_address% -
u “%username%” -p “%password%” -d MUMU.EXE

Aside from IP scanning, it also attempts to distribute the
worm to all the active TCP connections. It executes the
following command to retrieve the list of connections and
saves it to a temporary file:

CMD /c netstat -n|find “:” >A.TMP

After one minute of execution, it parses the temporary file
A.TMP to ping every IP address where connection state was
set to SYN_SENT. The connection is assumed to be active
once a ‘reply’ string is received. In that case, the worm
connects and copies MUMU.EXE to the admin$\
system32\MUMU.EXE. Then the worm file is executed
remotely using PSEXEC.EXE tool. The network ID of the
network is also stored in this registry path:

HKEY_LOCAL_MACHINE\SOFTWARE\mumu

THE OLD FOLKS SATHE OLD FOLKS SATHE OLD FOLKS SATHE OLD FOLKS SATHE OLD FOLKS SAY…Y…Y…Y…Y…

The worm also sends the log file QJINFO.INI via SMTP to
a server on smtp.sina.com.cn. It retrieves the mail service
using GetServByName API and generates an email with the
following characteristics:

From: reint0.student@sina.com

To: sendmail2.student@sina.com

Subject <X><computer name>

Date: <current_date>

VIRUS BULLETIN www.virusbtn.com

1010101010 SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

BLAST OFF!BLAST OFF!BLAST OFF!BLAST OFF!BLAST OFF!
Peter Ferrie, Frédéric Perriot, Péter Ször
Symantec Security Response, USA

On 11 August 2003 – the same day it was completed – a
6176-byte-long UPX-compressed bug started to invade the
world using a recent vulnerability described in Microsoft’s
MS03-26 security bulletin. Even Windows Server 2003 was
affected by this vulnerability. Patches were made available
by Microsoft, but on this occasion there was only a short
delay between the announcement of the vulnerability and
the appearance of the worm that exploited it.

Users of Windows XP had a chance to get the patch applied
automatically via Windows Automatic Updates. However,
the same cannot be said for the Windows 2000 platforms,
where users would need to pay closer attention to the update
procedures.

ALL SYSTEMS GOALL SYSTEMS GOALL SYSTEMS GOALL SYSTEMS GOALL SYSTEMS GO

The first thing Win32/Blaster does when it runs on a
system is to create a value ‘windows auto update’ in the
‘HKLM/…/Run’ registry key, pointing to the bare file name
‘msblast.exe’ (for variant .A). This relies on the assumption
that the executable has ended up in a directory that Windows
searches by default, which is usually the case.

Then the worm attempts to create a mutex named ‘BILLY’,
and aborts if the mutex exists already, in order to avoid
multiple instances of the worm running at the same time.

Win32/Blaster then waits for an active network connection,
and starts searching for machines to infect.

SP4, SP3, SP2, SP1, IGNITION!SP4, SP3, SP2, SP1, IGNITION!SP4, SP3, SP2, SP1, IGNITION!SP4, SP3, SP2, SP1, IGNITION!SP4, SP3, SP2, SP1, IGNITION!

The target selection in Blaster is somewhat different from
that found in CodeRed and Slammer. Sixty per cent of the
time, Blaster will go after entirely random IP addresses, and
the other 40 per cent of the time it will attack machines on
the same class-B-sized network as the host, hoping to take
over pools of vulnerable systems on the local area network.

The scanning for targets is linear (the target address is
increased monotonically until it reaches the end of the IP
space) and, in the case of a local attack, starts at or slightly
below the class-C of the host.

The worm targets machines running Windows 2000 and
Windows XP, and intentionally favours the exploitation of
Windows XP machines (probably because the payload relies
on the increased availability of raw sockets there – the
requirement to be administrator was removed). Eighty

per cent of the time, the exploit is tuned for Windows XP
systems, the other 20 per cent for Windows 2000 systems.
This selection is made only once, whenever the worm
initializes.

All unpatched Service Packs of both Windows XP and
Windows 2000 systems are affected, but because of this
random tuning, the worm will sometimes just cause a denial
of service (DoS) on the attacked machines, crashing the
RPC service.

SECOND STSECOND STSECOND STSECOND STSECOND STAGE – THE SHELLAGE – THE SHELLAGE – THE SHELLAGE – THE SHELLAGE – THE SHELL

The infection of a new machine is a three-phase process,
involving quite a lot of network activity in comparison
with the single-connection CodeRed and the lightweight
Slammer.

First, the worm sends its attack buffer over port 135/tcp,
which exploits the RPC DCOM vulnerability and causes the
remote machine to bind a shell in the SYSTEM context
(‘cmd.exe’) to port 4444/tcp.

Second, the worm sends a command to the newly created
shell to request a download of the worm file from the
attacking host to the victim. The transfer is done over port
69/udp using the tftp protocol (the worm implements its
own crude tftp server which formats sent data according to
RFC 1350, and uses the tftp client that is present by default
on most Windows systems).

Finally, once msblast.exe has been downloaded successfully,
or after 21 seconds, the worm requests the remote system to
execute the downloaded file.

HOUSTON, WE HAHOUSTON, WE HAHOUSTON, WE HAHOUSTON, WE HAHOUSTON, WE HAVE A PROBLEMVE A PROBLEMVE A PROBLEMVE A PROBLEMVE A PROBLEM
Once the shell exits, the hijacked RPC service thread
running the shell code calls ExitProcess(), causing the
service to terminate. The termination of the RPC service,
regardless of how it occurs, triggers a reboot in Windows XP
systems after one minute. On Windows 2000 systems, the
termination will result in a variety of unusual side effects,
among the most critical of which is the inability to use the
Windows Update web service.

PAN GALACTIC GARGLE BLASTERPAN GALACTIC GARGLE BLASTERPAN GALACTIC GARGLE BLASTERPAN GALACTIC GARGLE BLASTERPAN GALACTIC GARGLE BLASTER
As is common for fast-spreading worms, Win32/Blaster
reuses an exploit code that was posted previously to various
security mailing lists. The exploit uses two so-called
‘universal offsets’ as return addresses in a classic stack
buffer overflow, each of which is compatible with multiple
service packs of one Windows version. The vulnerability is
located in the code of the rpcss.dll file, in a function related

VIRUS ANALYSIS 3

VIRUS BULLETIN www.virusbtn.com

1111111111SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

to the activation of DCOM objects. The buggy function
extracts a NetBIOS server name from a UNC path specified
by a DCOM client, and attempts to place it into a 32-byte
buffer on the stack, without bounds checking.

Once the stack is smashed, the hijacked return address leads
to a ‘call ebx’ instruction (in a ‘well-known’ constant data
table) which then jumps back to a nop ramp in the shell
code. This is possible because the ebx register is pointing to
a local variable in an earlier stack frame (i.e. at a higher
memory address) created by the fourth-level (!) caller of the
buggy function (see Figure 1).

The shell code retrieves some useful API addresses, binds to
port 4444/tcp, accepts one incoming connection, spawns the
shell and ties its input to the port 4444 socket, waits for the
shell process to finish, then exits.

Figure 1: Memory layout and control flow.

MS-DMS-DMS-DMS-DMS-DoooooSSSSS
Win32/Blaster implements a SYN-flooding Distributed
Denial of Service attack against the website
‘windowsupdate.com’, an alias of the main Microsoft
Windows Update site.

The attack is carried out if the day of the month is greater
than 15, or the month is greater than 8, i.e. every day from
16 August to the end of the year, and then starting again
on 16 January until 31 January, 16 February until 28(/29)
February, and so on.

To generate the traffic, the worm uses raw sockets. DoS
packets have spoofed source IP addresses, the two low

octets are randomized for each sent packet; the high octets
are either taken from an IP of the source host, or otherwise
initialized once to random values.

The traffic features various characteristics that can help in
recognizing it: the two low bytes of the TCP sequence
number are always zero, the source port is between 1000
and 1999 (inclusive), and the IP identification field always
has a value of 256.

