
VIRUS BULLETIN www.virusbtn.com

11DECEMBER 2005

INSIDE SONY’S ROOTKIT
Mark Russinovich
Sysinternals, USA

In late October 2005, as I was performing scans of my
computer systems with a test version of RootkitRevealer –
a rootkit detection tool I had co-authored with Bryce
Cogswell – I was stunned to see evidence of the presence
of a rootkit on one of my computers.

RootkitRevealer displayed a number of cloaked Registry
keys and files and a hidden directory – Figure 1 shows the
results. The cloaked objects were not connected in any
obvious way to software that I had installed, so I launched
an investigation using several tools. Eventually I came to the
conclusion that the rootkit had been installed when I had
accepted a EULA presented to me by the autorun program
on a Sony CD I had purchased: Get Right With the Man, by
Van Zant.

Figure 1: RootkitRevealer results on a system with XCP installed.

I documented the findings in my blog
(http://www.sysinternals.com/blog), and a firestorm of
criticism aimed at Sony ensued. Less than 24 hours after
publishing my findings hundreds of comments had been
posted to the blog and the story was picked up by Slashdot.org.

The furor centred on the fact that Sony’s Digital Rights
Management (DRM) software, which it had licensed from
UK-based First4Internet, used the rootkit’s cloaking to hide
its presence from computer users without asking them
explicitly for consent to such behaviour, or even noting it in
the EULA.

As the story unfolded more problems came to light,
including the ‘phone home’ behaviour of the player that
ships on the CD, possible use of LGPL software in the
player, and security problems in the ActiveX control that

Sony provided originally as its uninstaller. Eventually, Sony
discontinued the production of CDs using First4Internet’s
‘XCP’ DRM technology, recalled all of the CDs containing
XCP, offered existing customers an exchange for non-XCP
CDs, and provided a stand-alone executable uninstaller.

There are many interesting angles to this story, but in this
article I focus on the XCP rootkit’s implementation and
discuss the use of rootkits in commercial software.

SYSTEM CALL HOOKING

Aries.sys is the device driver that implements the rootkit
functionality of the First4Internet DRM software. The CD
installation software starts and loads the driver when a
user accepts its EULA and configures the driver as an
auto-start driver, which means that it loads early each time
Windows boots.

Under most circumstances, Windows presents end users
with an acceptance dialog box before installing unsigned
drivers. Unsigned drivers have not been subject to reliability
testing by Microsoft’s Windows Hardware Quality
Laboratories (WHQL), so Microsoft cannot know what level
of testing the drivers have undergone.

Neither Aries nor the other drivers included in the XCP are
signed, but Windows performs signature checks only when it
installs drivers via its Plug and Play system. Since the CD
installation configures the XCP hardware-related drivers
manually and starts all the XCP drivers, including Aries,
using the Windows Service Control Manager’s StartService
API, no check occurs and no warning is presented.
(Microsoft is considering implementing a check for a
signature in all driver load paths in Windows Vista.)

The Aries driver relies on system call hooking, a technique
I pioneered with Bryce Cogswell in 1996 with the first

System Service
Dispatcher

User Mode
Kernel Mode

Windows Application

System Call

System Call Hook

System Service

KiServiceTable

Figure 2: System call hook control flow.

FEATURE 3

VIRUS BULLETIN www.virusbtn.com

12 DECEMBER 2005

provides local kernel debugging capability for the standard
Microsoft kernel debuggers, Kd and Windbg, on Windows
NT 4.0 and higher, and Microsoft added local kernel
debugging support in the Windows XP kernel. Because all
system services reside within the core operating system
image file, Ntoskrnl.exe, hooking is visible as offsets in the
system service table that fall outside this image. Figure 3
shows two easily-identifiable hooks inserted by Aries.

Figure 3: Evidence of Aries hooks.

Until a few years ago we made the source code to Regmon
available publicly, which led to the use of our hooking
functions and support routines in the NTRootkit example
that’s published on http://www.rootkit.com/. The structure
of the code in Aries indicates that it’s likely to be derived
from NTRootkit code.

As an aside, system call hooking is prevented by Windows
64-bit Editions for the x64 platform through a technology
Microsoft calls ‘patch guard’. Patch guard monitors the
system service table and other system structures that are
commonly altered by rootkits, and crashes the system when
it detects a modification. The alternative to system call
hooking on these platforms for Registry operations is the
Registry callback interface that the 5.2 version of the kernel
introduced; file system filtering is the kernel framework
available for monitoring and altering file system operations.

HOOK IMPLEMENTATION

Like most rootkits, Aries cloaks objects for all processes
except for those that it considers privileged enough to see an
accurate view of the system. The first step of each of the
hooks, therefore, is to query the name of the process
executing the hooked service.

