
The International Publication
on Computer Virus Prevention,
Recognition and Removal

MARCH 2006

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

2 COMMENT

View from the cheap seats

3 NEWS

Hotbar adware dispute settled

Updating niggles

3 VIRUS PREVALENCE TABLE

VIRUS ANALYSES

4 Proxies for theunderworld: I-Worm.Locksky.AS

7 IM_a nuisance – W32.Imav.A

FEATURES

9 How can a web filter add proactive security?

11 Improving proactive detection of packed
malware

13 COMPARATIVE UPDATE

Changes to the VB test sets

14 TECHNICAL FEATURE

Solving the metamorphic puzzle

20 END NOTES & NEWS

This month: anti-spam news & events; fighting
spam with data compression models

PROXIES FOR SALE
The Locksky email worm is one of the increasing
number of profit-oriented malicious programs to
which we are becoming accustomed. Ferenc Laszlo
Nagy takes a look at one of its many variants.
page 4

VECTOR SWITCH
Two years after its emergence the Beagle family is
still one of the most pervasive families of Internet
worms. John Canavan takes a close look at one
variant that has made the surprising switch from
email to ICQ as its major infection vector.
page 7

DYNAMIC TRANSLATION
Dynamic translation is a technique that can be used
instead of emulation for decrypting complex
malware. Adrian Stepan describes how the
technique can also be used to perform generic
unpacking.
page 11

2 MARCH 2006

COMMENT

Editor: Helen Martin

Technical Consultant: Matt Ham

Technical Editor: Morton Swimmer

Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
Ian Whalley, IBM Research, USA
Richard Ford, Florida Institute of Technology, USA
Edward Wilding, Data Genetics, UK

VIEW FROM THE CHEAP SEATS
I am often asked what I like about my job as director of
threat intelligence services for a large banking
organisation in the US. I always answer the same way: it
is never dull and if you wait a week, a day, or even an
hour, what you think you know and the threats for which
you are prepared will always change. We are in an
industry where we face a constantly evolving challenge,
and one that is not for those who want an 8-to-5 job, or
who need a lot of sleep.

When I think back to how the threats, industry and the
tools we use have evolved, it is interesting to realize how
much, in fact, has stayed the same. Although the attack
vectors have become increasingly sophisticated
(remember the good old days when we could simply tell
users not to open emails from people they didn’t know?)
and the number of vulnerabilities continues to grow
while the time between discovery and exploitation
decreases, our jobs and our day-to-day successes and
failures are still as much about people and what they do
(and don’t do) as they ever were.

The good news is that our tools have matured, are more
widely used, and as a result, the level of protection has
improved. Consumers have made strides in recognizing
the importance of security and companies have dedicated
more resources to developing strategies and

implementing solutions to address the problem. The bad
news is that, even with all of the progress we have made,
it still only takes one infected laptop connecting to a
company’s internal network to elude all perimeter
defences, or one keystroke logger to steal someone’s
personal confidential information and access their
financial accounts.

We still fight the battle of social engineering and wrestle
with people’s natural curiosity and trusting natures. The
same tactics that made the I Love You mass mailer and
the Nigerian 419 scams successful are employed today –
and still reaping the same benefits. We still deal with
software that contains vulnerabilities, and have to face
the complexity of patching and the struggle to get people
to understand why they need to patch. When you ask
users whether they patch their systems regularly, it is not
uncommon to be met with a look of confusion.

We still work with the reality that, more often than not,
while vendors have made strides in releasing pattern files
faster, developing improved heuristics, incorporating
behaviour detection and being more responsive in
providing patches for new vulnerabilities, we respond
reactively, not proactively, to new risks and threats.

Some things have changed. While there is still a
prevalence of mass mailers that continue to be a common
vector for propagation, we are seeing movement towards
a stealth-like approach and more targeted attacks. In
many cases adware and spyware have replaced malware
as the more pressing issues to be addressed. And the type
of attacker has evolved from script kiddies to
perpetrators motivated by financial gain.

What does this mean for the people who use the Internet,
the companies whose businesses rely on the software
packages that continue to contain vulnerabilities, and
you and me, the people in the trenches whose day-to-day
job is to protect systems and data? As complicated (and
varied) as the answer can be, at the most basic level it is
also very simple. We must continue to do what we have
been doing: finding ways to improve our tools, improve
our communications and think outside the box.

And while defence-in-depth layered protection, product
enhancement and innovation will go a long way towards
continuing to provide us with improved security at home
and in business, we must keep in mind that there is no
magic bullet staring at us from over the horizon and,
most importantly, it will take all of us continuing to work
together to fight the good fight.

As we take a collective deep breath, after having been
awake for 20 straight hours, and realise that tomorrow is
yet another day full of challenges to be faced, just ask
yourself: would we really have it any other way?

‘Our jobs ... are still
as much about
people and what
they do (and don’t
do) as they ever
were.’
Max Morris
Independent author, USA

3MARCH 2006

VIRUS BULLETIN www.virusbtn.com

Prevalence Table – January 2006

Virus Type Incidents Reports

Win32/Sober File 1,656,867 88.38%

Win32/Netsky File 79,090 4.22%

Win32/Mytob File 75,607 4.03%

Win32/MyWife File 33,227 1.77%

Win32/Mydoom File 10,748 0.57%

Win32/Bagle File 4,683 0.25%

Win32/Zafi File 3,960 0.21%

Win32/Lovgate File 2,716 0.14%

Win32/Sdbot File 2,499 0.13%

Win32/Funlove File 1,233 0.07%

Win32/Brepibot File 500 0.03%

Win32/Valla File 431 0.02%

Win32/Klez File 263 0.01%

Win32/Bugbear File 233 0.01%

Win32/Feebs File 226 0.01%

Win95/Spaces File 203 0.01%

Win32/Bagz File 198 0.01%

Win32/Pate File 197 0.01%

Win32/Dumaru File 188 0.01%

Win32/Gibe File 186 0.01%

Win32/Mabutu File 179 0.01%

Win32/Reatle File 129 0.01%

Win32/Mimail File 111 0.01%

Win32/Maslan File 90 0.00%

Win32/Loosky File 82 0.00%

Win32/Dref File 73 0.00%

Win95/Tenrobot File 73 0.00%

Wonka Script 67 0.00%

Win32/Bobax File 65 0.00%

Win32/Chir File 59 0.00%

Redlof Script 46 0.00%

Win32/Elkern File 46 0.00%

Others[1] 535 0.03%

Total 1,874,810 100%

[1]The Prevalence Table includes a total of 535 reports across
69 further viruses. Readers are reminded that a complete
listing is posted at http://www.virusbtn.com/Prevalence/.

NEWS
HOTBAR ADWARE DISPUTE SETTLED

Symantec has reached an out-of-court agreement in the
pre-emptive lawsuit it filed against marketing firm
Hotbar.com Inc. In the unusual case, the anti-malware
vendor sought a court ruling that would allow it to label
certain Hotbar.com products as adware (see VB, July 2005,
p.3). Under the terms of the settlement Symantec will
dismiss the suit, but it will continue to classify Hotbar’s
program files as low-risk adware.

UPDATING NIGGLES

Last month proved to be troublesome for security vendors
Sophos, Microsoft and Kaspersky, as niggles with updates
caused problems for their customers.

Sophos customers suffered an onslaught of false positives
thanks to a fault in the update file which was released to
add detection of the OSX-Inqtana-B worm for Mac OS X.
The fault resulted in Sophos Anti-Virus generating false
alerts on a number of files in Microsoft Office 2004 and
Adobe Acrobat Reader. A revised update was released
shortly after developers spotted the problem, alongside an
apology to customers.

Meanwhile, many of the users of Microsoft’s Antigen email
security product were left without fully functional email
systems for several hours after they received a faulty update
to the Kaspersky scanning engine. The Antigen product –
which Microsoft inherited when it acquired email security
firm Sybari last year – uses a number of different scanning
engines including Kaspersky’s to provide anti-virus
protection. A Microsoft spokesperson explained: ‘As soon
as we were aware that our customers were experiencing
email problems due to the Kaspersky update, we escalated
through the appropriate channels across Kaspersky and
Microsoft and were able to define, test and provide a
resolution.’

Indeed, Microsoft did not have an easy month at all with its
security products – just days before the problems with
Antigen, an update to Windows AntiSpyware beta 1 caused it
to misidentify Symantec security tools as password-stealing
malicious software. On detection of certain registry keys
set by the Symantec products, Windows AntiSpyware
generated an alert and prompted the user to delete the keys.
Users who went ahead and deleted the keys would have
found that Symantec AntiVirus and Symantec Client
Security software stopped functioning correctly.

Fortunately for the two companies, only a small number of
customers are thought to have been affected by this error,
due to the fact that the misidentification applied only to
Symantec’s enterprise products.

http://www.virusbtn.com/virusbulletin/archive/2005/07/vb200507
http://www.virusbtn.com/virusbulletin/archive/2005/07/vb200507
http://www.virusbtn.com/Prevalence

VIRUS BULLETIN www.virusbtn.com

4 MARCH 2006

PROXIES FOR THEUNDERWORLD:
I-WORM.LOCKSKY.AS
Ferenc Laszlo Nagy
VirusBuster, Hungary

The Locksky email worm first appeared in October 2005 as
a successor to Trojan.Tofger. The aim of both Tofger and
Locksky is to install proxies on victims’ machines, which
can then be sold. The prices of the proxies are listed on a
website (http://proxy4u.ws:8080/) which also provides two
ICQ contact addresses for prospective buyers – one for
home users and small businesses, and the other for clients
looking to purchase more than 500 proxies.

VERSIONS AND VARIANTS

The first version of Locksky was disguised as an Internet
phone utility named ‘Skylook’ (from which the worm’s
name was derived). Several new variants have appeared
since then, mainly incorporating changes designed to help
the virus bypass anti-virus detection.

The most active variant at the time of writing is
I-Worm.Locksky.AS (internal version number 0039). The
following analysis will cover this variant, but most of what
is described here also applies to the previous versions. Also
note that while I refer to internal version numbers, these
may not be unique – for example, there are two variants
with version number 0034: I-Worm.Locksky.AC and
I-Worm.Locksky.AI.

THE ENCRYPTOR

The main file and six dropped components are all encrypted
by a unique encryption routine. The decryptor is added to
the end of the last section. The new entry point is the same
as in the original program. The code starts with an
anti-emulation routine using MMX instructions, then jumps
to the decryptor at the end of the file.

The decryptor code itself is encrypted by a long chain of
elementary operations. These operations can be considered
to be part of the key, and change in every instance.

The (decrypted) decryptor then writes the original (but
encrypted) 80 bytes to the entry, decodes the whole encoded
part and relocates the section if needed. Through the
decoding, every 32-bit value is xored by a constant key, then
incremented by 1.

Interestingly, we have seen a small number of seemingly
unrelated pieces of malware (such as
TrojanSpy.Banker.CAU and Trojan.DL.Tibs.I) encrypted

in a similar way. It is likely that these are malware files
that have been developed independently, then encrypted
and distributed by the group responsible for writing the
Locksky worm.

DROPPER COMPONENT: SACHOSTX.EXE
This is the main file that arrives in the Locksky-infected
email. Its icon is a white arrow on a red box, and in this
version it is named ebay_info.exe.

If the operating system is not NT-based, the file exits
immediately. Otherwise, it checks the system folder for
‘hard.lck’ and deletes it if it finds it, thus causing any older
versions of the worm to exit. Then it enables network access
for hard.lck – which seems to be a bug. To continue
cleaning up after older versions, it then terminates processes
where the name of the exefile contains ‘sachostc’,
‘sachosts’, ‘sachostw’ or ‘sachostm’.