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

The first use of a command shell attack by a Win32 worm
has finally arrived. The spawning of a shell had previously
been used only by Win32 exploits and by Unix worms
executing /bin/sh with system calls such as system() or
execve().

Windows worm writers are slowly merging existing exploit
code with their creations to make them more harmful. The
tendency that started with CodeRed, Slammer and other
Unix worms, continues. The delay between the appearances
of such creations seems to have decreased from a year to
six months.

It is evident that among defensive technologies, proactive
behaviour blocking techniques will become essential to
fight back against such ‘cloned’ worms in the future. Peter
Ször’s paper, ‘Attacks of the worm clones – can we prevent
them?’ (to be presented at this year’s RSA Europe
conference in November) uncovers the details of how
we can get closer to this goal and demonstrates research
prototypes that work effectively against this clone.

This time not only corporate servers risked being affected;
the threat had the potential to reach the majority of Windows
desktops. This is ‘Buffer Overflow for the Masses’.

Win32/Blaster

Size: 6176 bytes.

Aliases: W32.Blaster.Worm,
W32/Lovsan.worm,
Win32.Poza.A.

Type: Worm, exploits buffer overflow
vulnerability in DCOM/RPC
(described in Microsoft’s MS03-026
Security Bulletin).

Trigger: DoS attack attempt against
windowsupdate.com after
16th of each month or after August
each year.

VIRUS BULLETIN www.virusbtn.com

1212121212 SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

DIGITDIGITDIGITDIGITDIGITALALALALAL SIGN:SIGN:SIGN:SIGN:SIGN: THETHETHETHETHE NEXTNEXTNEXTNEXTNEXT TTTTTARGET?ARGET?ARGET?ARGET?ARGET?
Dr Ferenc Leitold
Veszprém University, Hungary

The tram drivers in Budapest
often warn the passengers:
‘Beware! There are pickpockets
on the tram – look after your
property!’ Public messages like
this one have two effects: the
passengers hold their bags
tighter, and any potential
pickpockets are alerted to a
good opportunity that could be
exploited now or in the future.
This article attempts to present

the possible points of attack relating to the use of the digital
signature. Of course, this warning may also have two
effects. Nevertheless, it is in the interest of everyone using
or accepting digital signatures to be aware of the dangers
when they are using the system.

The security problems which are being made public day
by day and the continual appearance of new types of virus
are undermining the security of the electronic signature. In
the hardware and software (including operating systems)
environment there is potential for the digital signature to
become the target of virus attacks. A computer virus or
worm can take control of the victim’s computer, where it
can create a new signature or, by manipulating the signing
process, counterfeit an approved signature.

A further problem is the forwarding of confidential
documents or messages. For this PKI tools provide an
excellent solution. But the forwarding of an encoded
message – especially through a firewall with virus
protection – raises several security issues.

DIGITDIGITDIGITDIGITDIGITAL SIGNAAL SIGNAAL SIGNAAL SIGNAAL SIGNATURETURETURETURETURE
The algorithm of the digital signature uses the algorithm of
the public key encoding (e.g. RSA). The digital signature
works as follows. Using the binary code series of the
document to be signed, a fingerprint peculiar to that
document is prepared. This process can be carried out with
the help of the Hash algorithms. The fingerprint is then
ciphered with the cipher part of the public key algorithm.
The code series prepared this way is the digital signature
rendered to the document. Afterwards the sender forwards
the document together with the digital signature rendered
to it. The recipient receives the document and the digital
signature and, with the help of the same Hash algorithm, he
prepares the fingerprint rendered to the document. Using the

sender’s public key, he also prepares the fingerprint
rendered to the digital signature. If the two fingerprints are
identical, he can make sure that the digital signature was
made with the cipher pair of the public key used for the
supervision. The mathematical theory of the method does
NOT ensure that the digital signature has been rendered to
the person signing the document or that the digital signature
has been made with the knowledge of the owner of the
cipher key.

TRADITIONAL SIGNATRADITIONAL SIGNATRADITIONAL SIGNATRADITIONAL SIGNATRADITIONAL SIGNATURETURETURETURETURE ––––– ELECTRONICELECTRONICELECTRONICELECTRONICELECTRONIC
SIGNASIGNASIGNASIGNASIGNATURETURETURETURETURE

When we sign a document on paper we rely on our eyes and
our mental ability to make sense of what we see. Our eyes
will give evidence to the fact that the signature is put only
onto the document that we intend to sign.

When we prepare an electronic signature we must believe
that the information displayed on the screen corresponds to
a bit series stored in the memory or the mass storage. We
must believe that the unit constructing the signature (e.g.
an external card reader connected on a serial port or USB)
provides only that bit series with the electronic signature
whose correspondence is displayed on the screen.

Figure 1. Electronic signature.

When we use a multi-purpose computer to prepare
electronic signatures then we must completely trust its
hardware and software installation and the proper operation
of the software. Of course, we cannot check this in any
visible objective way. Thus, there are two opportunities for
a potential attacker:

• to affect the presentation

• to manipulate the signing procedure.

AFFECTING THE PRESENTAFFECTING THE PRESENTAFFECTING THE PRESENTAFFECTING THE PRESENTAFFECTING THE PRESENTAAAAATIONTIONTIONTIONTION
We ought to expect the document that is to be signed to
contain all the information required to interpret and present
it. If information from another source is required then the
image presented of the document may be affected. For
example, Word and certain PDF documents do not contain

FEATURE 1

VIRUS BULLETIN www.virusbtn.com

1313131313SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

all the fonts required to present the image of a document.
Thus, in a different environment from that in which the
document was created the fonts may be substituted and
the image of the document will be different in the new
environment. Unfortunately, ASCII text files are no
different. Despite the fact that there are no fonts here we
must know the image of the characters for the presentation.
This is information outside the document (the bit series of
the text), which is fixed by the ASCII standard, but the
presentations are made by the hardware and software of
the computers. In the case of a VGA card the image of the
characters can be overwritten! The problem is unrelated to
operating system. The notion of fonts exists under Linux
and UNIX systems too and a StarOffice document does not
contain the images of the letters either. To ensure the image
presented is an accurate representation of the document it is
vital that the document itself contains the binary images of
the characters.

What opportunities are available to an attacker to exploit the
gap in the security system?

1. If the attacker has access to another computer he can
change the image of the letters in any of the fonts.
Applications that do this are freely available on the
Internet (see Figure 2).

2. An attacker may create his own program to change
the letters.

3. The attacker can send this program via email. A
tremendous number of viruses are sent by email today.

Figure 2. Easy font modification.

A malicious attacker could easily load a program onto a
victim’s computer, which ensures that the signer will see
something different from what he intends to sign. He can
also eradicate himself entirely from the victim’s computer
following the signing, e.g. at a definite time. After that
the user would try to prove his honesty in vain; the
electronic signature is an approved evidence in the courts
of some countries.

MANIPULAMANIPULAMANIPULAMANIPULAMANIPULATINGTINGTINGTINGTING THETHETHETHETHE SIGNINGSIGNINGSIGNINGSIGNINGSIGNING PROCEDUREPROCEDUREPROCEDUREPROCEDUREPROCEDURE
If we are fully aware of what we intend to sign – or at least
we believe that we are – we can provide the document with

our electronic signature. In order to do this we need a
signature-making device.

The signature-making device contains software as well as
hardware elements, and ensures that all conditions are
fulfilled in order to carry out the signing procedure without
any further interaction. If we use some kind of a chip-card,
after inserting the card every condition is given for the
signature. We cannot check manually whether we render our
signature to that particular bit series and we cannot make
sure that there is no signature rendered to other bit series.

The following method could be used for an attack: a
malicious program, which is loaded onto the computer in
one way or another watches the interactive activity the user
must carry out after satisfying every condition for the
signature (e.g., he has entered the chip-card into the reader).
The malicious program senses what information the user
program sends to sign for the card reader. The malicious
program sends this information to the reader and waits for
the response. It does not forward it to the user program but
sends another bit series for the reader to sign. When this has
happened, the malicious program sends back the signed
answer to the user program. All this happens so quickly that
the user does not notice anything. Like the majority of email
viruses the malicious program may even send the signed bit
series back to the attacker using its own SMTP routine.