Windows stores the image name of a process in the
executive process block (EPROCESS). To determine the

implementation of the Regmon registry monitoring
application. When a user-mode process invokes a
kernel-mode system service it does so by loading the index
number of the service into a processor register and then
transitioning to the kernel-mode system service dispatcher,
by executing either a software interrupt or a
processor-supported system call instruction. The system
service dispatcher locates the target kernel-mode service by
calling indirectly through the specified index in the system
service table, which is identified internally as
KiServiceTable (see Windows Internals by Russinovich and
Solomon for more information).

A system service is hooked when a driver replaces the
function pointer in KiServiceTable for the service with a
pointer to its own function. Subsequent calls to the service
route to the hooking driver, which can examine and
manipulate input parameters, invoke the original routine,
manipulate output parameters, or even process the service
without the use of the original service routine. Figure 2
depicts a system call hook.

The list of functions that Aries hooks when it initializes,
along with their Windows API wrappers that export the
services to user-mode, are shown in Table 1. Modern
rootkits can cloak operating system objects ranging from
TCP/IP ports to Windows services, but a cursory
examination of the system services that Aries hooks reveals
that it cloaks only file system, Registry, and objects returned
by ZwQuerySystemInformation.

System service Windows API Description
wrapper

ZwCreateFile CreateFile Opens a file or
directory

ZwQueryDirectoryFile FindFirstFile, Lists directory
FindNextFile contents

ZwOpenKey RegOpenKeyEx Opens a Registry
key

ZwEnumerateKey RegEnumKeyEx Lists a key’s
subkeys

ZwQuerySystemInformation Queries system
information

Table 1: System services hooked by Aries.

When I performed my initial investigation of the rootkit I
looked for evidence of system-call hooking by examining
the system service table using local kernel debugging. Local
kernel debugging describes the use of a kernel debugger
running on a system to examine the kernel code and data of
the same system.

LiveKd, a tool I released on the CD accompanying Inside
Windows 2000 and now available from Sysinternals,

VIRUS BULLETIN www.virusbtn.com

13DECEMBER 2005

version-dependent offset of the process name field in the
EPROCESS structure the Aries initialization code uses
Regmon-based code to search for the name ‘System’ in the
EPROCESS of the System process, which is the process in
which it executes.

If the process name is prefixed with the string ‘sys’,
Aries allows execution to proceed unaltered by executing
the system service function it hooked and returning the
result. The Sony DRM software includes one process,
sysDRMService.exe, that receives an unfiltered view of
the system.

When a process does not have a privileged name the hook
functions simply filter objects that also have names with
the ‘sys’ prefix. The hook for one of the two file-related
functions hooked by Aries, ZwCreateFile, returns the
Windows native error code,
STATUS_OBJECT_NOT_FOUND, which translates to the
user-mode ERROR_PATH_NOT_FOUND error, for
attempted opens of files and directories with such names.

The other file-related service, ZwQueryDirectoryFile,
returns a list of child files and directories of a particular
directory that match specified search criteria and the Aries
hook removes entries with the ‘sys’ prefix.

The ZwRegEnumerateKey hook behaves in a manner
similar to that of ZwQueryDirectoryFile, stripping
sys-prefixed keys from the result buffer returned by the
underlying service. ZwOpenKey’s hook is different,
however, because it does not modify the functionality of
ZwOpenKey.

It appears that the developer originally intended to model
the ZwOpenKey hook on that of ZwCreateFile, but realized
that doing so would prevent the Service Control Manager,
Services.exe, from opening the keys corresponding to
DRM-related services and drivers, such as
sysDRMServer, and therefore prevent those services and
drivers from loading. The reason that the hook remains is
likely to be an oversight.

The final hook function, that for
ZwQuerySystemInformation, cares about only one particular
type of system query: SystemProcessInformation. This is
the query that process diagnostic tools like Task Manager
use to obtain a list of active processes. Operating the same
way as the other hooks, ZwQuerySystemInformation filters
processes that have names starting with ‘sys’ from the list
returned by the kernel function.

The effect of the Aries hooks is to hide the presence of
directories, Registry keys and processes that have the
‘sys’ prefix from any process that doesn’t have that prefix
in its own name. As I’ve described, the Sony DRM software
takes advantage of this behaviour by naming one if its

services ‘sysDRMServer’. The software consists of
several other drivers that it names similarly, and the
Registry key name for Aries itself is ‘sysaries’, so that it
is not visible to applications like Regedit and security
software when they enumerate the contents of
HKLM\System\CurrentControlSet\Services.

Figure 4 shows the contents of the sysaries key after the
Aries driver is disabled and the key is visible.

The Aries driver registers an unload function and takes other
steps that suggest that the developer believed a hook-driver
can be unloaded safely.