Next, it copies itself to the Windows folder as sachostx.exe,
and sets the ‘HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run\HostSrv’ registry entry to this file,
thus ensuring that the file will run every time the machine
is booted.

Next, it drops a keylogger component named msvcrl.dll and
activates it by calling the hide_get and hook_kbd functions.
It also drops and runs a password collector named
sachostp.exe. This will write the initial content of the file
SYSDIR\attrib.ini.

Finally, it creates the hard.lck file and enters the main loop.
One responsibility of this loop is to watch hard.lck, and
terminate the worm if it disappears. The other is to wait for
an Internet connection and perform various tasks (described
below) once there is one.

First, it drops and runs the sachostw.exe worm component.
If the computer is connected directly to the Internet, it also
drops the sachostc.exe and sachosts.exe proxy servers with a
random port as the parameter. (Port numbers must be larger
than 10,000, and different for the two programs.)

All three programs require network connections, so the
worm opens the firewall by running the ‘netsh firewall set
allowedprogram <filename> enable’ command for them.
The programs are not executed directly, but the worm loads
the Windows system file svchost.exe, injects the starter code
into its address space, and runs it. On Windows 2000 (where
svchost.exe is a console application), this will be manifested
in console window popups.

UPDATING AND REPORTING
If the current time is 10 minutes past the hour, the worm
will try to update itself. It tries two web servers,

VIRUS ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5MARCH 2006

proxy4u.ws:8080 and usproxy2u.ws:8080, the first of which
currently works. It checks the advertised version number of
the update, and if it is greater than its own version number
(in this case 0039), it will download and run the new
executable. It is no surprise that the downloading itself is
performed by svchost.exe. If the file runs successfully, the
worm exits.

If the spy components (keylogger msvcrl.dll and password
collector sachostp.exe) have collected enough information
(attrib.ini is larger than 150,000 bytes), the worm drops
sachostm.exe, opens the firewall for it, and runs it through
svchost.exe.

The worm also reports back to its authors. If the machine
is behind a proxy (as reported by the
InternetGetConnectedState API function), then every five
hours, if it is connected directly to the Internet, it downloads
the following URL every 10 minutes: ‘http://proxy4u.ws/
index.php?IP=%u.%u.%u.%u&Port1=%d&Port2=%d&ID=
%x&Ver=%s&con=%s&speed=%d’, where:

• IP: victim IP address

• Port1: sachosts.exe port number

• Port2: sachostc.exe port number

• ID: unique ID created from machine name and disk
volume serial number

• ver: worm version number (0039 in this case)

• con: connection type (P: proxy, L: LAN, M: modem,
U: unknown)

• speed: download speed in kilobytes/sec (downloads the
www.microsoft.com home page, and divides the
number of downloaded bytes by the number of whole
seconds elapsed, if that is not 0).

PASSWORD COLLECTOR COMPONENT:
SACHOSTP.EXE
This component writes the passwords it finds to ‘attrib.ini’.
If started from Windows 9x it will write passwords returned
by mpr.dll’s undocumented WNetEnumCachedPasswords
function. If started from an NT-based system (which is
always the case when started by the Locksky worm), it
collects data from the registry and from the Protected Store
(P-Store).

In the registry, subkeys below the ‘HKCU\Software\
Microsoft\Internet Account Manager\Accounts’ key are
investigated. If the ‘HTTPMail User Name’ entry (which
contains Hotmail account data) exists, then it is logged
together with the ‘HTTPMail Password2’ value. If the
‘POP3 User Name’ entry exists, then it is logged along with
‘POP3 Password2’.

The Protected Store COM object is also queried for the
following categories (as named by the worm):

Deleted OE Account IE:Password-Protected sites

OutlookExpress MSN Explorer Signup

IE Auto Complete Fields AutoComplete Passwords

SPY COMPONENT: MSVCRL.DLL
This key and web traffic logger also operates as a rootkit. It
implements four functions: hook_kbd, un_hook_kbd,
hide_get and un_hide_get.

The hook_kbd function installs a GetMsgProc hook, which
logs the keypresses and text placed on the clipboard
together with the title of the active window and current
time. These are all written to attrib.ini.

The hide_get function tries to hide the processes whose
names start with ‘sachost’, and the registry entries named
‘hostsrv’. This is achieved by hooking CBTProc and
patching NtQuerySystemInformation and RegEnumValueW
functions in every process to which it is mapped while
servicing CBTProc messages.

By patching ws2_32.dll in memory, it filters network traffic
and logs GET and POST HTTP requests and the answers
returned by the server if the URL contains one of the
following keywords:

abbey bank barclay

cahoot egg e-gold

forex halifax hsbc

ktb lloyds log

mail money nationet

nationwide natwest nwolb

openplan passport password

PayPal rbs secret

secure sell sign

woolwich

Additionally, all POST requests are logged.

The un_hook_kbd and un_hide_get functions uninstall the
mentioned routines. The operations performed by msvcrl.dll
can make the system very unstable, and the rootkit function
does not work in most cases.

INFO MAILER COMPONENT:
SACHOSTM.EXE
If the machine is not currently connected to the Internet, it
waits for a connection by sleeping in a loop. Then it sends

VIRUS BULLETIN www.virusbtn.com

6 MARCH 2006

the content of attrib.ini in an email to the address
kuraser@list.ru using the smtp.list.ru SMTP server. (This is
one of the few changes from the 0034 version, where the
email address was erwaderrruio@list.ru.)

The file will be base64-encoded, and named
‘00000000-00000000.txt’, where the first number is made
from the machine name and disk volume serial number
(by a different algorithm from that in the main file), and the
second number depends on the number of clockticks since
power on.

Finally, it deletes attrib.ini and exits.

WORM COMPONENT: SACHOSTW.EXE
When started, the worm component will copy sachostx.exe
(the main file, which contains all parts) to its own directory
(the SYSDIR) as temp.bak. Then it waits for an Internet
connection if necessary.

To simplify base64 encoding, 1 to 3 bytes are added to the
worm copy, so the number of bytes will be divisible by 3.
This means that the worm will become longer in every
generation. The termination of base64 encoding is not
standards compliant (CRLF is missing before the boundary
line), so some MIME extractors may have difficulties
with it.

Further characteristics of the Locksky-infected emails are
as follows:

• The subject line is ‘Your Ebay account is suspended’
appended with spaces – possibly because one can
update it this way without recompiling.

• The message body (also space padded) is:

Dear eBay Member,

We regret to inform you that your eBay account
could be suspended if you don’t re-update your
account information.

To resolve this problem please see details in
attached file.

If your problems could not be resolved your
account will be suspended for a period of 24
hours, after this period your account will be
terminated.

• The dropper component is attached as ebay_info.exe.

• The boundary is always ‘zl’.

Messages are sent to three groups of addresses:

• The worm will search for *.htm* files in the
administrator’s documents (the folder to which the
‘HKLM\Software\Microsoft\Windows\CurrentVersion\
Explorer\Shell Folders\Personal’ registry entry points),
and collect the addresses by searching for “mailto:xxx”
strings, where xxx is the email address.

• It gets the value of ‘HKCU\Software\Microsoft\WAB\
WAB4\Wab File Name’ and reads email addresses from
the WAB file by interpreting the file format.

• It reads ‘The Bat!’ mailer configuration from the
registry (keys below HKCU\Software\RIT\The Bat!),
and searches for lines containing ‘To: ’ in the file
messages.tbb.

It will use the SMTP and sender settings defined in the
‘HKCU\Software\Microsoft\Internet Account
Manager\Default Mail Account’ registry folder, in order to
lend the ‘From’ addresses some authenticity. The SMTP
connection is managed by the worm’s engine.

Finally, it deletes temp.bak and exits.

PROXY COMPONENTS: SACHOSTC.EXE
AND SACHOSTS.EXE

These components are fully-featured proxy server
applications. They may have been developed by others, but
they have been stripped down to become perfect for
malware purposes.

Sachostc.exe is a SOCKS5 proxy. It supports
username/password authentication, but no password is
compiled in it. It supports connect, bind and udp association
modes.

Sachosts.exe is an HTTP proxy. It supports CONNECT and
generic requests.

With the help of these components, the infected machines
can be instructed remotely to connect to given target hosts
and carry out actions such as downloading web pages or
sending email messages.

CONCLUSION

This worm is one of the profit-oriented malicious programs
to which we are becoming accustomed. Instead of
advertising, its authors chose a more direct way of making
money: selling the availability of infected machines.

There is nothing revolutionary in this worm’s code, and its
development had been limited to trying to prevent it from
being detected by anti-virus products.

Regarding the future, we have just captured a variant with
version number 0044 – although this one does not have a
worm component. It seems as if this spreading method may
have generated too much attention from the anti-virus field,
and that the authors have switched back to producing
Trojans as a result. Alternatively, the switch could be a
transient idea and there might be more aggressive variants
to follow – who knows?

VIRUS BULLETIN www.virusbtn.com

7MARCH 2006

IM_A NUISANCE – W32.IMAV.A
John Canavan
Symantec Security Response, Ireland

Two years after its emergence, the Beagle family is still one
of the most pervasive Internet worms.

Leading the way in the new modular malware model, the
Beagle family of threats has thrived by breaking its
functionality down into separate basic components. Its
associated downloaders, email address harvesters and many
other Trojan parts have flourished, growing their network
ever further and making their venture a profitable one.

The first variants of the Beagle family were seen in January
2004, and from the outset it used some interesting
techniques that had not typically been seen in mass-mailers.

The initial mass-mailing samples opened a backdoor on
infected machines, listening on TCP port 6777. This
allowed a file to be downloaded and executed on the system
when a trigger string was sent to the backdoor. It also ran a
notification thread which contacted a remote website
announcing the presence of a newly infected system. This
notification would prove to be a key technique which the
authors used to keep track of their infected network and to
seed new variants and components.

Later variants of the worm terminated security-related
processes by deleting their associated registry keys and
files, and stopped and removed system services. They
overwrote host files to prevent access to security-related
websites and even uninstalled previous Beagle variants.
They did most of this while injected in explorer.exe.

For a period, the Beagle authors engaged in viral warfare
against the authors of the Netsky family. Beagle variants
would terminate Netsky-related processes automatically and
delete their registry keys, then create their mutexes to
prevent re-infection. Most of these features and the design
methods employed focused on keeping control of the
infected machine – allowing easy installation of updates,
hiding the presence of the infection of the system and
making disinfection more difficult.

Given this background, it is hard to imagine the motivation
behind what appeared to be a major change in focus in one
of the latest variants of the family to surface: the switch to
ICQ as its major infection vector.

W32.IMAV.A

First sighted on 26 January 2006 at known Beagle Trojan
download URLs, W32.Imav.A appeared at first to be just
another Beagle Trojan.

Downloaded with the filename my_foto.zip, Imav’s first
course of action was to display a candid photograph of a
flame-haired, freckle-skinned girl in a green bikini hanging
out by a lighthouse.

It then set about copying itself to %System% and dropping
its associated dll file alongside it.

MD5 Size FileName

960dddec022cc846a0a0075b98906c7b 33,745 im_1.exe

e2562b406a7cdf53ed50adfcf2f9fcd9 17,886 im_2.exe

When executing from %System%, Imav adds the value
“im_autorn” = “%System%\im_1.exe” to the registry Run
key. It then starts up the usual Beagle Trojan routines,
proceeding to kill a list of security-related processes, polling
another list of URLs for a file to download, disabling a list
of security-related services, renaming or deleting a long list
of filenames from security-related products and some
associated registry entries. All pretty standard fare.