USING DOCUMENTS WITH A DIGITUSING DOCUMENTS WITH A DIGITUSING DOCUMENTS WITH A DIGITUSING DOCUMENTS WITH A DIGITUSING DOCUMENTS WITH A DIGITALALALALAL
SIGNASIGNASIGNASIGNASIGNATURETURETURETURETURE
The advantage of the digital signature is that the two
signatories of a common declaration (e.g. a contract) need
not meet in person. It is sufficient to exchange the
electronically signed declarations. Nevertheless, everybody
prefers to handle their contracts discreetly and would not
like any unauthorised party to have access to them. PKI
offers an excellent opportunity to avoid such unauthorised
access by ciphering the messages.

The electronically signed document must be sent to the
receiving party. We can do this through data media or by
mail. Either way the solution is not less comfortable than in
the case of the traditionally signed paper document. The
only significant difference is that when forwarding through
data media we can send or carry the information in
ciphered format.

A natural way of forwarding a document is sending it
through the Internet. Sending a message on the Internet is
about as safe as sending information on a postcard – pretty
much anyone can read it – therefore it is essential to cipher
the document.

Today, every business or institute has an internal
information infrastructure or inner network. It is very

VIRUS BULLETIN www.virusbtn.com

1414141414 SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

common for there to be a firewall in place at the meeting
point of the internal network and the Internet. The firewall
watches the traffic between the inner network and the
Internet and tries to protect the internal network from the
dangers coming from the Internet. A well-configured
firewall system must have packet-filtering devices and
content-filtering abilities (e.g. virus protection) too.

Let us assume that two managers intend to exchange their
electronically written documents on the Internet. The easiest
way to do this is to send the signed message through email.
It is essential for both of them to keep the content of the
document secret, even within the internal network.
Therefore they cipher their messages, which can be done
easily with PKI technology.

The real security gap occurs at the firewall. The system
managers maintaining the firewalls have two options:

1. They configure the firewall so that it does not allow
documents through if their contents cannot be checked.
But, in this way, ciphered and signed documents will
never get through to the other party.

2. The firewall is set to let through ciphered messages
without supervision. Then the two managers can
exchange the signed and ciphered messages. But this
lapse in security is sufficient for an attacker to send a
malicious program through the firewall – if it is
ciphered with the manager’s public key (see Figure 3).

Figure 3. Opportunity to attack through the firewall.

SUGGESTIONSSUGGESTIONSSUGGESTIONSSUGGESTIONSSUGGESTIONS
Being aware of the security problems described above we
cannot claim that the use of the digital signature is perfectly
safe. If we assume that the digital signature is made on a
computer that is used for multiple purposes, we must face
serious security problems.

It does make a difference what we sign, or rather, what we
sign can be interpreted only in the way we mean it. It does
make a difference what system and what device we are
using for the signature. And, finally, it does make a

difference for what purpose we intend to use the signed
document and how we intend to forward it.

One of the shortcomings of the legal regulations in many
countries is that they do not specify unambiguously the
types of data that can be signed electronically. The
legislation ought to define ‘text’ and ‘letter’. Which are the
electronic forms that can be regarded as ‘text communicated
with letters’? Is a scanned A4 page saved in a binary picture
format acceptable if it contains letters only?

It is also a basic expectation that the regulated forms and
standards should be made public and accessible for all,
otherwise how could we supervise a document based on a
ciphered form? The supervision could be assisted with
supervising software with an open source code.

Regulations should be brought into effect regarding the
forwarding of documents that have been signed digitally.
At the moment a few of the regulations about the digital
signature excludes the use of the keys for other (i.e.
ciphering) purposes. The ciphering keys could be classified
similarly to the keys used for the signatures. With a
common regulation the providers of the authentication
could carry out both authentications a lot more easily than
doing so separately.

I believe users should be made aware of the potential
sources of danger. This could be done by the providers of
authentication because they have knowledge of the devices
used for digital signatures, and ought to provide a set of
guidelines for their secure use.

Users – whether private individuals, business enterprises or
public institutions – are interested in the secure operation
of their systems. The security of the signature-making
devices is closely related to the overall security of the
computer. Making the computer more secure by installing
a firewall and/or virus protection or a set of security
guidelines will make the process of creating the digital
signature more secure too.

There is no solution to the security of the digital signature
that can be detached from the overall security of the
computer.

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

The rendering of an electronic signature to a document
raises a number of security problems when we use a
computer for making the signatures. The reason is that
there is no operating system (probably there cannot be
any) which could provide sufficient security for making
digital signatures at the moment. Users must maintain an
overall security culture, which can help to prevent the
potential problems.

VIRUS BULLETIN www.virusbtn.com

1515151515SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

CHALLENGES IN GETTINGCHALLENGES IN GETTINGCHALLENGES IN GETTINGCHALLENGES IN GETTINGCHALLENGES IN GETTING
‘FORMAL‘FORMAL‘FORMAL‘FORMAL‘FORMAL’ WITH VIRUSES’ WITH VIRUSES’ WITH VIRUSES’ WITH VIRUSES’ WITH VIRUSES
Arun Lakhotia and Prabhat K. Singh
University of Louisiana at Lafayette, USA

Is it a virus, a worm, a Trojan, or a backdoor? Answering
this question correctly for any arbitrary program is
known to be an undecidable problem. That is, it is
impossible to write a computer program that will identify
correctly whether an arbitrary program is a virus, a worm,
etc. – no matter how much computing power is thrown at
the problem.

With the emergence of polymorphic and metamorphic
viruses, the anti-virus community is finally beginning to
face this theoretical limit. Signature-based heuristics,
whether dynamic or static, for detecting malicious code
are no match for a program that modifies, encrypts and
decrypts its code as it propagates.

Researchers in academia and industry are beginning to
develop anti-virus technologies founded on formal methods
of analysing programs (Christodorescu and Jha 2003, 12th
Usenix Security Symposium, 2003; Perriot, 13th Virus
Bulletin International Conference 2003; Singh, Moinuddin
et al., 2nd European Conference on Information Warfare
and Security, 2003). These methods, with rigorous
mathematical foundation, have mostly been developed for
optimizing compilers and, more recently, for hardware and
software verification.

The mathematical guarantees offered by these methods
are a necessity for compilers and verifiers, for it is
unimaginable that one would use a compiler or a verifier
based on heuristics that gives correct results only 90% of
the time. The success of these techniques in compilers and
verifiers has been extrapolated to offer promise in anti-virus
technologies.

We argue that the formal methods for analysing programs
for compilers and verifiers when applied in anti-virus
technologies are likely to produce good results for the
current generation of malicious code. However, this success
will be very short-lived for it is extremely easy to ‘attack’
these analysers to make them produce incorrect results.

The fundamental basis of our observation is that the
formal methods designed for optimizing compilers assume
that the compiler and the programmer are allies. In other
words, the programmer does not stand to benefit from
breaking the formal analysis. On the contrary, the compiler
writer can assume that a knowledgeable programmer may
be willing to reorganize a program to get optimal results
from the compiler.

If there is one thing we can learn from polymorphic and
metamorphic viruses it is that virus writers enjoy the
challenge of beating the anti-virus technologies. Also, it
would not be inaccurate to say that the virus writers, or say,
the virus-engine writers are not just good programmers;
they have a very good understanding of computer science.
It is by no means a small feat to write a program that
disassembles a host program; reorganizes the code; injects
malicious code deep inside this reorganized code;
reassembles the new program; and overwrites its disk image
in the correct format. And this has not even touched the
capabilities needed to encrypt, decrypt and morph the
malicious code.

It should, then, be safe to assume that virus writers can
and will find ways to break the formal analysis techniques
as well.

Are we saying that it is not worth using formal methods in
anti-virus technologies? Not really. Just as signature-based
heuristics (however limited) have offered effective defences
by raising the bar for the virus writer, so will the use of
formal methods. However, these methods must be adapted
to the new scenario where the programmer (i.e. the virus
writer) and the analyser have conflicting goals.