In fact, Sony’s decloaking patch unloads the driver while the
system is running, which can lead to a crash. Each of the
hook functions calls the Plug and Play Manager function
IoAcquireRemoveLockEx on entry and
IoReleaseRemoveLockEx on exit and the driver’s unload
function executes the two functions in sequence and then
pauses for a short time before exiting. The names of the
functions imply that they synchronize safe driver unloading
with the I/O system, but in reality they simply increment
and decrement a reference count. Standard Plug and Play
drivers leverage the reference to unload only when their
devices are not in use, but Aries is a non-Plug and Play
driver so the counter plays no role in its unload logic.

There’s no way for a driver that hooks system calls to
guarantee that other threads in the system will not attempt
to execute the hook functions after the driver unloads. A
race condition exists where, for example, a thread is
pre-empted just as it is about to execute the first few
instructions of a hook function, the driver unloads, and then
the thread executes invalid memory the driver just occupied.
This scenario is unlikely, but the Aries unload logic
demonstrates an ignorance of both Windows device driver
and multi-threaded programming.

THE SECURITY AND RELIABILITY OF
ARIES

An obvious security problem created as a side effect of the
Aries cloak is that other applications can take advantage of
its general nature to hide their own objects from end users.

Figure 4: Aries Registry key.

VIRUS BULLETIN www.virusbtn.com

14 DECEMBER 2005

Malware authors released several viruses shortly after I
disclosed the existence of Aries that creates objects with the
magic ‘sys’ prefix, and World of Warcraft (WoW) gamers
published a way to circumvent the WoW anti-cheat system
by hiding executable images behind the Aries cloak.

The media was quick to claim that Aries opens huge
security holes, but the fact is that viruses could just as easily
deploy their own rootkits instead of piggy-backing on Aries.
The security implications of rootkits are complicated and
are tied directly to the visibility of the software that they cloak.

In general, I believe that rootkits pose a security risk not
because of potential errors in their cloaking, but because the
software they cloak is generally completely invisible to
systems administrators. Virtually all software has security
flaws, but systems administrators can check periodically or
use patch-management software to ensure that systems are
updated with the latest fixes, or they can uninstall any
software that they deem to be a risk. However, there is no
advertisement to users of the presence of the Sony DRM
software by way of auto-updater or bundled uninstall
utility, so it can’t be patched or uninstalled. As a result, a
security problem in any of its components is permanent and
undetectable.

The other concern about cloaked kernel-mode code is
reliability. Bugs in the Aries driver could impact the
stability of Windows and lead to system crashes.

My analysis shows that the Aries driver contains at least one
bug that can lead to a crash. All but one of the hook
functions filter data coming out of the kernel and so can
trust the validity of the buffers on which they operate. The
hook for ZwCreateFile, however, checks the file name input
parameter for the ‘sys’ prefix and therefore accesses
pointers that are passed by applications and potentially
invalid. Aries omits validation of the input buffer, however,

and so can easily be directed to perform an invalid memory
access from kernel-mode, which is a violation that causes
the Windows Memory Manager to crash the system. The
NtCrash2 program that I wrote in 1997 to stress the input
parameter validation of the Windows kernel triggers this
bug, as can be seen in the bluescreen example shown in
Figure 5.

The reliability risks caused by rootkits are similar to their
security risks. While bugs in user-mode processes manifest
as isolated crashes of those processes, bugs in drivers,
including Aries and the other XCP drivers, result in
Windows crashes. Crash analysis of resulting dump files
might identify the problematic driver, but because the
drivers and the Registry keys that configure them to load are
cloaked while Windows is online, an administrator has no
way of disabling or removing the drivers. If the sequence of
execution that triggers a bug is unavoidable then the
installation becomes unusable. The XCP software
exacerbates this problem by configuring most of its drivers
so that they also load in Safe Mode.

COMMERCIAL ROOTKITS

The furor over Sony’s rootkit centres on lack of disclosure
during the installation process and the rootkit’s use in
concealing associated software from users. The resulting
security and reliability risks only highlight the negative
impacts of hidden software. However, are rootkits
always bad?

Two other commercial products, both sold by security
vendors, utilize rootkit technology: Symantec’s Norton
Undelete and Kaspersky Antivirus (KAV). Norton uses a
rootkit to hide the presence of directories in which it stores
backup copies of files deleted by end users so that users
cannot accidentally delete the backups. KAV stores a file’s
scanning information in an NTFS alternate data stream that
it attaches to the file. It hides the streams so that they don’t
perturb the appearance of files when the files are read by
stream-aware applications.

These examples differ greatly from the Sony case: Symantec
and Kaspersky use rootkits in a way that is intended to
benefit the consumer and not the software vendor. Also, the
software that utilizes the rootkit advertises its presence to
the user, implements auto-update features, and can easily be
uninstalled. However, although the security and reliability
risks of these rootkits are minimal, there is still potential for
exploitation by the same type of opportunistic malware that
uses the Aries cloak. In the end, I believe that the benefits of
even benign cloaking are generally outweighed by the
potential risks, and that software vendors should use
alternative technologies if possible.Figure 5: Aries blue screen crash.