On a little further inspection, however, it became evident
that Imav had more to offer.

ICQ
Since Eric Chien and Neal Hindocha presented their paper
‘Malicious threats and vulnerabilities in instant messaging’,
at VB2003, anti-virus analysts have awaited the emergence
of a rapidly spreading IM worm. Until now we have seen
attempts to propagate via instant messaging from Kelvir,
Bropia, Funner, Bisex, various IRC bots and many more,
but none have succeeded to a level comparable with the
classic mass-mailing email worm. So, perhaps when one of
the most successful of the classic email worms turns to IM,
we should be worried.

Throughout its history Beagle has adopted new techniques
designed to increase its effectiveness and ability to spread. It
makes sense that its authors would attempt to make use of
whatever infection vectors are available, and therefore the
inclusion of an IM module is not a surprise.

What is strange is the particular means of IM propagation
Beagle’s authors chose. By restricting themselves to ICQ
they immediately lost a huge section of potential users, but
they cut their potential infection pool yet further by making
use of a password-stealing technique which is unique to
ICQ Lite/2003 versions of the software. Not only that, but if
the Public Mode of these versions of ICQ is chosen on
install, the password will not be stored in the registry and
thus the worm rendered impotent.

These choices appear even more curious when we look at
PWSteal.LdPinch. A variant of this Beagle-related Trojan
was downloaded by versions of the Mitglieder Trojan in
early 2004. It logged keystrokes and sent system

VIRUS ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

8 MARCH 2006

information on to a remote address, but interestingly also
had the ability to steal ICQ passwords. LdPinch had the
ability to steal passwords from client versions
ICQ99b-2003a/Lite/ICQ2003Pro, reading and decrypting
each ICQ profile’s MainLocation value from the registry,
but could also retrieve passwords stored in the .dat file used
by older versions of ICQ and it even stole passwords from
alternative ICQ clients Trillian, Miranda and &RQ.

W32.Imav.A iterates through ICQ profiles stored in the
registry at:

HKEY_CURRENT_USER\Software\Mirabilis\ICQ\
NewOwners\<UIN>\

HKEY_LOCAL_MACHINE\Software\Mirabilis\ICQ\
NewOwners\<UIN>\

A number of versions of ICQ store the user’s password here
in the value MainLocation. This value is encoded based on
the volume serial number of the system; however decryption
techniques are well-known and have been used by several
other malware authors (Bizex, Ldpinch) to date.

HUNGRY? HAVE A SNAC
What is particularly noteworthy is that Imav.A
communicates directly with login.icq.com, logging itself in
as a client. Imav builds its own FLAP packets of SNAC data.
(SNAC is the basic communication unit that is exchanged
between clients and servers – the SNAC communication
layer sites on top of the FLAP layer.)

To log into the server Imav needs to re-encrypt the password
it has just decrypted from the registry. This is done with a
simple byte-for-byte xor with the following array:

0xF3, 0x26, 0x81, 0xC4, 0x39, 0x86, 0xDB, 0x92, 0x71,
0xA3, 0xB9, 0xE6, 0x53, 0x7A, 0x95, 0x7C

The FLAC login packet is constructed as below, with the
Type-Length-Values specified.

4 BYTE 0x00 0x00 0x00 0x01

TLV(1) STRING UIN/ICQ Number

TLV(2) STRING Encrypted password

TLV(3) STRING Client Version, “ICQBasic”

TLV(16) WORD unk, 0x010A

TLV(17) WORD major version, 0x0014

TLV(18) WORD minor version, 0x0020

TLV(19) WORD lesser version, 0x0000

TLV(1A) WORD build version, 0x090B

TLV(14) DWORD version, 0x0000043D

TLV(0F) STRING language, 2 chars, “en”

TLV(0E) STRING country, 2 chars, “us”

Once authenticated, Imav connects to the BOS server, using
the host/port information and auth-cookie from the
login.icq.com’s initial reply, and completes the protocol
negotiation stage.

When the login process is complete, Imav attempts to send
messages to random users containing the string ‘my foto’
and a link to my_foto.zip located on a remote server.

IP FILTERING

Another interesting routine used by Imav is its blocking of
security-related websites. Older variants of Beagle made use
of a technique that is commonly seen in the malware world.
They added a list of the hosts they wanted excluded to the
windows hosts file %System%\drivers\etc\hosts. Although
effective against the average home user, this was easily
spotted and could be rectified simply by checking the
contents of that file.

In Windows 2000, Microsoft introduced an API to
implement packet filtering functionality. The API allows for
similar functionality to that included in the TCP/IP
properties of a network adapter. To impede the user further
in removing it from their machine, Beagle now makes use
of this Packet Filtering API to drop packets destined for a
pre-defined list of websites. GetAdaptersInfo() returns a
linked list of completed IP_ADAPTER_INFO structs, from
which the worm can get the current IP address assigned to
all active interfaces (PIP_ADDR_STRING CurrentIpAddress;).

PfCreateInterface() creates a new filter interface. This new
interface will be used to control the adding and deleting of
filters from the adapters retrieved from GetAdaptersInfo().
The filter is created with the default PF_ACTION_FORWARD
attributes for its inAction and outAction. The new filter
interface is then associated with each of the active network
adapters using PfBindInterfaceToIpaddress(). At this point
the packet filter is active and in place, but not set to filter
anything. Imav performs a DNS lookup on each site to be
blocked and creates an associated PF_FILTER_DESCRIPTOR
struct for each result. This struct defines the packet filter
containing details of the source and destination to filter on.

PfAddFiltersToInterface() then adds the filter to the
previously created filter interface. The filter reverses the
default processing rule for the interface, that is, the rule that
was specified during the call to PfCreateInterface(). So, in
this case traffic to hosts matched by a filter rule will be
dropped. Imav sets both input and output filters for the
PF_FILTER_DESCRIPTORS generated.

CONCLUSION

Although the impact of this variant in the wild was minimal,
its use of new techniques reminds us that the Beagle authors
will continue to be a threat as they pursue new means of
propagation. As they embrace this experimentation, we
must keep a close watch on developments.

VIRUS BULLETIN www.virusbtn.com

9MARCH 2006

HOW CAN A WEB FILTER ADD
PROACTIVE SECURITY?
Steen Pedersen
Equant, Denmark

It is often recommended that
administrators deploy several
layers of security across their
systems. This is in order to
maximise the chances of being
able to prevent a threat from
entering and executing in the
environment.

In this article I will explain how
the outermost layer of defence,

the perimeter defence, can be enhanced.

THE LAYERED APPROACH
The layers of protection can be separated into five levels
within the IT environment, starting from the outside and
moving inwards:

1: Perimeter

2: Network

3: Host

4: Application

5: Data

In simple terms, client anti-virus solutions work with
signatures and generic detection techniques to stop new and
unknown threats.

New threats are becoming increasingly difficult to detect –
and these days the threats we see are not only viruses and
worms, but also Trojans, backdoors, spyware and other
malware that is seeded through email, instant messenger
and websites. Every sample can be unique, making
detection harder for conventional anti-virus solutions.

Personal firewalls combined with host intrusion prevention
systems provide additional proactive protection. However,
the client protection is the third layer of defence and it is
preferable to block threats as early as possible – ideally
before they reach the workstation.

Email gateway solutions have become quite effective in
blocking new and unknown threats. This is achieved by
spam filtering, the use of blacklists and by blocking
potentially harmful email attachments. The same protection
can be applied to web communication by using a gateway
scanner to scan HTTP and FTP traffic for malware.

PERIMETER DEFENCE
The perimeter is the first point of defence. Solutions
deployed at this level include firewalls, VPN connectors and
gateway scanners for FTP, HTTP and SMTP.

URL filters and web filtering applications are often
overlooked as perimeter defence solutions because they tend
to be thought of as solutions for enhancing productivity,
rather than security.

However, the use of these applications can be a powerful
defence against malware since they enable administrators
to understand, monitor and control outbound web access.
This level of control allows administrators to keep their
users away from the ‘bad neighbourhoods’ on the Internet
and prevent them from visiting sites that are known to
contain threats.

NON BUSINESS-RELATED WEBSITES
The majority of threats on the Internet are located at
websites that would not generally be classed as
business-related. Sites that contain pornography, illegal
music, movies, games and software, gambling, P2P/file
sharing, hacking and other inappropriate content are
notorious for playing host to spyware and other malware.

A web filter can be used to prevent access to such sites,
which in a business environment will increase both
productivity and available bandwidth. In addition to this,
there are security benefits to blocking access to these sites,
as both known threats and – more importantly – new,
unknown threats (that would not be detected by anti-virus
software) are prevented from entering the computing
environment.

As well as blocking both known and new malware, the web
filter can also be used to identify systems that are already
infected. This can be achieved by monitoring web activity –
infected systems will display unusual levels of activity.

TECHNOLOGY AND POLICY

When implementing web filter solutions one must consider
the trade off between improving security and restricting
access to the Internet. It is important that, while preventing
the damage that can result from visiting unauthorized
websites, the web access policy does not cause too many
problems for the users.

The web filter should be configured in monitoring mode to
begin with. After a period of time and regular reviews of the
filter reports the configuration can be changed to ‘advisory
mode’, where the user must confirm access to non
business-related sites.

FEATURE 1

VIRUS BULLETIN www.virusbtn.com

10 MARCH 2006

The technical solution must be supported by a prudent web
access policy that is defined and supported by upper
management. As well as a policy for web access, procedures
for handling blacklisting and whitelisting need to be
implemented and communicated to the end users.

A web filter can enforce a very strict policy which allows
access only to whitelisted sites. However, this might not be
very practical in the real world.

Another solution would be to create a list of
non-categorized sites that are visited. This list can be
reviewed regularly and approved sites added to the whitelist.
All non-categorized sites remain blocked until the sites are
whitelisted in the web filter or categorized by the vendor of
the web filter database.

HOW SECURE?
An important point to bear in mind is that a web filter is not
an ‘install and forget’ solution. Even with the best filtering
database a web filter alone cannot provide full protection.
The administration and handling of the web filter are very
important parts of the solution and resources must be
allocated for this. New sites pop up, sites can change
content and sites can be categorized wrongly.

A web filter will certainly reduce security problems and
provide information about where some of the breaches
originate. In combination with the web filter, the firewall
configuration and monitoring of the firewall log is also a
key to solid perimeter defence.

LOOK AT THE PAST AND LEARN
It can be useful to review what has happened in the past and
use the experience to make changes that will improve
security. By monitoring and logging web activity we can
collect information that will be useful for enhancing
perimeter security.

For example, we can use the logs to determine which
Internet sites are visited most frequently by users, and the
category to which those sites belong.

We can also find out more specific information, such as
which internal user/system generates the most web
communication to non-categorized sites, which non
business-related sites are the most visited and which
non-categorized sites are the most visited.

This information may highlight new and unknown sites
which could be the cause of security problems either now or
in the future. It can also pinpoint particular users whose
Internet activity might raise security concerns. Detective
work like this should be included in an ongoing procedure

to improve the web filter and the level of security it can
provide.

A report combining local anti-virus alerts and web filter log
information can also reveal important details. For example,
if virus alerts are generated on a particular user’s machine
and the location of the infected file is always in the browser
cache directory, this is an indication that the user is visiting
insecure websites. Information about the websites visited
at the time of the virus alert can be found in the web filter
log file.