Rather than acting like an ostrich, it is important that we
assess the use of these methods and their effectiveness
against attack on the analysis mechanism itself. This is not
an easy challenge, for as we show, it calls for a complete
rethinking of all the underlying assumptions in all phases
of analysing a program.

In this article we enumerate, using an example, the promises
and pitfalls of formal analysis. We then outline the steps
traditionally used in performing such analyses. Next we
show how the known algorithms for each step can be
broken. We conclude the article with a call to rethink the
process of analysing binary executables.

PROMISES OF FORMAL ANALPROMISES OF FORMAL ANALPROMISES OF FORMAL ANALPROMISES OF FORMAL ANALPROMISES OF FORMAL ANALYSISYSISYSISYSISYSIS
The methods for formal analysis of computer programs
have mostly been motivated by one of the following: (1)
improve runtime performance, (2) decrease code size and
(3) increase confidence in the correctness of a program – all
with minimal, if any, intervention from the programmer.

The formal analyses may be classified into two categories:
static analyses and dynamic analyses. A static analysis finds
properties that hold for all executions of a program. Such
an analysis is typically performed without executing the
program, hence the qualifier static. A dynamic analysis
finds properties true for a specific input. It is called dynamic
because it is typically performed by executing or
interpreting the program.

FEATURE 2

VIRUS BULLETIN www.virusbtn.com

1616161616 SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

The classic compiler optimizations, such as dead code
elimination, constant folding, constant propagation,
elimination of partial redundancies, loop unrolling, etc.,
are static analyses. Model checking, a technique for
verifying the existence or non-existence of certain temporal
properties in a program is also a static analysis. Analysing
coverage achieved by a given set of test cases is a dynamic
analysis. Profiling a program to identify code segments or
functions consuming the most time is also a dynamic
analysis.

We now take a common analysis performed by an
optimizing compiler and assess how it may be applicable
in anti-virus technologies. Consider the following code
segment:

int offset, port;

offset = 2.5*2;

port = offset + 20;

Instead of generating code to multiply and then add the
constants, as in the above code segment, most optimizing
compilers will use constant folding to generate code
equivalent to the following:

port = 25;

Quite coincidentally, metamorphic viruses apply
transformations that go the other way around. They replace
a constant by a sequence of steps that eventually produce
the same constant. We call such a transformation constant
unfolding. A metamorphic virus may apply constant
unfolding randomly to different constants appearing in the
program, thereby generating code that looks different from
the original. Besides changing the signature of the program,
this transformation also obfuscates the program, making its
manual analysis harder.

Constant folding and constant unfolding are inverses. It
stands to reason that an anti-virus technology may use
constant folding to undo the obfuscation created by constant
unfolding. For instance, in order to determine whether a
program may be sending email, an anti-virus system may
check whether a program calls the connect function so as
to connect to port 25. If a virus writer, or a metamorphic
engine, attempts to obfuscate the computation of the port
number, the anti-virus system may apply constant folding
to de-obfuscate it.

Like constant folding, other optimization transformations,
offer similar promises. Dead code introduced by a
metamorphic virus could be removed using dead-code
elimination; reordering of instructions by introducing jump
statements can be undone by reordering the instructions.

Though, at first glance, optimizing away the effects of
metamorphic transformations looks like a promising
technique, the real test of such analysis techniques depends

on how they can be attacked. The example used above can
be optimized by constant folding because the computation
generating the constant is in the same control-flow block.
Consider the following code:

if (x < y) {

x = 10;

y = 15;

} else {

x = 15;

y = 10;

}

port = x + y;

In this program too the variable ‘port’ has the value 25 for
all possible executions. However, constant folding will be
unable to determine this fact. The reason is that ‘port’
depends on the value of variables ‘x’ and ‘y’, and neither of
these variables holds a constant value at the point at which
‘x+y’ is computed. Hence, the analysis will incorrectly
determine that ‘port’ is not a constant.

This limitation of static analysis should not come as a
surprise. Determining whether a piece of code always
produces a certain constant value is the same as determining
program equivalence, which is an undecidable problem.
Hence, we can never develop a method that always determines
correctly that a variable is a certain constant for all possible
programs in which the variable is really a constant.

One may argue that dynamic analysis may be used to make
the determination needed in the above example. But then,
dynamic analyses can also be fooled. For example, to avoid
getting into an infinite loop, and thereby hanging a system,
an anti-virus system that uses an emulator (or a sand box)
would have to determine when to terminate the analysis.
The virus could attack the analysis by exhausting the
patience of such an analyser.

PROCESS OF ANALPROCESS OF ANALPROCESS OF ANALPROCESS OF ANALPROCESS OF ANALYSING BINARIESYSING BINARIESYSING BINARIESYSING BINARIESYSING BINARIES

The real challenge facing the anti-virus community is in
analysing binary viruses. The anti-virus community knows
how to handle macro viruses pretty well. In this section we
outline the steps commonly used in analysing binaries. In
the next section we highlight some of the assumptions at
each step and how they can be attacked.

Figure 1 gives a diagrammatic representation of the steps in
analysing a binary statically for the presence of malicious
behaviour. For the sake of our discussion we assume that the
input binary is unencrypted. This constraint disqualifies the
use of this analysis for polymorphic viruses. Even without
polymorphism we have enough to worry about, hence we
ignore this dimension.

VIRUS BULLETIN www.virusbtn.com

1717171717SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

Dissasembly
Procedure

Abstraction

Control Flow
Graph

Generation

Dataflow
Analysis

Property
Verification

Binary

Benign

Malicious

Suspicious Property
Specifications

Figure 1. Stages in static analysis of binaries.

The various stages in the analysis and the key function
performed at the stage is described as follows:

Disassembly

The broad role of disassembly is to create mnemonic
representation of binary code. The mnemonic representation
is useful for manual analysis. However, the mnemonics are
not necessary for a complete automated analysis. The key
work performed in this stage is to determine which bytes of
the binary hold executable instruction and which hold data.

Since most recent architectures separate code and data,
one may be tempted to believe the work at this stage to be
trivial. That is indeed not the case because, while an
architecture may enforce that a data segment does not
contain code, there is no guarantee that the code segment
does not contain data. Of course, since the code segment is
write-protected, the data in the code segment can only be
constant. Nonetheless, there can be data, or simply garbage,
in the code segment.

The common method of disassembly, referred to as the
linear sweep method, assumes that all bytes starting from
the entry point of a binary (or some start location) are
instructions, and disassembles the entire code segment,
following successive bytes. When the content of some
location does not match a valid instruction, one may assume
that it is data.

This method is acceptable in a disassembler designed for
interactive analysis of binaries, such as IDA Pro. However,
it has obvious shortcomings when used for automated
analysis.

A recently reported algorithm, called recursive traversal,
overcomes some of the shortcomings (Schwarz and Debray,
9th Working Conference on Reverse Engineering, 2002).
In this method code is disassembled by tracing the flow of
control in the program. Thus, whenever a branch instruction
is encountered the disassembly continues simultaneously at
both the address following the branch instruction and the

address that is the target of the branch instruction. Some
targets that are reachable only through indirect control
transfers are identified using a speculative disassembly
process (Cifuente and Emmerik, IEEE Computer 33(3),
2000).

Procedure abstraction

Once the executable instructions of a program have been
identified, they may be segmented into groups representing
procedures (or functions). This is motivated from the notion
of procedures (and functions) in high-level programming
languages. Since most compilers compile a procedure into
a contiguous set of instructions, the procedure boundaries
could be determined by identifying the entry points of
successive procedures. The entry points in turn could be
identified by identifying the CALL instructions (in the
disassembly stage).

Unlike its high-language counterpart, a binary program
does not have any construct identifying the beginning and
end of a procedure. This problem does not appear to have
been discussed in the literature and may need attention.

Control flow graph generation

A control flow graph (CFG) is a directed graph. Its nodes
represent statements (or blocks of statements). Edges in
the graph represent flow of control from one statement (or
block) to another. A CFG is commonly created for a single
procedure. Since a procedure in a high-level language has
a single entry and a single exit point, it is common for a
CFG to have a unique entry and exit node as well. In a
CFG the node representing a procedure call may be linked
to the CFG of the called procedure, thereby creating
interprocedural CFG.

All static analysis techniques used in compilers and model
checkers assume the existence of CFGs for the procedures
of a program. Because a CFG is a language-neutral
representation of the flow of control in a program, algorithms
based on CFGs can be used for any (procedural) language.

VIRUS BULLETIN www.virusbtn.com

1818181818 SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

An algorithm for constructing CFGs for high-level language
programs is available in text books. The same method is
adapted for assembly language programs.

Data flow analysis

There are various analyses that qualify as data flow analysis.
The most common analysis is data dependence analysis,
which is to determine the instructions that use the variable
(register or memory location) modified by another
instruction. The analyses performed for optimizing
transformations are all classified as data flow analyses,
or flow analyses.

Besides assuming the existence of CFGs, these analyses
also assume that the data area of a program is segmented
into variables, where each variable has a unique name
(modulo scoping rules). Also associated to a variable is its
type and size. A binary program has no such segmentation.
The data area is simply a continuous sequence of bytes.
Though the address of a data area may be treated as its
name, the type of data it holds and the size (number of such
units) is not obvious from the binary. The problem of
identification of variables in a binary does not appear to
have been discussed in the literature, and deserves attention.

Property verification

The property verification’s phase determines the existence
(or non-existence) of a property in a program. This phase
takes two inputs: (1) a formal representation of the
suspicious property (or properties) and (2) control flow
graph and data flow information of the program. It outputs a
determination whether or not the program satisfies the given
properties. This answer is then translated into whether the
program contains malicious behaviour.

For example, consider the property SendsLotsOfMail to be
true if the following holds:

The program contains a loop containing GetEmailAddress
and SendMail.

In order to determine whether this property holds, the
analyser may create a compacted CFG that contains only
calls to GetEmailAddress and SendMail. It would then
determine whether the two functions are in a loop.

Over the last decade the use of model-checking to verify the
presence or absence of properties has gained prominence.
Loosely speaking, model-checking is a way to check for the
existence of a finite state machine (specification) in another
finite state machine (program).

The property to be checked is described as a finite state
machine that transitions on atomic predicates, properties
that can be identified by a cursory look at the program. The
program being checked is also converted to a finite state
machine, created by abstracting away all the details except

the atomic predicates observed in the program. Model-
checking is then used to check whether a program has a
given property.

PROBLEMS IN STPROBLEMS IN STPROBLEMS IN STPROBLEMS IN STPROBLEMS IN STAAAAATIC ANALTIC ANALTIC ANALTIC ANALTIC ANALYSISYSISYSISYSISYSIS
OF BINARIESOF BINARIESOF BINARIESOF BINARIESOF BINARIES

We now discuss how a virus writer may attack the various
stages in the analysis of binaries described above.

Attack on disassembly

In the von Neumann architecture there is no definite way
to differentiate code and data that is resident in memory.

The linear sweep method can be fooled by introducing
garbage data immediately after an unconditional jump
instruction. The recursive traversal method can be fooled
by placing garbage data after a conditional jump instruction
and programmatically ensuring that the jump condition
always succeeds. This will lead the recursive traversal
algorithm to follow both paths, the instruction immediately
after the conditional jump instruction and the target of
the jump instruction – potentially leading to an inconsistent
state.

To throw the disassembly off, the garbage data may be
crafted so that it matches a valid instruction, thus beating
a heuristic that validates the instruction after the jump
instruction. The target of the jump instruction itself may be
hidden by computing its address in a register and using an
indirect jump instruction to transfer control to the address
in that register.

Attack on procedure abstraction

Since a procedure is a basic unit of most analysis
algorithms, a virus writer can defeat static analysis by
making it harder to identify a procedure unit in a binary
program. The analysis can be attacked if one cannot
determine the boundaries of a procedure. This stage can
be attacked by obfuscating the call instruction – say, by
using a combination of push and jump instructions.

There is also no sanctity in the tradition of placing the
code of a procedure in contiguous memory locations. In
fact, this is just a tradition followed by compilers. There is
no guarantee that hand-written assembly programs follow
this tradition. The virus Win32.Evol is a classic example.
Use IDA Pro to identify its procedures and you’d find that it
beats the heuristic used by IDA Pro.

There is no necessity for such mangled code to be hand
written. It will not be too hard to modify a compiler such as
gcc so that it mangles the code for a procedure into non-
contiguous blocks. Or such mangling can be performed
automatically after an executable is created.

VIRUS BULLETIN www.virusbtn.com

1919191919SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

Attack on control flow graph generation

The construction of CFG can be attacked by fooling the
CFG generation algorithm in creating redundant edges in
the CFG. The creation of extra edges may jeopardize the
precision of the analysis in the later stages. The CFG
generation process can also be attacked by obfuscating
the assembly code such that one cannot determine the
correct target of a jump instruction, such as using a jump
through register.

One method for resolving the targets is to assume that the
jump will transfer control to every instruction (or to every
block). This assumption, though safe for various static
analyses for compiler optimizations, could spell doom for
an anti-virus technology by increasing the time and space
costs of the analyses.

Attack on data flow analysis

An example of attack on the flow analysis stage was
discussed in the section entitled ‘promises of formal
analysis’. Most flow analysis algorithms propagate sets of
data from one node of a CFG to another. When data flows
into a node from two different predecessors, the two sets of
data are merged to create a single set. In the process of
merging the data some information is lost, leading to an
imprecise analysis.

The data flow analysis stage can be attacked by moving
some computation from a block (of a CFG) into the
preceding nodes and obfuscating the computation along
each path. The analysis can also be attacked by using data
that resides outside the scope of the program, such as in the
areas managed by operating system. The known constant
values in these areas may be used in the program for
computation, thus thwarting accurate analysis. For instance,
Win32.Evol and other viruses utilize knowledge of the
specific address where kernel32.dll is loaded. The same
addresses could also be used to access constant data from
kernel32.dll code.

Attack on property verification

Property verification is carried out using theorem-proving
systems. Typically, these systems depend on human
guidance to prevent them from getting into infinite loops.
Completely automated theorem provers, such as model
checkers, operate on an abstraction of the problem.
Sometimes the abstraction itself may be so large that the
theorem prover may take an inordinate amount of time and
resources to complete the proof. Or else, the abstraction
may throw away so much information that the theorem
prover may yield results that are correct for the abstraction,
but incorrect for the program being analysed.

A virus writer can attack the mechanism using the
knowledge of how the theorem prover used in an anti-virus

technology determines the existence of the atomic
properties and how it composes atomic properties into more
complex properties.

For instance, consider an anti-virus tool that uses the
presence of calls to system library as atomic properties.
This AV tool may look at the address of the target of a call
instruction to determine whether a system library function
is being called. Win32.Evol will escape such a virus
detector because it obfuscates calls to system library
functions. Instead of using the call instruction, this virus
uses the return instruction to make the call. Before the
return instruction is executed, though, the address of the
function to be called is pushed on the stack. If the analyser
cannot determine whether a virus calls a specific library
function, the analyser has two choices. One, to assume that
the program actually does not call the Win32 API, thus
letting the virus pass through. Two, to assume that the
program does call the library, thus generating false positives
for programs that actually do not call the API.

CONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONS

We have argued that formal analysis methods used by
optimizing compilers and other programming tools, though
they appear promising in the detection of metamorphic
viruses, are not directly suitable for use in anti-virus
technologies.

The common approach for analysing a binary consists of the
following stages: assembly, procedure abstraction, control
flow graph generation, data flow analysis, and property
verification. Compiler optimization-based methods for each
of these stages can easily be attacked. Thus, even if the
processing in each stage is correct 90 per cent of the time,
the overall system will be correct only 59 per cent of the
time, which is pretty close to the results offered by flipping
a coin.