BLOCKING FILES BASED ON FILE TYPE
Web filters can also control when (and if) a user can access
or download specific file types on the Internet (such as .pif,
.com, .lnk, .vbs or .exe). This feature is very similar to the
email attachment blocking rules which are often
implemented on SMTP gateways and mail servers.

The risk of downloading and activating malware can be
reduced significantly by blocking access to these specific
file types. However, the number of companies using web
filters to block the downloading of unwanted file types is
still very small compared with the number of companies
using email attachment file-blocking rules.

CONCLUSION
With threats evolving, increasing in volume and becoming
more sophisticated, traditional firewall and anti-virus
solutions alone are no longer sufficient to protect our
systems. We must consider what other solutions can be used
to enhance the level of security.

Web filters are often overlooked as security solutions, but
by implementing a layered approach and adding proactive
solutions at the different levels (perimeter, network, host,
application and data) we can create a formidable defence. In
addition to increasing security, this can also enhance
productivity and bandwidth, and reduce the amount of time
spent on handling security incidents.

We can make a change. Instead of spending time on security
incidents, administrators should invest time in handling and
maintaining the proactive security layers.

FURTHER READING
[1] Mitchell Ashley, StillSecure, ‘Layered Network

Security 2006: A best-practices approach’.

[2] Secure Computing, Technical Paper, ‘Spyware: an
annoying and dangerous problem you can eradicate’
and ‘Protecting HTTP traffic: Why web filtering
should be your first line of defense’.

VIRUS BULLETIN www.virusbtn.com

11MARCH 2006

IMPROVING PROACTIVE
DETECTION OF PACKED
MALWARE
Adrian Stepan
Microsoft, USA

Malware writers have always striven to create malware in
such a way that it will evade detection by anti-virus
software. Code obfuscation is one of the methods they use
to achieve this. Over time, obfuscation techniques have
evolved from simple encryption to polymorphism,
metamorphism and packing. The latter is becoming
increasingly popular these days, with lots of packing tools
available to malware writers, and more of them being
created each month.

A lot of developmental effort is required for anti-virus
engines to provide unpacking support for all these packers
in a timely manner. Generic unpacking is one solution to
this problem, but implementing it is not a trivial task. The
amount of computing power required by some unpacking
routines is beyond the amount that most emulators can
provide in a reasonable time. Is there any way to overcome
this limitation?

At the VB2005 conference last year I presented a paper
entitled ‘Defeating polymorphism: beyond emulation’. The
paper described a technique called ‘dynamic translation’
(DT), which can be used instead of emulation for
decrypting complex polymorphic malware. The main
advantage of this method over emulation is that it is
significantly faster. Dynamic translation can also be used to
perform generic unpacking, with very few or even no
changes required.

OF OLD AND NEW OBFUSCATION
TECHNIQUES

Theoretically, there is no limit to the complexity of the
algorithm that a malicious program can use to obfuscate its
code. In practice, however, the complexity of such
algorithms is limited both by the fact that the malware in
question needs to replicate in a reasonable time, and by
the amount of effort that malware writers are willing to
invest.

Recently, the majority of new malware has been written in
high level languages (HLL), most likely because
development is fast and today’s malware writers lack
assembly skills. Writing polymorphic viruses in a high-level
language is very difficult though, and as a result their
prevalence has dropped significantly. However, compression

algorithms can be developed easily in HLL, and these can
be used to pack almost any executable file.

In the case of polymorphic viruses, the number of different
encryption algorithms used is so large that writing a specific
decryption routine for each of them is not feasible. In the
past, however, generic decryption by means of emulation
was easier to implement thanks to several factors:

• Decryption algorithms required only a few instructions
for decrypting each byte, for all but a handful of
viruses.

• Viruses were quite small, ranging from less than a
hundred bytes to a few kilobytes in size; decrypting a
virus required emulation of relatively few instructions
(from a few hundred to a couple of million).

• The amount of memory required was typically small,
about the same order of magnitude as the size of the
virus.

• Decryption typically used only simple arithmetic/logic
instructions, so the emulators didn’t have to support the
full x86 instruction set. FPU/MMX/SSE instructions
were rarely used, and (with very few exceptions) they
did not affect the decryption process and could be
skipped.

On the other hand, the number of different packers/protectors
available is small – a few hundred, only a couple of which
are polymorphic (e.g. Morphine, Molebox). The number
of different compression algorithms used by these is even
smaller (Huffman, arithmetic/rangecoder compression,
LZW, BurrowsWheeler and a few variants or combinations
of these). Therefore, specific unpacking routines to handle
all of them can be developed with a reasonable amount
of effort.

Algorithms used in compression are more complex and
have more stringent memory requirements than the
encryption algorithms used by polymorphic viruses.
Modern malware, especially those written in high level
languages, are also a lot larger than we have seen in the past
(up to several hundred kilobytes). Therefore, unpacking
them requires many more instructions and proportionally
more computational effort.

The use of emulation to achieve unpacking is possible, but it
may take a considerable amount of time to complete and it
is difficult to implement. Static (specific) unpacking is
currently the most widely used unpacking method in AV
engines, for both flexibility and performance reasons.

FROM SPECIFIC TO GENERIC UNPACKING
The use of packers is becoming increasingly popular among
malware writers. A packed piece of malware has a better

FEATURE 2

VIRUS BULLETIN www.virusbtn.com

12 MARCH 2006

chance of remaining undetected for a long time, as well as
spreading faster due to its smaller size. Packing an existing
piece of malware is also by far the easiest way to create a
‘new’ one. Of the new incoming samples we see, more than
50% are produced simply by repacking existing malware,
using different packers.

Presently, there are a few dozen different packing utilities
available, most of which can be used by anyone with
minimal computer skills. Each of these tools may have
several variants or versions – for instance, UPX has more
than 20 known versions. There are several scrambler tools
that can be used to create modified versions of UPX.

Source code is available on the Internet for a number of
packing tools, such as UPX, FSG, Yodacrypt and Morphine.
These can easily be modified by any malware writer, by
tweaking the compression algorithms or by adding one or
even several encryption layers. Such modified packers are
being created at a rate of about 10–15 per month.

There is no reliable method of determining whether a given
file is packed. Running all available unpacking routines on
all files would make scanning unreasonably slow. Therefore,
a preliminary check needs to be performed for each
supported packer, to determine if a given file might be
packed with it. These precheck routines need to be fast, and
usually rely on searching for a code pattern known to be
present in the unpacker. However, a simple change in the
unpacker code would prevent identification of the packer,
meaning that unpacking would not even be attempted. In
other instances, a packer detection routine may identify a
modified packer, but the unpacking routine will not work
correctly, due to the modified compression algorithm, added
encryption or other changes.

It is possible to write unpacking routines that are resilient to
significant variations, but not without more development
effort and most likely with some speed penalty as well. In
reality, unpacking routines are modified ‘after the fact’ to
accommodate new packer versions. The use of generic
unpacking would significantly improve proactive detection
capabilities while requiring less development effort in the
long term, as more and more packers need to be supported.

OVERCOMING THE SPEED LIMITATION

Emulation has successfully been used in AV engines for a
long time to achieve decryption of polymorphic viruses in a
generic way. Although emulation can be used for unpacking
as well, the method may be too slow to be effective in
practice. Typically, emulation is several hundreds of times
slower than execution, achieving a speed of about 10 MIPS
on an average PC. Large packed files or files packed
multiple times may need to run several hundreds of millions

or even billions of instructions to be unpacked. Using an
emulator for unpacking such files can take several minutes,
which is not acceptable for an AV engine.

Emulation speed is not the only difficulty that needs to be
addressed in order to perform generic unpacking. Emulators
require large amounts of virtual memory, good support for
the CPU instruction set, accurate emulation of exception
handling, timing and synchronization mechanisms, support
for multi-threading, etc. While these problems can be
addressed by investing development effort in improving an
emulator, the slowdown is a limitation inherent to the
method, and one that is very difficult to overcome.

Dynamic translation serves a purpose that is very similar to
emulation; however the implementation follows a different
principle. An emulator ‘interprets’ a program’s code
instruction by instruction. Each instruction is first decoded,
in order to determine the instruction type, length, operands,
etc. After this, the emulator identifies and calls a routine
that updates a data structure describing a virtual system, in
the same way as the original instruction would change the
state of the real system if executed. These emulation
routines are generated statically at ‘compile-time’ and are
part of the emulator.

With dynamic translation, the first step is to divide the
program to be analysed into ‘basic blocks’, that are
contiguous blocks of code having a single entry point at the
beginning and a single exit point at the end of the code.
After each block is identified, it is translated to native
executable code, in a process similar to just-in-time
compilation. The resultant code is persisted and then
executed. A block will only need to be retranslated if the
original code is overwritten; this only happens if the
program uses self-modifying code – a technique rarely used
in programs written in high-level languages. Code that is
executed several times, such as a loop construction, will be
translated and persisted at the first loop iteration, and for all
subsequent iterations the persisted code will be executed.

The method provides a significant speed advantage over
emulation, by eliminating the redundant analysis of
repeating code sequences. This is especially true in the
case of an unpacking routine, which is in fact a loop that
uncompresses a few bytes of code at each iteration. An
additional increase in speed can be achieved by omitting
detection of self-modifiable code for programs written in
HLL.

SOME SPECIFIC ASPECTS OF GENERIC
UNPACKING
Running a packed binary inside a virtual machine, based on
either emulation or DT, will produce an unpacked image of

VIRUS BULLETIN www.virusbtn.com

13MARCH 2006

the binary, assuming the virtual machine is implemented
properly. However, this does not guarantee detection of a
piece of malware that is present in the obtained image, as
in most cases, the image will not be identical to the
original binary file. This happens because several packers
use specific techniques to modify the original binary, in
addition to compression, for the purpose of defeating
generic unpacking.

A possible mitigation is the use of signature patterns or
detection routines that are resilient to these techniques.
Another solution relies on reconstructing the original binary
from the image obtained by using generic unpacking. This
can be achieved by identifying the obfuscation techniques
that have been used and running appropriate specific or
generic routines to revert the effect of those techniques.

A few packers, such as Pespin, redirect API calls by
changing the offsets of indirect call instructions in the
packed program to use an address table generated by the
unpacking routine. Pespin also uses a ‘code stealing’
technique to obfuscate some code sequences in the original
program. A particular code chunk (starting, for instance, at
the original entry point) is selected and removed. In order to
maintain the original functionality, an equivalent code
sequence is generated at a different address and called
instead of the original code. Any signature including the
stolen code sequence or modified call offsets will no
longer be matched for a packed malware. Detection can
be achieved by using dedicated routines to recover the
original code, or by not using any stolen/modified bytes as
part of a signature.

In some cases, files that are packed multiple times with
different packers will no longer be functional. For instance,
files that are packed with Molebox and after that packed
again with another packer will fail to execute correctly,
because Molebox relies on the code integrity of the file
to compute a key needed for unpacking. In this case,
generic unpacking, based on either emulation or DT, will
fail. Specific unpacking routines may still succeed to
unpack such a file, by computing the key based on a
partially unpacked image of the file immediately before the
Molebox layer.

CONCLUSION

Dynamic translation can be used to achieve generic
unpacking with good speed performance. However,
detecting generically unpacked malware using an existing
signature set is not guaranteed to succeed. New signatures
can be extracted to mitigate this problem. Combining DT
with specific routines to rebuild the original binary from an
unpacked image is yet another solution to be explored.

CHANGES TO THE VB TEST SETS
Matt Ham

This month’s reviewer activity has been concentrated
behind the scenes, with some labour-intesive changes being
made in the test sets used for VB’s comparative reviews.

CLEAN TEST SET
Over the years VB’s clean test sets have consisted of a
reasonably representative selection of files. Recently,
however, there has been some concern over the inclusion of
a large number of dynamically compressed files. In most
cases these are installers, which contain multiple
executables under potentially proprietary encryption or
compression algorithms. While a small number of these
would be expected in everyday on-demand scanning, the
test sets contain a far larger percentage than one would
expect to encounter in a real-world situation.

With the number of scanners that contain routines for
delving into such files on the increase, it has become
apparent that such in-depth investigation has a severe
impact on speed of scanning. Therefore, the inclusion of a
large number of installer files in the clean test sets was
putting the more thorough products at a disadvantage in
terms of the scanning speeds we reported.

To resolve the situation, the clean executables test set has
been split into two. One set contains ‘pure’ executables,
while the other contains these dynamically compressed
executables. It is hoped that this will enable a better
breakdown of any future scanning speed issues.

SPYWARE TEST SET

The second major change comes in the form of a new test
set – a spyware test set. Currently, there are no plans to
make the detection of samples in this test set a requirement
for achieving a VB 100% award.

While recognising that it is not the most stringent of test
methodologies, the current plans are not to look at spyware
detection capabilities on machines that are already
compromised. Instead, it is envisaged that the files included
in the test set will be the initial vector of the malware in
question. Thus the downloaded file of a spyware
application, Trojanised software with spyware functionality,
backdoor servers and the like will make up the bulk of
samples in the test set. As the compilation of both the
spyware test set and testing methodology is still a work in
progress, I would be very pleased to receive comments and
suggestions at matthew.ham@virusbtn.com.

COMPARATIVE UPDATE

VIRUS BULLETIN www.virusbtn.com

14 MARCH 2006

this method, one can acquire the decryption key and decrypt
the virus part that needs to be matched. This is applicable
if the encryption algorithms are finite or have certain
weaknesses.

Of all the code obfuscation methods that exist today,
metamorphism is the most difficult to deal with. A good
description of metamorphic viruses is given in [1].
Metamorphic viruses have neither a decryptor, nor a
constant virus body. However, they are able to create new
generations that look different. They do not use a constant
data area filled with string constants but have a single code
body that carries data as code.

UNMASKING THE CULPRIT
The evolution of metamorphic viruses in the Win32
environment makes the life of the anti-virus researcher a
little more challenging. Some metamorphic viruses avoid
storing strings in their normal form to prevent easy
detection. In this scenario, scan string and range scanning
are no use as detection techniques. Instead, techniques such
as file structure analysis, code analysis, and behaviour
analysis must be used.

As mentioned in [1], in order to detect a metamorphic virus
perfectly, a detection routine must be capable of
regenerating the essential instruction set of the virus body
from the actual instance of the infection. [1] also introduces
some of the techniques used to detect metamorphic viruses.
In this article, we will enumerate and discuss in detail how
each detection technique works and elaborate on their
corresponding advantages and disadvantages.

FILE STRUCTURE ANALYSIS
File structure analysis, also known as geometric scanning,
involves detecting the modifications that are made by the
virus in the structure of the victim file. Some anti-virus
experts also call this method ‘shape heuristics’, owing to the
fact that it does not ensure an exact detection and is prone to
false alarms.

Win32 binary viruses commonly rely on infection markers
to flag files that have already been infected, thus avoiding
multiple infections. For example, in the case of Bistro.B, an
infected file has a high-byte value 0x51 at the minor linker
version field. Such infection markers can also be very useful
from the point of view of detection, since they can be used
as initial filter signatures, narrowing down the number of
files to be scanned.

However, a filter signature alone is not sufficient to ensure
error-free virus detection. A better approach is to combine
geometric scanning with other detection techniques.

SOLVING THE METAMORPHIC
PUZZLE
Rodelio G. Fiñones
Fortinet Technologies, Canada

Richard T. Fernandez
Trend Micro, Philippines

Metamorphic viruses have posed a challenge for the
anti-virus industry for quite some time. There are several
different techniques that can be used by metamorphic
viruses to obfuscate their code – from simple register
swapping to the more complex heavy code mutation. This
article focuses on a number of metamorphic techniques
used by 32-bit viruses under the Windows environment and
highlights different methods for detecting them.

1001 WAYS TO DO IT
Over the years, viruses have demonstrated a number of
obfuscation techniques to escape detection by anti-virus
scanners.

Encryption is the simplest form of code obfuscation. In this
technique, a constant key is used to decrypt the encrypted
virus body. The virus uses the same key to encrypt all the
files that it infects. The decryptor is placed at the start of the
virus code and the encrypted data follows. However, since
the decryption code is constant, it can be used to recognise
the virus, making detection relatively easy.

Oligomorphic viruses differ from simple encrypted viruses
because they have a varying, but finite number of decryptors
in every infection generation. The method used for detecting
simple encrypted viruses cannot be applied to this type of
virus because the decryptor is not constant. Instead, the virus
can be decrypted on-the-fly. This is achieved by capturing
modifications made in consecutive memory locations – a
characteristic of viruses that decrypt their virus body.

Polymorphic viruses produce a nearly infinite number of new
decryptors with a variety of encryption methods to encrypt
the constant virus code for every infection. Since the virus
code remains constant after decryption, the detection
solution used for oligomorphic viruses can be applied.

However, a more sophisticated method for detecting these
viruses is through the use of a 32-bit emulator, which allows
virus codes to execute in a controlled environment. The
virus codes are then monitored and examined periodically,
especially when certain instructions modify portions of the
code. However, emulation uses a lot of memory operations
and CPU resources. Another technique, called x-raying,
allows us to see through the layers of encryption. Using

TECHNICAL FEATURE

VIRUS BULLETIN www.virusbtn.com

15MARCH 2006

WILDCARD * STRING AND HALF-BYTE
SCANNING
Wildcards and the half-byte detection technique can be used
to detect simple metamorphic techniques such as register
swapping and op-code changing. Let’s look at an example.
Figure 1 shows a code fragment of a Regswap infection.

BE04000000 mov esi,000000004 ;” ?”

8BDD mov ebx,ebp

B90C000000 mov ecx,00000000C ;” ?”

81C088000000 add eax,000000088 ;” ê”

8B38 mov edi,[eax]

89BC8B18110000 mov [ebx][ecx]*4[00001118],edi

2BC6 sub eax,esi

49 dec ecx

BB04000000 mov ebx,000000004 ;” ?”

8BCD mov ecx,ebp

BF0C000000 mov edi,00000000C ;” ?”

81C088000000 add eax,000000088 ;” ê”

8B30 mov esi,[eax]

89B4B920110000 mov [ecx][edi]*4[00001120],esi

2BC3 sub eax,ebx

4F dec edi

Figure 1: Regswap infection code fragment.

The parts shown in bold are the common virus codes for
every generation. These are good candidates for a detection
pattern. Half-byte detection would be appropriate for this
type of infection if the scanning engine supports it.

STACK DECRYPTION DETECTION
A new metamorphic technique emerged when variants of
the Zmorph virus appeared. In this case, a piece of
polymorphic code is positioned at the entry point of the
infected file. This decrypts the virus one instruction at a
time and rebuilds it by pushing the result into the stack
memory. After the last instruction has been decrypted,
control is transferred to the start of the virus body, which is
also located in the stack memory.

In order to detect this type of metamorphism, emulators must
be able to detect stack decryption. The emulator must monitor
the memory that is accessed by the virus. Once control is
transferred to the stack memory, the emulator detects it and
dumps the whole decrypted virus code for identification.

Note that monitoring the memory locations accessed by the
virus while emulating has a significant impact on
performance and thus filter checking should be applied first.

SUBROUTINE DEPERMUTATION
Another level of metamorphism was introduced when
Win32 viruses such as Ghost and Zperm were released.
Here, the virus code may be constant but metamorphosis is

achieved by dividing the code into frames and infections –
these frames are positioned randomly and connected by
branch instructions to maintain the process flow. The
diagram shown in Figure 2 illustrates this.

The branch instructions could be a simple relative jump
(0xe9, 0xea, 0xeb) or a complex transfer of control (i.e.
push val32; ret). As shown in Figure 2, the control flow
remains the same for the two infections.

The level of permutation varies depending on the number
of subroutines that constitute the whole virus. For instance,
the code of a virus that has eight subroutines can mutate by
eight or 40,320 ways. The level of permutation can be
computed as n (where n refers to the number of
subroutines/frames). To make detection more difficult,
most viruses insert garbage instructions between frames.

The Zperm virus employs a Real Permutating Engine (RPME)
to accomplish its sophisticated levels of metamorphism. To
counter this method, we need to perform partial emulation
(emulation of branch instructions only) to reconstruct the
virus code in its form prior to permutation. Figure 3 shows
the process of rebuilding the permutated virus code.

The challenge here lies in deciding when to stop decoding
and in ensuring that the virus codes are thoroughly
exhausted. With the help of the decode table and IP address
table, this can be done easily. This technique can be very
effective for rebuilding the code as well as removing garbage.

DUMMY LOOPS DETECTION
An ‘improved’ version of Bistro was released some time
after the original. In addition to an RPME engine, it has
another anti-emulation technique: the random code insertion
technique (aka macho engine). It inserts do-nothing
instructions and dummy loops randomly before the
decryptor codes. As a consequence, some emulators fail to
rebuild the real virus codes, instead emulating millions of
do-nothing instructions.

To avoid this problem, an emulator must have a means of
identifying do-nothing instructions and dummy loops and
must be able to skip them as encountered.

Figure 2: Subroutine depermutation.

VIRUS BULLETIN www.virusbtn.com

16 MARCH 2006

disassembly codes that the virus uses and provides the
rule or the positive filter for detection.

As an overview, this detection method simply treats the
virus file as a series of disassembly codes (alphabets) that
can be matched against a database of existing virus
disassembly codes.

In this technique, the scanning of a file is terminated
automatically when the current disassembly code does not
match any of the disassembly codes in the database or when
the disassembly code does not belong to the acceptable list
of instructions for a certain virus. Thus, this solution is
relatively fast compared to others.

Two main components are involved in this solution: the
builder and the simulator. The builder creates the automaton
of the virus using the grammar pattern, while the simulator
performs the automaton matching and conditional test using
RegEx operators during file scanning.

The grammar pattern contains information on normalization
(a set of garbage or negative filters) as well as information
on how to detect the malicious file (Grammar and Accepted
instructions). It uses regular expression where each item
represents an assembly instruction.

An opcode can be any Intel IA-32 assembly instruction and
an operand can be any of the following:

• Exact – specifies the exact operand to match.
For example:

PUSH EAX

• Wildcard – specifies the general type of the operand.
For example:

PUSH reg32

MOV reg, imm

Note that for the first assembly line, the PUSH
instruction must be present with any 32-bit register.
The next instruction requires that the MOV opcode is
present with any register as the first operand and any
immediate value as the second operand.

• Variables – information on an operand may be stored
in a variable and retrieved later for matching.
For example:

DEC reg32_varset1

PUSH reg_var1

Note that while matching, the DEC opcode must be
present in the first assembly line with any 32-bit
register as the operand and set register variable 1 to
this register type. For the next line, the PUSH opcode
must match and the operand register must also match
the retrieved value of register variable 1.

In wildcard instructions, the opcode and the operand vary.
Possible values for the register operand are REG, REG8,

In the case of Bistro, the macho engine can be detected by
monitoring the movement of IP and checking the ‘WRITE’
operations. Generic detection of all Win32 viruses that
utilize macho engines is possible using this method.
However, a drawback of the method is that it is also
susceptible to false positives.