In order to use these formal analysis methods in anti-virus
technologies, we may have to rethink the whole process.
Unlike in the context of optimizing compilers and other
similar tools, the analysis tool and the programmer
(virus writer) do not have a common objective. Hence,
assumptions made by analysis methods used by such
compilers can be exploited by the virus writer.

The good news is that a virus writer is confronted with the
same theoretical limit as anti-virus technologies. To keep
ahead of anti-virus technologies, a metamorphic virus writer
has to address some of the same challenges that anti-virus
technologies face. This is likely to have an effect on the
pace at which new metamorphic transformations can be
introduced. It may be worth contemplating how this could
be used to the advantage of anti-virus technologies.

VIRUS BULLETIN www.virusbtn.com

2020202020 SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

SOPHOS MAILMONITOR FORSOPHOS MAILMONITOR FORSOPHOS MAILMONITOR FORSOPHOS MAILMONITOR FORSOPHOS MAILMONITOR FOR
EXCHANGE 2000EXCHANGE 2000EXCHANGE 2000EXCHANGE 2000EXCHANGE 2000
Matt Ham

The Sophos product line is expanded regularly, and
thus opportunities arise to review components of the
wide-ranging suite of products available. On this occasion
the subject of scrutiny is the company’s Exchange Server
product – once known as SAV for Exchange but now going
by the name of MailMonitor.

The core on-access and on-demand scanners produced by
Sophos differ little outwardly from those available two or
three years ago. For this reason these components are
largely skipped in this review. Similarly, reference is made
to SAVAdmin, the administrative tool for rolling out Sophos
products across a network – a review of this tool can be
found in the October 2001 issue of Virus Bulletin (p.18).

Enterprise Manager offers functionality for, among other
features, centrally managing updates and the source of
these updates. The Enterprise Manager is still in a state of
evolution with new features in beta which include detailed
log file analysis. Also in beta is an Exchange 2003 Server
version of MailMonitor. However, none of this beta material
was examined in depth.

DOCUMENTDOCUMENTDOCUMENTDOCUMENTDOCUMENTAAAAATION AND WEB PRESENCETION AND WEB PRESENCETION AND WEB PRESENCETION AND WEB PRESENCETION AND WEB PRESENCE
The boxed version of the software supplied contained three
slim booklets – the installation guides for Windows 2000
Server, MailMonitor for Exchange and Windows NT Server.
In addition to these hard-copy installation guides for each
component, there is also PDF documentation. This includes
manuals for each product and such useful information as
guides for updating the various components. Given that
updating is such an important part of the life-cycle of
anti-virus software, it was a disappointment that no hard
copy version was supplied for this.

The collection of documentation is quite impressive in
quantity – a book, 23 installation guides, 16 manuals, three
supplements and advanced user-guides and three update
guides being available in English. Versions of the
documentation in German, Spanish, French and Japanese
were also supplied.

The book included with the documentation is Sophos’s own
Computer viruses demystified. This, along with a mouse
mat, is included in the boxed product as a diversion from
the purely product-related material. As a general overview
of viruses the book is good for the genre, although outdated
in parts. In particular, worms are afforded much less
attention than they are currently due, with macro-viruses

being considered the main threat to have gained ground
with the ready availability of the web.

From an external viewpoint, the look and feel of the Sophos
website (www.sophos.com) matches all the documentation
and packaging. The home page provides access to the links
for software updates, links to information on each major
product line, news about recent viruses and more press
release-style information. The ease of navigation is
impressive given the volume of information on offer, and
the technical FAQ pages are a particularly good resource.
In addition, there is a facility to add Sophos’s virus
information and hoax information statistics to third-party
websites.

The English website is supplemented with mirror sites
in German, Spanish, French, Italian and Japanese. This
reflects the international expansion which Sophos has
wholeheartedly embraced over recent years.

INSTINSTINSTINSTINSTALLAALLAALLAALLAALLATIONTIONTIONTIONTION

The Sophos product CD autoruns, giving the option to
install products as one of its features. Installation from CD
has proceeded smoothly in the past when installing Sophos
products for comparative reviews, and it was assumed that a
simple click would suffice here, as it had done on so many
occasions before. However, the MailMonitor installation
process is definitely one for which reference to the manuals
is required.

I launched the installation application, only to be confronted
with an error due to SAVI not being present. It is not
mentioned that the presence of SAVI, the Sophos Anti-Virus
Interface, is vital until numerous dialog boxes have passed –
and indeed there is no mention of what SAVI is or how it
can be installed. The need to have an existing installation
of Sophos Anti-Virus is mentioned, although no link is
stated between this requirement and the SAVI error. SAVI is,
in fact, the central core of the Sophos scanning engine
which provides APIs to other applications – in this case the
Exchange product does not contain the scanning engine, so
must be able to interact with an existing SAVI installation.

The manuals were consulted and it became apparent that the
Server product must be installed first – the recommended
method being by the use of a central installation. This
installation was carried out, the lack of SAVI persisted and
the manuals were consulted once more. Performing central
installation does not, in fact, install the software but merely
transfers files so that installation can be performed from this
repository of files. The installation has to be performed
manually after the file transfer to the central installation
directory (CID) – which is not explained at all on-screen
during installation.

PRODUCT REVIEW

VIRUS BULLETIN www.virusbtn.com

2121212121SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

The process of installing from the CID is not an automated
one, but rather involves a degree of poking about in the
nether regions of the server. First, an update user must be
created. This is explained in the manual, although dialogs
that are not mentioned in the manual appeared on the
machines with, for example, Exchange Server installed
upon them. Default settings were used in these cases.

Following this user addition, local security policy must also
be edited so as to allow the update account to log on as a
service. Although, admittedly, the administrator should end
up being more aware of changes on the server as a result
of having to set these parameters manually, it does seem
unwieldy to be forced to use manual methods where
automation could have been an option.

With the CID present, and the update account set up and
ready for action, the installation proper can commence.
Again, this is a more manually-intensive method than might
be expected, with the approved method being to use the
start-run dialog and browse to a long path name. The dialog
which results is initially identical to that produced by the
central installation procedure, though the choices involved
diverge rapidly.

File locations were left as the defaults – and other choices
were made with constant reference to the manual (since,
by now, this seemed a better choice than relying on
assumptions). The InterCheck client, the on-access portion
of the software, should not be installed on the MailMonitor
machine. Thus InterCheck support was not installed on this
occasion. This configuration option was mentioned as being
important in the autorun dialogs, though not in the Windows
2000 server installation guide – however this documentation
has since been upgraded.

Less contentious options chosen were to activate automatic
updating from the CID and to allow removal by users –
since in this case the user was likely to have good reason to
do so. Both of these were default settings.

Activating auto-update required the decision as to whether
updates should be with or without user interaction. Without
user interaction there is also the facility for a user to delay
auto-updating. Auto-update by default checks for new
functionality every ten minutes. This can be changed to any
arbitrary number of minutes, within the equally arbitrary
limits of 5 and 1439, daily or weekly. At this point a précis
of the installation options is displayed, prior to full
installation.

When installation was complete the machine started
instantly on an unannounced scheduled scan – which had
not been mentioned anywhere in the installation procedure.
Scheduled scanning of this nature was disabled during the
testing, so as to provide a platform where only user-initiated
scanning could occur.

After all this preliminary activity, the ground was prepared
for the installation of MailMonitor. The Administration
Console and mysteriously named ‘services’ may be installed
at this point and both were selected by default. In contrast
with the manual addition of users for the central installation,
the MailMonitor service account is created as part of the
installation process. Similarly, a group of administrators
is created for MailMonitor. The process of file transfer is
completed after this – no reboot being needed at any stage.

However, there were still some steps involved in
installation. The exclusion of the temporary and quarantine
folders from scanning is the final step and this must be
performed manually. Since the temporary directory and the
quarantine directory are placed by the installation routine, it
is astonishing that this procedure is not automated. (As a
related issue, the quarantine directory was not created at this
stage when upgrading from those past MailMonitor versions
which used a quarantine mailbox.)