REGULAR EXPRESSION AND DFA

One of the most efficient ways to deal with different types
of obfuscation is the use of disassembly code to match the
pattern (regular expression) using Deterministic Finite
Automata, or DFA.

In its simplest terms, a regular expression is a formula for
matching strings that follow a pattern. It provides a
mechanism for selecting specific strings from a set of
character strings. DFA is a transition table containing states
and their corresponding next states.

Before digging into the details, we must define some
terminologies:

• Automaton – a predetermined sequence of operations.
In this context, it corresponds to the sequence of
disassembly codes.

• Grammar – the rules for a language. In this context, the
grammar pattern pertains to the collection or set of

Permutated code Decoding procedure

aaa1 1. decode aaa1

aaa2 2. decode aaa2

aaa3 3. decode aaa3

jmp @A 4. change IP to @A

bbb1 5. decode aaa7

bbb2 6. decode aaa8

@B: aaa4 7. decode aaa9

aaa5 8. change IP to @B

aaa6 9. decode aaa4

jmp @C 10. decode aaa5

bbb3 11. decode aaa6

bbb4 12. change IP to @C

@A: aaa7 13. decode aaa10

aaa8 14. decode aaa11

aaa9 15. decode aaa12

jmp @B 16. decode ret

@D: aaa13

aaa14

ret

bbb5

@C: aaa10

aaa11

aaa12

ret

Figure 3: Permutated virus rebuilding process.

VIRUS BULLETIN www.virusbtn.com

17MARCH 2006

REG16 and REG32, while the possible values for the
immediate operand are IMM, IMM16 and IMM32. For
memory operands, MEM, MEM16 and MEM32 are the
possible values. Assembly instructions are associated
through operators such as start (*), plus (+), qmark (?), or (|)
and explicit dot (.).

As shown in Figure 4, the pattern source format is
processed by the DFA builder to produce automatons. Each
assembly instruction is assigned a unique ID for easy
matching and added to the corresponding garbage, accept
and grammar list. Since our pattern is composed of
operators, it has to deal with precedence. For easy processing,
the pattern can be converted from infix expression to postfix
expression before creating the DFA patterns.

The simulator is responsible for scanning files for malicious
content. It has four sub-components: a disassembler,
depermutator, normalizer and DFA simulator. The input
data is pre-processed by the first three sub-components
before they are passed to the DFA simulator. Figure 5 shows
the simulator component.

Figure 5: The DFA simulation process.

The disassembler part performs the conversion from binary
code to assembly code, while the depermutator component
connects the subroutines of the permutated virus. The
normalizer explicitly disregards garbage instructions using
the data (Garbage section) from the pattern.

DFA simulation is the final step of the process. Using the
input symbol derived from the file being scanned and the

automaton created in the building process, the DFA
simulator scans the file for malicious content.

For every input symbol, the simulator checks for the
matching states and updates them accordingly. Wildcards
and conflicts in pattern are resolved by having a set of
transition states. When an input symbol is rejected, the DFA
simulator checks the entries in the Accept section. If there is
a match, the state is toggled back as if it were not rejected.
It then reads the next input and continues the simulation.
Once the final and accepting state is reached, the file is
tagged as a virus.

This particular detection solution covers almost all of the
code obfuscation techniques discussed above. Encrypted
viruses can be detected by creating a virus signature based
on the decryptor’s disassembly code. Oligomorphic and
polymorphic viruses can be addressed by creating an
automaton based on the virus’ alphabets or the possible set
of instructions that it can produce during infection.

Although polymorphic viruses are capable of producing an
almost infinite number of decryptors for each infection,
these decryptors can still be subdivided into manageable
parts, which enable the creation of a set of automatons. On
most occasions, these viruses can be detected generically
through detection of the polymorphic engine.

Conveniently, this method also covers the detection of
permutating viruses through the depermutator component,
which connects the subroutines of the permutated virus.

Unlike emulators, which are known to be slow and cannot
handle viruses that generate do-nothing loops, this
technique simply treats the virus as a series of disassembly
codes that can be matched with a database of existing virus
disassembly codes.

For more sophisticated viruses, like Zmist and Etap, this
detection method works best if coupled with a smart emulator.

CODE TRANSFORMATION DETECTION

Code transformation is a method of converting mutated
instructions to the simplest form where common codes
exhibited by the virus can be captured. The combinations
of instructions are transformed to an equivalent but
simple form.

Etap (aka Simile) is the first metamorphic virus where this
type of scanning technology is applicable. Let’s have a
quick look at how Etap achieves metamorphism through
heavy code transformation.

Etap, like Zmist, implements a combination of metamorphic
techniques – entry point obfuscation, permutation, and
heavy code mutation via shrinking and expanding

Automaton of
viruses

Disassembler
&

Depermutator
File Is Virus

Found?
Tag
file as
virus

DFA
Simulator

Normalizer

Tag file as
not virus

Automaton

Figure 4: The DFA building process.

DFA
Builder

DFA patterns &
Normalization rules Automaton of

viruses
Automaton

VIRUS BULLETIN www.virusbtn.com

18 MARCH 2006

XOR Reg,-1 —> NOT Reg

SUB Mem,Imm —> ADD Mem,-Imm

XOR Reg,0 —> MOV Reg,0

ADD Reg,0 —> NOP

AND Mem,0 —> MOV Mem,0

XOR Reg,Reg —> MOV Reg,0

SUB Reg,Reg —> MOV Reg,0

AND Reg,Reg —> CMP Reg,0

TEST Reg,Reg —> CMP Reg,0

LEA Reg,[Imm] —> MOV Reg,Imm

MOV Mem,Mem —> NOP

Figure 6: One-to-one instruction transformation.

PUSH Imm / POP Reg —> MOV Reg,Imm

MOV Mem,Reg/PUSH Me —> PUSH Reg

MOV Mem,Reg / MOV Reg2,Mem —> MOV Reg2,Reg

ADD Reg,Imm / ADD Reg,Reg2 —> LEA Reg,[Reg+Reg2+Imm]

OP Reg,Imm / OP Reg,Imm2 —> OP Reg,(Imm OP Imm2)

LEA Reg,[Reg2+Imm] / ADD Reg,Reg3 —> LEA
Reg,[Reg2+Reg3+Imm]

POP Mem / PUSH Mem —> NOP

MOV Mem2,Mem / MOV Mem3,Mem2 —> MOV Mem3,Mem

OP Reg,xxx / MOV Reg,yyy —> MOV Reg,yyy

NOT Reg / NEG Reg —> ADD Reg,1

NEG Reg / ADD Reg,-1 —> NOT Reg

Figure 7: Two-to-one instruction transformation.

MOV Mem,Reg
OP Mem,Reg2
MOV Reg,Mem —> OP Reg,Reg2

MOV Mem,Imm
OP Mem,Reg
MOV Reg,Mem —> OP Reg,Imm (it can’t be SUB)

MOV Mem2,Mem
OP Mem2,Imm
MOV Mem,Mem2 —> OP Mem,Imm

CMP Reg,Reg
JNO/JAE/JZ/JBE/JNS/JP/JGE/JLE @xxx
!= Jcc —> JMP @xxx

MOV Mem,Imm
CMP/TEST Reg,Mem
Jcc @xxx —> CMP/TEST Reg,Imm

Jcc @xxx
Jcc @xxx

MOV Mem,Reg
AND/TEST Mem,Reg2
Jcc @xxx —> TEST Reg,Reg2

Jcc @xxx

MOV Mem2,Mem
SUB/CMP Mem2,Reg
Jcc @xxx —> CMP Mem,Reg

Jcc @xxx

MOV Mem2,Mem
AND/TEST Mem2,Imm
Jcc @xxx —> TEST Mem,Imm

Jcc @xxx

MOV Mem2,Mem
SUB/CMP Mem2,Imm
Jcc @xxx —> CMP Mem,Imm

Jcc @xxx

PUSH EAX
PUSH ECX
PUSH EDX —> APICALL_BEGIN

Figure 8: Three-to-one/two/three instruction transformation.

seems that the two code fragments are different because
the instruction constructs used are far from each other. But
detailed analysis shows that they both assemble the string
‘kernel32.dll’ in the stack, then call the GetModuleHandle
API.

The solution for Etap is divided into three methods – simple
string search, behaviour checking, and code transformation.
The first and second method do not guarantee perfect
detection and are prone to false positives. The latter is the
perfect solution for this type of metamorphism, but is also
very hard to implement.

Most anti-virus engines already support string search so it
will not be discussed here. The second method requires an
emulator to follow the virus code and trigger several flags
when a behaviour that pertains to the virus is encountered.

However, this technique does not guarantee perfect
detection because there are some samples wherein the API
names cannot be resolved properly. In addition, an emulator
is required to intercept the RDTSC instruction and make

techniques. The shrinking and expanding of virus codes is
also known as the ‘accordion model’. To accomplish such
code mutation, this virus had gone through several steps as
illustrated below:

Disassembler → Shrinker → Permutator → Expander → Assembler

The virus uses pseudo-assembler techniques to decode each
instruction in a form that it can manipulate easily. It extracts
the instructions, instruction length, registers and other
pertinent information. The shrinker then compresses the
disassembled codes produced from the previous generation
to prevent the virus code from growing continuously. At this
point, garbage codes and do-nothing instructions are also
eliminated. Figure 6 shows sample Win32 instructions that
Etap has compressed/transformed.

To increase the level of metamorphism, the virus codes are
processed first by the permutator. The expander simply
undoes what the shrinker did. It replaces the single
instructions with corresponding singles, pairs or triplet
instructions.

The expander is also responsible for register translation and
variable re-selection. Instructions are selected by the
expander in a random manner. In the final step, the
assembler’s task is to convert the pseudo-assembly code into
the real Intel IA-32 assembly instructions.

The disassembled code fragments shown in Figures 9 and
10 are two different generations of Etap. At first glance, it

VIRUS BULLETIN www.virusbtn.com

19MARCH 2006

impact on the performance of the scan engine. Checking
filters via geometric techniques like file structure analysis is
also advisable, whenever possible.

Zmist uses techniques that are similar to those used by Etap.
More details on this virus and its infection techniques can
be found in [1].

CONCLUSION

Devising a perfect solution for detection of metamorphic
viruses is one of the enduring goals of most anti-virus
vendors. Several techniques are known to exist but some are
simple workaround solutions while others are shortcuts.

It is important to consider three factors when designing a
solution for metamorphic viruses: detection rate, speed and
false positives. To achieve perfect detection, a re-write of
the scan engine is appropriate to make it interactive, flexible,
and optimized to handle such kinds of virus. It is also worth
mentioning that creating an automated replication system to
produce several different generations of infected samples
would be necessary to guarantee a 100% detection rate.

REFERENCES & FURTHER READING
[1] Ször, P. and Ferrie, P.; ‘Hunting for Metamorphics’,

Proceedings of the Virus Bulletin Conference 2001,
pp. 521–541.

[2] The Mental Driller; ‘Metamorphism in practice’,
29A, Issue #6.

[3] Aho, A.V., Sethi, R. and Ullman, J. D.; Compilers
Principles, Techniques, and Tools, Bell Telephone
Laboratories 1986.

[4] Sedgewick, R.; Algorithms (Second Edition).
Addison-Wesley 1986.

[5] Qozah, ‘Polymorphism and Grammars’, 29A Issue
#4, 1999.

[6] Tanenbaum, A.S.; Structured Computer
Organization, Prentice-Hall 1999.

[7] Grune, R. and Jacobs, C.J.H.; Parsing Technique – A
Practical Guide, Amstelveen/Amsterdam, 1990.

[8] Myers, E.W.; Oliva, P.; and Guimaraes, K.;
‘Reporting Exact and Approximate Regular
Matches’, 1988.

[9] Wu, S. and Manber, U.; ‘Fast Text Searching with
Errors’, University of Arizona.

[10] Perriot, F. and Ferrie, P.; ‘Principles of X-Raying’,
Proceedings of the Virus Bulletin Conference 2004,
pp. 51–66.

mov eax,06E72656B ;”nrek”

mov [edx],eax

mov eax,032336C65 ;”23le”

mov [edx][04],eax

mov eax,06C6C642E ;”lld.”

mov [edx][08],eax

xor eax,eax

mov edx][0C],eax

call .00040299D

Figure 9: First generation of Etap.

push 6c6c442e ; mov ebp, “lld.”
pop ebp

mov edx,73b36c67 ; mov edx, “23le” —> encrypted
and edx,3e7fdedd

push 4e72454b ; mov esi, “nrek”
pop esi

push ebp ; mov ecx, ebp
pop ecx

mov dword ptr ds:[42268c],ecx ; mov mem+8, ecx
lea ebx,dword ptr ds:[esi] ; mov ebx, esi
mov dword ptr ds:[422684],ebx ; mov mem, ebx
mov dword ptr ds:[422688],edx ; mov mem+4, edx

push 0 ; xor reg2, reg2 or mov reg2, 0
pop edx

mov dword ptr ds:[422690],edx ; mov [mem+c], edx
mov ecx,infect1.00422684 ; mov ecx, mem
push ecx ; push ecx

push <&kernel32.getmodulehandlea> ; mov edi,
offset getmodulehandle
pop edi

call dword ptr ds:[edi]; call getmodulehandle via edi

Figure 10: Second generation of Etap.

sure that correct values are specified so that the virus
continues with the process. Otherwise, the virus simply
exits and the scanner fails to notice the virus behaviour,
resulting in a missed detection. Another drawback of this
method is that it is slow – because it requires the emulation
of every Intel IA-32 instruction.

The last method, which is also the most complex to
implement, is code transformation. This method involves
transforming the virus code back to its form prior to the
expander stage. This form is similar to the first generation
as mentioned above.

In this method, we transform the virus code into its simplest
form, where common instructions for virus detection are
applicable. Three instructions are transformed to two or
one instruction(s); two instructions are transformed to one
instruction.

The code transformation module must be heavily optimized
and flexible to be able to guarantee perfect detection
without compromising scanning performance. For speed
concerns, the virus location can be transformed from where
the scan pattern is taken so as not to cause a significant

MARCH 2006

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

20

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic
Dr Sarah Gordon, Symantec Corporation, USA
John Graham-Cumming, France
Shimon Gruper, Aladdin Knowledge Systems Ltd, Israel
Dmitry Gryaznov, McAfee Inc., USA
Joe Hartmann, Trend Micro, USA
Dr Jan Hruska, Sophos Plc, UK
Jeannette Jarvis, The Boeing Company, USA
Jakub Kaminski, Computer Associates, Australia
Eugene Kaspersky, Kaspersky Lab, Russia
Jimmy Kuo, McAfee Inc., USA
Anne Mitchell, Institute for Spam & Internet Public Policy, USA
Costin Raiu, Kaspersky Lab, Russia
Péter Ször, Symantec Corporation, USA
Roger Thompson, Computer Associates, USA
Joseph Wells, Sunbelt Software, USA

SUBSCRIPTION RATES
Subscription price for 1 year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

Corporate rates include a licence for intranet publication.

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:
Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England
Tel: +44 (0)1235 555139 Fax: +44 (0)1235 531889
Email: editorial@virusbtn.com Web: http://www.virusbtn.com/
No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.
This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specific clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.
VIRUS BULLETIN © 2006 Virus Bulletin Ltd,The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. /2006/$0.00+2.50. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any
form without the prior written permission of the publishers.

The 9th annual WEBSEC conference takes place 27–31 March
2006 in London, UK. The event will include live hacking demos, a
network and application hacker challenge and more than 40 sessions
on topical security issues including a panel debate in which Virus
Bulletin’s Technical Consultant Matthew Ham will be a panel
member. For more details see http://www.mistieurope.com/.

The 2006 e-Crime Congress takes place 30–31 March 2006 in
London, UK. The Congress will seek to challenge conventional
attitudes on e-crime and examine how business, government and law
enforcement can continue to work together to tackle threats that
undermine public confidence in the Internet. For details see
http://www.e-crimecongress.org/.

The 2nd Information Security Practice and Experience
Conference (ISPEC 2006) will be held 11–14 April 2006 in
Hangzhou, China. For details see http://ispec2006.i2r.a-star.edu.sg/.

Infosecurity Europe 2006 takes place 25–27 April 2006 in
London, UK. For details or to register interest in the event see
http://www.infosec.co.uk/.

The 15th EICAR conference will take place from 29 April to
2 May 2006 in Hamburg, Germany. Authors are invited to submit
posters for the conference. The deadlines for submitting poster
presentations is 24 February 2006. For more information see
http://conference.eicar.org/2006/.

The Seventh National Information Security Conference (NISC 7)
will take place from 17–19 May 2006 at St. Andrews Bay Golf
Resort & Spa, Scotland. Enquiries may be directed to
tina.deighton@sapphire.net or via http://www.nisc.org.uk/ .

The 2006 IEEE Symposium on Security and Privacy will be held
21–24 May 2006 in Oakland, CA, USA. For details see
http://www.ieee-security.org/TC/SP2006/oakland06.html.

AusCERT 2006 takes place 21–25 May 2006 in Gold Coast,
Australia. A programme overview, providing a list of confirmed
speakers, can be found at http://conference.auscert.org.au/.

The Fourth International Workshop on Security in Information
Systems, WOSIS-2006, will be held 23–24 May 2006 in Paphos,
Cyprus. For details see http://www.iceis.org/.

CSI NetSec ’06 takes place 12–14 June 2006 in Scottsdale, AZ,
USA. Topics to be covered at the event include: wireless, remote
access, attacks and countermeasures, intrusion prevention, forensics
and current trends. For more details see http://www.gocsi.com/.

Black Hat USA 2006 will be held 29 July to 3 August 2006 in
Las Vegas, NV, USA. Online registration for the event will be
available from 15 March. See http://www.blackhat.com/.

The 15th USENIX Security Symposium takes place 31 July – 4
August 2006 in Vancouver, B.C., Canada. A training programme
will be followed by a technical programme, which will include
refereed papers, invited talks, work-in-progress reports, panel
discussions and birds-of-a-feather sessions. A workshop, entitled Hot
Topics in Security (HotSec ’06), will also be held in conjunction with
the main conference. For more details see http://www.usenix.org/.

HITBSecConf2006 will take place 16–19 September 2006 in
Kuala Lumpur. Further details and a call for papers will be
announced in due course at http://www.hackinthebox.org/.

Black Hat Japan 2006 takes place 5–6 October 2006 in Tokyo,
Japan. Unlike other Black Hat events, Black Hat Japan features
Briefings only. For more information see http://www.blackhat.com/.

The 16th Virus Bulletin International Conference, VB2006,
will take place 11–13 October 2006 in Montréal, Canada. For
details of sponsorship opportunities, please email
vb2006@virusbtn.com. Online registration and full programme
details will be available soon at http://www.virusbtn.com/.

RSA Conference Europe 2006 takes place 23–25 October 2006
in Nice, France. See http://2006.rsaconference.com/europe/.

AVAR 2006 will be held 4–5 December 2006 in Auckland,
New Zealand. More details will be announced in due course at
http://www.aavar.org/.

http://www.mistieurope.com
http://www.e-crimecongress.org/
http://ispec2006.i2r.a-star.edu.sg/
http://www.infosec.co.uk/
http://conference.eicar.org/2006/
http://www.nisc.org.uk/
http://www.ieee-security.org/TC/SP2006/oakland06.html
http://conference.auscert.org.au/
http://www.iceis.org/
http://www.gocsi.com/
http://www.blackhat.com/
http://www.usenix.org/
http://www.hackinthebox.org/
http://www.blackhat.com/
http://www.virusbtn.com/conference/vb2006/
http://2006.rsaconference.com/europe/
http://www.aavar.org/
http://www.virusbtn.com/virusbulletin/subscriptions/
http://www.virusbtn.com/

CONTENTS

S1MARCH 2006

NEWS & EVENTS
DUTCH POLICE ARREST NIGERIAN
SCAMMERS
Dutch police arrested 12 Nigerians in Amsterdam last month
after they were found to be operating a 419 scamming ring.
According to Dutch police, who were aided in their
investigation by members of the US Postal Inspection
Service, the scammers had sent more than 100,000 emails
and had managed to con gullible victims – mainly from the
US – into handing over a total of more than $2 million.

Four of the Nigerians will be extradited to face charges in
the US, while the others will face charges in the
Netherlands.

CHINA TO CRACK DOWN ON SPAM
The Chinese Government has introduced a set of regulations
aimed at reducing the amount of spam circulating in the
country. The sending of advertising emails without the
recipient’s prior permission is now banned, and all
advertising emails are required to be labelled as such.
Spammers will now face penalties of up to 30,000 yuan
(US$3,750), and an offence-reporting centre
(www.anti-spam.cn) has been launched, at which users can
register their complaints about being spammed.

According to the country’s Ministry of Information Industry
(MII), approximately 60 per cent of the 50 billion emails
sent and received in China last year were spam.
Furthermore, the hitherto slack regulation of junk mail in
the country has attracted spammers from across the globe to
use servers based in China to send out their spam.

According to statistics reported by both Sophos and
CommTouch, China currently has the dubious honour of

S1 NEWS & EVENTS

S2 FEATURE

Fighting spam with data compression models

being the second-largest spam-producing country in the
world (being ‘out-spammed’ only by the United States) – it
is hoped that the new regulations will go some way towards
reducing the problem.

VIGILANT STAFF AVERT PHISHING SCAM
A web-hosting company based in New Zealand claims that,
thanks to the vigilance of its staff, it has averted a potential
phishing scam targeted at customers of National Bank.

Staff of Auckland-based Web Drive suspected that
something fishy (or phishy) was going on when they spotted
an overseas user who had registered around 25 variations of
the National Bank’s web address using several different
credit card numbers.

Web Drive staff were quick to react, cancelling the domains
and re-registering them in the web hosting company’s own
name to prevent them from being registered elsewhere.

EVENTS

The 2006 Spam Conference will be held 28 March 2006
at MIT, Cambridge, MA, USA. For details see
http://www.spamconference.org/.

The Authentication Summit II takes place on 19 April 2006
in Chicago, IL, USA. The conference will cover the latest
advances in email authentication, including Sender ID
Framework (SIDF) and DomainKeys Identified Mail
(DKIM), with a focus on real-life results and prescriptive
information. For full details see http://emailauthentication.org/.

INBOX 2006 will be held 31 May to 1 June 2006 in San
Jose, CA, USA. The event will cover all aspects of email
including topics such as ‘has CAN-SPAM failed us?’, ‘what
can ISPs do to fix spam?’, ‘how not to be a spammer’ and
‘new directions in identifying spam’. For more information
see http://www.inboxevent.com/2006/.