UPDAUPDAUPDAUPDAUPDATINGTINGTINGTINGTING

The CID installation is the source of updates for those
products linked to it. These may be clients or, in this case,
the server-based SAVI installation. With this in mind it
becomes clear that updating is a matter of updating the CID
rather than individual machines – a much less onerous
position in most real-world situations.

There are two methods of update available: manual and
by use of Enterprise Manager. Sophos Anti-Virus is updated
on a monthly cycle, with a new version available on that
timescale. Between versions there is a constant stream of
virus definition updates. This schedule of updates leads to
the particular way in which data is stored and updated.

Where manual updates are selected there are three areas
which must be considered when updating a CID. The CID
includes two repositories of program files, one for Windows
NT, 2000 and XP, while the other contains Windows 95, 98
and ME data. Although the SAVI installation on Windows
2000 requires only the former information for use by
Exchange, partial updating can hardly be recommended.
Each month these repositories become totally superseded by
new versions and must be replaced. The third information
type stored are the IDE files by which Sophos transmits new
virus identities to its software. Clearly, each month will see
an accumulation of such files which will be redundant at
the next full application update. These must therefore be
deleted when a new program version is available, to be
replaced gradually as new IDEs are made available over the
following month.

The methods for performing these updates are fairly simple,
in that the CID can be reinstalled when a new version is

VIRUS BULLETIN www.virusbtn.com

2222222222 SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

produced, this process updating the main program data
without the need for any of the associated configuration
editing required when installing the CID initially. In the
case of IDEs, the process is even simpler, consisting of
deleting the appropriate files.

With this simplicity in mind the usefulness of Enterprise
Manager (EM) to automate matters might be questioned.
However, automation is obviously a great boon when
multiple CIDs are considered and even more so when IDEs
are considered. Since IDEs are released at unpredictable
intervals, with no respect for day or night, automating
their installation is far more efficient and pleasant for an
administrator than performing the same task manually.

Enterprise Manager operates as an MMC snap-in, which
sports a logo rather reminiscent of that used by GDATA in
its products. The initial interface is simple indeed,
consisting of two large buttons for creating and opening a
library. ‘Libraries’ are the EM term for areas where
packages of data which will form updates are stored.
Initially the only option that will work is that to create a
new library. Selecting this option gives the choice as to
where files will be stored, after which the library is created.
Once created the library must be populated by the user.

The packages used to populate the library are supplied by
Sophos, though the route may be direct or indirect. In order
for packages to be downloaded the parent source must be
defined, which is either a website or a UNC path. Since it
is possible that one source will be unavailable, a secondary
parent may be defined for use if the primary parent cannot
be contacted. One criticism that might be levelled here
concerns the extreme use of mixed metaphors, with parents
having packages as children who are stored in a library. Be
that as it may, it offers automated updating and this allows
many sins to be forgiven.

In addition to its update features, Enterprise Manager
also offers installation over a network. This is, however,
performed through initiating SAVAdmin rather than as a
dedicated function. It should also be noted that CDs are not
supplied with any of the EM packages, and thus use of a
UNC location for updates does not allow EM to update via
the CD distribution of SAV.

Since the majority of testing was performed on machines
isolated from the outside world, thorough testing of
download speeds for the package distribution site was not
investigated.

FEAFEAFEAFEAFEATURES OF MAILMONITOR FORTURES OF MAILMONITOR FORTURES OF MAILMONITOR FORTURES OF MAILMONITOR FORTURES OF MAILMONITOR FOR
EXCHANGE 2000EXCHANGE 2000EXCHANGE 2000EXCHANGE 2000EXCHANGE 2000
Like EM, MailMonitor is an MMC snap-in. The snap-in
must be loaded within MMC before it can be used. This is

simple enough, as is the manual creation of a shortcut to the
MailMonitor functionality. As before, however, automation
would seem preferable – these actions are, after all,
automated for EM when that snap-in is installed. It was also
noted that after upgrading the version of MailMonitor on
the test machines, a reboot was required.

The interface for MailMonitor is as might be expected of a
MMC snap-in – that is a right-hand view pane, the contents
of which are determined via the tree in the left-hand pane.
The main tree branches allow access to the Alerting, Jobs,
Quarantine, Logging and Product Information panes.

The alerting pane is that with the largest number of sub-
branches, due to there being configurable alerts for Mail,
News and both on-demand and real-time scans of the
Information Store. For all but mail these alerts are reserved
for the administrator, for informing of the presence of
suspicious objects. Where mail is concerned the sender and
recipient may also be selected as targets for being informed
that a suspicious object has been detected.

The administrator is also offered a larger selection of alert
types, with encrypted mails, those mails with errors in them
and the presence of ‘virus outbreaks’. The default trigger
for a virus outbreak alert is for five viruses to be detected
in one minute. Once this threshold is reached the outbreak
alert is sent and, by default, alerts are terminated until a
further threshold is reached. By default this threshold is set
as no viruses in a five-minute period. This is clearly an area
where large and small organisations are likely to vary in
their settings and these settings may even be required to be
adjusted on a rolling basis.

The use of the term ‘suspicious’ is somewhat at odds with
the standard descriptions in the alerts – all objects which
can cause an alert are deemed worthy of being called
viruses. This may be an area where customisation is the

VIRUS BULLETIN www.virusbtn.com

2323232323SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

order of the day, and that is available for subject, body and,
where appropriate, each object which is suspicious.

Moving on from the alerting options, the jobs branch
allows access to the scans which produce these alerts. The
real-time scans of mail, news and information store all
share a common format. Each has tabbed views, with
Status, Scan, Actions and Logging being present in all three
cases. Status is a general overview of that particular scan,
with some statistics on suspicious objects, errors and the
like. Scan is where details of the scanning method are set.

By default only the most likely infected areas are scanned
in each file, archives are scanned and Macintosh viruses are
searched for. The omission of scanning files fully has no
effect upon any virus known in the wild, though the faster
scan rates it produces do result in misses on a small subset
of zoo viruses. Logging can be directed to Event Log, File
Log and screen, the default here being that all events are
recorded in each of these areas.

Actions to be taken upon detection of suspicious objects are
set individually depending upon the classification under
which the infection falls. Infections in signed and unsigned
mails may thus be treated differently and failed
disinfections treated as special cases; a wide selection of
other cases are also catered for.

Where mail files are concerned, two further tabs are
available, one for use in determining email addresses where
mail will not be scanned for infection, recipients and
senders being individually configured. It is also possible
to add tags to the subject line of scanned mails and this is
configured in its own tab. Information Store scanning also
has an extra tab, this being the choice of which store to
scan, if more than one is present.

The on-demand Information Store scans follow the same
tabbed format as those already discussed, though multiple
scans may be configured. These can also be scheduled or
limited to specific mailboxes, allowing for more directed
searches than those allowed by the real-time scans.

Quarantining is the default fate of any infected object
which passes through the Exchange server. The information
available on each infected object includes time of detection,
sender, recipient, subject, infections, the scan type which
detected the object, size of the object and file name.

Suspicious objects may be sorted by each of these
parameters and blocks selected for treatment in a variety of
ways. The files involved may be disinfected, attachments
deleted or the entire message deleted. Deletion of
attachments is not quite the whole story, however, since in
testing this deleted only attachments which were infected. If
either disinfection of attachment removal has been selected
the quarantined message may thereafter be delivered to its

intended recipient. Samples may also be sent directly to
Sophos from the Quarantine interface.

As mentioned previously, logging may be directed to
screen, event log or file log. Of these the screen log is
available within the individual scan branches. The on-screen
version is likely to be of secondary importance in
comparison with the logging to file, however.

File logs are collated by type in the logging branch of the
interface. The interface provided here allows browsing to
and viewing of individual logs, and files may also be
deleted or limited in size. No further filters may be applied,
which is slightly disappointing. Likewise statistics are
limited to simple numeric values of files infected, numbers
quarantined and the like. The most recent beta version of
Enterprise Manager does, however, go some way to
remedying this.