The third Conference on Email and Anti-Spam, CEAS 2006,
will be held 27–28 July 2006 in Mountain View, CA, USA.
Those wishing to present papers are invited to submit their
proposals before 23 March 2006. Full details can be found
at http://www.ceas.cc/.

The Text Retrieval Conference (TREC) 2006 will be held
14–17 November 2006 at NIST in Gaithersburg, MD, USA.
More information about the TREC 2006 spam track can be
found at: http://plg.uwaterloo.ca/~gvcormac/spam/.

http://www.anti-spam.cn/
http://www.spamconference.org/
http://emailauthentication.org/
http://www.inboxevent.com/2006/
http://www.ceas.cc/
http://plg.uwaterloo.ca/~gvcormac/spam/

SPAM BULLETIN www.virusbtn.com

MARCH 2006S2

substitutions and formatting tricks. Although the success of
such tactics is hard to measure in practice, a good indication
of their effect is their widespread use in the wild. It is clear
that spammers would not obfuscate messages if these tactics
were fruitless.

Many spam filters take measures to detect obfuscation, or
even try to deobfuscate messages. We explore a different
route here by omitting the tokenization step altogether and
using data compression algorithms that operate directly on
character sequences.

STATISTICAL DATA COMPRESSION
MODELS

Probability plays a central role in data compression. The
general idea is to assign shorter codes to more probable
characters and longer codes to less probable ones. In fact, if
we know the exact probability distribution over all possible
messages emitted by some information source, we can
compress these messages optimally. Here, messages are
independent sequences of characters, which can be
arbitrarily long. Given some training data, statistical data
compression algorithms learn a probability distribution over
such sequences.

Compression algorithms learn, for example, that the text
‘The weather is pleasant today’ is much more probable than
‘Vreme je danes prijetno’ in English text. However, had we
trained the algorithm on a Slovenian text corpus, the latter
sequence would undoubtedly receive a greater probability.

It is straightforward to see how these algorithms can be used
to determine the language of an unknown piece of text, or,
along the same lines, to determine whether a piece of text is
in fact a piece of spam. We simply train two compression
models, one from examples of spam, and another from
examples of ham (legitimate email). The classification
outcome is determined by the model that finds the target
text more likely.

Formally, Bayes rule is used for classification by
approximating the conditional document probability given
the class, with the probability assigned to the document by
the respective compression model. The theoretical
relationship between data compression and Bayesian
classification is elaborated further in our technical report,
which is available online [2].

ESTIMATING THE PROBABILITY OF A
SEQUENCE OF CHARACTERS

So how exactly do data compression methods estimate the
probability of every possible sequence of characters? They

FIGHTING SPAM WITH DATA
COMPRESSION MODELS
Andrej Bratko
Jozef Stefan Institute, Slovenia

We know from experience that emails advertising prescription
drugs are typically spam, so an email containing the word
‘viagra’ is usually destined straight for the junk folder. But
there are reportedly 1,300,925,111,156,286,160,896 ways to
spell ‘viagra’, all of which are legible to the human eye [1].
How can we train an automatic filter to cope with this
diversity of natural language?

Although a spam filter might anticipate all plausible and
implausible character substitutions and spelling variations,
spammers have a reputation for inventing new, creative ways
of getting their message across. To complicate matters
further, formatted text provides infinite possibilities for
additional obfuscation.

Surely, there must be a more elegant solution.

In the following article we explore a filtering approach that
is less sensitive to such obfuscation tactics, by treating
email as a sequence of characters, rather than a collection
of words.

THE TOKENIZATION PROBLEM

Most content-based spam filters convert the textual
contents of an email into a set of attributes that describe the
message in machine readable form. This is commonly
referred to as the ‘bag-of-words’ representation, reflecting
the fact that attributes generally correspond to word-like
tokens extracted from the text. Statistical filters use this
representation in combination with some machine learning
algorithm.

At best, these algorithms can learn to discriminate spam
from legitimate email in the token world. Their success
depends crucially on the assumption that the token world
adequately approximates the actual information conveyed in
the messages, as interpreted by a human. However, this is
not always the case, especially in the adversarial spam
filtering setting.

An obvious caveat here is that there is no a priori definition
of similarity between tokens. The words ‘viagra’, ‘vi@gra’
and ‘v1agra’ are simply considered different and the filter
is unable to generalize whatever it has learned about one to
the other.

It is this weakness that is commonly exploited by spammers
with various obfuscation tactics, such as common character

FEATURE

SPAM BULLETIN www.virusbtn.com

MARCH 2006 S3

default model of order –1, which always predicts a uniform
distribution among all possible characters.

Many versions of the PPM algorithm exist, differing mainly
in the way the escape probability is estimated. In our
implementation, we used what is known as escape method
D, which simply discounts the frequency of each observed
character by 1/2 occurrence and uses the gained probability
mass as the escape probability.

HOW WELL DOES IT PERFORM?
A spam filter based on the PPM-D compression algorithm
was submitted for evaluation in the spam filtering track of
the 2005 Text REtrieval Conference (TREC). The goal of
the spam track is to provide a standard evaluation of current
and proposed spam filtering approaches. (For an overview
of the TREC 2005 spam track, including a description of the
evaluation tools and measures, see VB, January 2006, p.S2.)

The four corpora used for the evaluation contained a total of
318,482 messages, 113,129 of which were spam.

An online learning scheme that mimics real email usage
was adopted for the evaluation: messages are presented to
the filter in chronological order. For each message, the spam
filter must first make a guess as to how likely it is that the
message is spam, after which it is communicated the gold
standard judgment representing the true classification of the
message as spam or ham. This allows the filter to update its
statistics before assessing the next message.

The performance of spam filters is usually measured in
spam misclassification and false positive rates. There is
typically a trade off between these two measures, so that
one of them can be improved at the expense of the other by
adjusting a fixed filtering threshold. The higher the
threshold, the less likely we are to falsely identify a

Filter ROCA% SMR% SMR%
at 0.1% FP at 0.01% FP

ijsSPAM2 0.051 3.78 19.81

crmSPAM2 0.115 3.46 29.30

lbSPAM2 0.132 6.75 25.84

tamSPAM1 0.172 9.10 77.77

yorSPAM2 0.316 21.14 45.69

kidSPAM1 0.768 66.13 96.34

621SPAM1 1.008 4.36 40.67

Table 1: Comparison of filters in the area above the ROC curve statistic
(ROCA) and spam misclassification rates (SMR) at 0.1% and 0.01%

false positives. A smaller number indicates a better performance.

P(sn) = Π P(s
i
| si–1)

1 i = 1

n

i–k

certainly cannot be estimated directly, since there are an
infinite number of such sequences.

To make the inference problem tractable, sources are
usually modelled as Markov sources with limited memory.
This means that the probability of each character in a
sequence depends only on its context – a limited number of
characters immediately preceding it. The probability of a
sequence of n characters sn

= s

1
 . . . s

n
 is then

The number of context characters, k, that are used for
prediction is usually referred to as the order of the
compression model. The parameters of such models are
next-character probabilities, and a different set must be
learned for each possible combination of preceding
characters.

Higher order models are more realistic – however such
models also require a lot of training data to obtain accurate
parameter estimates, since the number of parameters grows
exponentially with the order of the model. For example, an
order-k model requires 256k ·255 parameters, if we assume
that each character has 256 possible values.

Compression algorithms generally try to make the most of
the limited training data available by blending the
predictions of different order models. The idea is to use
higher-order models only when the amount of data is
sufficient to support them.

The next section contains a fairly condensed technical
description of the PPM compression model, and can be
skipped on first reading.

THE PPM COMPRESSION ALGORITHM
The Prediction by Partial Matching (PPM) compression
algorithm is among the best-performing compression
schemes for lossless text compression.

An order-k PPM model works as follows: when predicting
the next character in a sequence, the longest context found
in the training text is used, up to length k. If the target
character has appeared in this context in the training text, its
relative frequency within the context is used as an estimate
of the character’s probability.

These probabilities are discounted to reserve some
probability mass, which is called the escape probability. The
escape probability is effectively distributed among
characters not seen in the current context, according to a
lower-order model.

The procedure is applied recursively until all characters
receive a non-zero probability, ultimately terminating in a

1

http://www.virusbtn.com/virusbulletin/archive/2006/01/vb200601

SPAM BULLETIN www.virusbtn.com

MARCH 2006S4

substitutions used by spammers are recognized easily, as are
URL obfuscation tactics. Useful patterns can also be found
in the non-textual message headers.

Some interesting patterns that are typical of legitimate email
are also shown, such as message headers that are only
included in replies and line prefix characters that usually
accompany forwarded text.

CONCLUSION

Character-based compression models are a promising
technique to help future statistical spam filters combat the
ever-increasing volumes of spam as well as newer, more
malicious forms of unsolicited email. The mere fact that
these algorithms operate in the world of character sequences
makes it more difficult to find ways of defeating them.
Surely, any form of obfuscation only makes it easier for the
filter to recognize that the message is spam.

Although no publicly available spam filters currently use
data compression algorithms, any off-the-shelf
implementation of PPM, such as Charles Bloom’s PPMZ
[4], can easily be adapted for this task.

REFERENCES

[1] ‘How many different ways are there to spell Viagra?’;
http://cockeyed.com/lessons/viagra/viagra.html.

[2] Bratko, A. and Filipic, B.; ‘Spam filtering using
compression models’; http://ai.ijs.si/andrej/papers/
ijs_dp9227.html.

[3] Proceedings of the 14th Text REtrieval Conference
(TREC 2005); http://trec.nist.gov/pubs.html.

[4] Charles Bloom’s PPMZ; http://www.cbloom.com/src/
ppmz.html.

Figure 1: How does PPM see messages? Each character is coloured according to how ‘spammy’ it looks to the filter: red indicates spam, green
indicates ham (good email).

legitimate message as spam, but more spam will also make
it past the filter.

The primary measure used for evaluating spam filters in
TREC was the area above the Receiver Operating
Characteristic curve (ROCA). This measure equals the
probability that a legitimate message appears more
‘spammy’ to the filter than a spam message (a certain error),
which is estimated over all pairs of legitimate and spam
messages in the dataset. The measure captures the filter’s
behaviour across all possible filtering thresholds.

Table 1 lists summary performance measures on the
aggregate results over all four corpora used for TREC. Only
the seven best-performing systems from different
organizations are shown here – a comprehensive list of all
results can be found in the TREC proceedings [3].

The table lists the filters in order of decreasing performance
according to the area above the ROC curve statistic. The list
includes open source filters, such as CRM114 (crmSPAM2),
DBACL (lbSPAM2) and Spam-Bayes (tamSPAM1), as well
as IBM’s SpamGuru (621SPAM1). The system developed at
the Jozef Stefan Institute (labelled ijsSPAM2) is based on an
order-6 PPM-D compression model.

WHAT ARE THE TELL-TALE FEATURES?
The primary motivation for using data compression as a
spam filtering tool is that the approach conveniently
circumvents the need for tokenization. Patterns of
punctuation and other special characters which are hard
to model as a ‘bag-of-words’ are naturally included in
the model.

Figure 1 shows some examples of the types of patterns
picked up by the PPM model – each character is coloured
according to how ‘spammy’ it looks to the filter, with red
indicating spam and green indicating ham. Typical character

http://cockeyed.com/lessons/viagra/viagra.html
http://ai.ijs.si/andrej/papers/ijs_dp9227.html
http://ai.ijs.si/andrej/papers/ijs_dp9227.html
http://trec.nist.gov/pubs.html
http://www.cbloom.com/src/ppmz.html
http://www.cbloom.com/src/ppmz.html