The Tree view on the left has a parallel view allocated to
favourite functionality. This is a standard MMC feature, but
useful in that EM and MailMonitor are both MMC snap-ins.
This allows creation of combined functionality between the
two, despite being distinct and separate applications.

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

It will have become apparent in the course of the review
that the installation of MailMonitor and its associated
companion applications is perhaps the most irksome part
of the whole procedure. Once installed, updating is catered
for in an automated fashion and the day-to-day working
activities seem relatively pleasant to perform. To a certain
extent the fragmentation of the installation process is
paralleled by the large number of product-specific manuals.
This concentrates information and makes it an easier task
to determine which manual should be consulted at each
stage, rather than having to fumble through a monolithic
tome. Though this is probably a good, or at least neutral,
effect, it tends to be overshadowed by the large number
of stages at which the administrator is forced to perform
configuration manually.

Technical details

Test environment: All machines used in this test were identical
1.6 GHz Intel Pentium 4 machines with 512 MB RAM, 20 GB
dual hard disks, DVD/CD-ROM and 3.5-inch floppy drive.

Server software: Windows 2000 Server Service Pack 2 with
Exchange 2000 Server Service Pack 2 and Outlook 98.

Client software: Windows XP Professional with Outlook
Express, Windows XP Professional with Outlook 98.

Developer: Sophos Plc, The Pentagon, Abingdon Science Park,
Abingdon, OX14 3YP, UK. Tel +44 1235 559933; fax +44 1235
559935; web www.sophos.com.

2424242424 SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003SEPTEMBER 2003

VIRUS BULLETIN www.virusbtn.com

ADVISORADVISORADVISORADVISORADVISORY BOARDY BOARDY BOARDY BOARDY BOARD
Pavel Baudis,Pavel Baudis,Pavel Baudis,Pavel Baudis,Pavel Baudis, Alwil Software, Czech Republic
Ray Glath,Ray Glath,Ray Glath,Ray Glath,Ray Glath, Tavisco Ltd, USA
Sarah GorSarah GorSarah GorSarah GorSarah Gordon,don,don,don,don, Symantec Corporation, USA
Shimon GrShimon GrShimon GrShimon GrShimon Gruperuperuperuperuper,,,,, Aladdin Knowledge Systems Ltd, Israel
DmitrDmitrDmitrDmitrDmitry Gry Gry Gry Gry Gryaznovyaznovyaznovyaznovyaznov,,,,, Network Associates, USA
Joe HarJoe HarJoe HarJoe HarJoe Hartmann,tmann,tmann,tmann,tmann, Trend Micro, USA
Dr Jan Hruska,Dr Jan Hruska,Dr Jan Hruska,Dr Jan Hruska,Dr Jan Hruska, Sophos Plc, UK
Eugene KasperskyEugene KasperskyEugene KasperskyEugene KasperskyEugene Kaspersky,,,,, Kaspersky Lab, Russia
Jimmy Kuo,Jimmy Kuo,Jimmy Kuo,Jimmy Kuo,Jimmy Kuo, Network Associates, USA
Costin Raiu,Costin Raiu,Costin Raiu,Costin Raiu,Costin Raiu, Kaspersky Lab, Russia
Péter SzörPéter SzörPéter SzörPéter SzörPéter Ször,,,,, Symantec Corporation, USA
Roger Thompson,Roger Thompson,Roger Thompson,Roger Thompson,Roger Thompson, ICSA, USA
Joseph WJoseph WJoseph WJoseph WJoseph Wells,ells,ells,ells,ells, Fortinet, USA

SUBSCRIPTION RASUBSCRIPTION RASUBSCRIPTION RASUBSCRIPTION RASUBSCRIPTION RATESTESTESTESTES
Subscription price for 1 year (12 issues) includingSubscription price for 1 year (12 issues) includingSubscription price for 1 year (12 issues) includingSubscription price for 1 year (12 issues) includingSubscription price for 1 year (12 issues) including
first-class/airmail delivery:first-class/airmail delivery:first-class/airmail delivery:first-class/airmail delivery:first-class/airmail delivery: £195 (US$310)

Editorial enquiries, subscription enquiries,Editorial enquiries, subscription enquiries,Editorial enquiries, subscription enquiries,Editorial enquiries, subscription enquiries,Editorial enquiries, subscription enquiries,
orororororders and payments:ders and payments:ders and payments:ders and payments:ders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park,
Abingdon, Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1235 531889
Email: editorial@virusbtn.com www.virusbtn.com

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products’ liability,
negligence or otherwise, or from any use or operation of any
methods, products, instructions or ideas contained in the material
herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specific clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2003 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. /2003/$0.00+2.50. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any
form without the prior written permission of the publishers.

The 10th International Computer Security Symposium,
COSAC, takes place 14–18 September 2003 at the Killashee
House Hotel near Dublin. A choice of more than 40 sessions and six
full-day master classes is available. For full details of the agenda,
venue, travel discounts, partner programme and registration see
http://www.cosac.net/.

COMDEX Canada 2003 will be held 16–18 September 2003
in Toronto, Canada. Discounted registration fees apply until
22 August. For details of the conference, exhibition and keynotes
see http://www.comdex.com/.

The 13th Virus Bulletin International Conference and
Exhibition (VB2003) takes place 25–26 September 2003 at
the Fairmont Royal York hotel in Toronto, Canada. Full details,
including conference programme, abstracts and information about
the venue can be found on the VB website. Register online at
http://www.virusbtn.com/conference/.

The 5th NTBugtraq Retreat takes place in the days immediately
following the Virus Bulletin conference in Ontario, Canada.
A welcome event on the evening of 26 September will be followed
by the Retreat from 27–29 September 2003. Full details can be
found at http://www.ntbugtraq.com/party.asp.

Black Hat Federal 2003 takes place 29 September to 2 October
2003 in Washington D.C. For more information and online
registration see http://www.blackhat.com/.

InfowarCon 2003 takes place 30 September to 1 October 2003
in Washington D.C. Military leaders, representatives of political
forces, academics and industry members will discuss the concepts
of the latest ongoing initiatives in the Homeland Security and
Critical Infrastructure Protection communities. For details see
http://www.infowarcon.com/.

The Fifth International Conference on Information and
Communications Security (ICICS2003), is to be held 10–13
October 2003 in Huhehaote City, Inner Mongolia, China. For full
details see http://www.cstnet.net.cn/icics2003/.

The Workshop on Rapid Malcode (WORM) will be held
27 October 2003 in Washington D.C. The workshop aims to bring
together ideas, understanding and experience relating to the
worm problem from academia, industry and government. See
http://pisa.ucsd.edu/worm03/.

COMPSEC 2003 will be held 30–31 October at the Queen
Elizabeth II Conference Centre in Westminster, London, UK.
This year’s conference will include the Compsec 2003 Poster
Session, featuring a review of the latest scientific advances in
computer security research and development. For full details see
http://www.compsec2003.com/.

The European RSA Conference will be held 3–6 November at
the Amsterdam RAI International Exhibition and Congress Center,
The Netherlands. For details of the agenda, location and registration
see http://www.rsaconference2003.com/.

The Adaptive and Resilient Computing Security (ARCS)
workshop will take place 5–6 November 2003 at the Santa Fe
Institute, NM, USA. The aim of the workshop is to stimulate novel
approaches to securing the information infrastructure. In particular
the workshop will consider long-term developments and research
issues relating to the defence of information networks. For full
details see http://discuss.santafe.edu/bnadaptive/.

AVAR 2003 will be held on 6 and 7 November 2003 in Sydney,
Australia. The theme for the conference is ‘Malicious Code’,
incorporating emerging malicious code threats, the technologies at
risk and the technology needed to deal with these threats both now
and in the future. See http://www.aavar.org/.

COMDEX Fall 2003 takes place 15–20 November 2003 in Las
Vegas, USA. See http://www.comdex.com/.

The Infosecurity.nl exhibition takes place 11–12 November 2003
at Jaarbeurs complex, Utrecht, Netherlands. For all the details,
including information on how to participate, a list of exhibitors and
floorplan, see http://www.infosecurity.nl/.

END NOTES & NEWS

