
NOVEMBER 2009

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

2 COMMENT

 Happy holidays: mobile maliciousness

3 NEWS

 Nigeria takes steps to clean up its act

 Facebook wins against ‘Spam King’ Wallace

3 VIRUS PREVALENCE TABLE

4 MALWARE ANALYSIS

 Prescription medicine

 FEATURES

8 Data tainting for malware analysis – part two

11 Detecting bootkits

13 Collaborative spam fi ltering with the
 hashing trick

 PRODUCT REVIEW

18 Microsoft Security Essentials

22 COMPARATIVE REVIEW

 Anti-spam comparative review

28 END NOTES & NEWS

DETECTING BOOTKITS
Alisa Shevchenko and Dmitry Oleksiuk fi nd out
whether anti-virus software has learned to cope
successfully with Mebroot and MBR infectors in
general a few years after the fi rst appearance of this
type of malware.
page 11

HASH BROWNS
Josh Attenberg and colleagues describe the hashing
trick as an effective method for collaborative spam
fi ltering.
page 13

MS SECURITY ESSENTIALS
Microsoft Security Essentials, the long-awaited
replacement for the Windows Live OneCare
package, is fi nally with us. VB’s test team put
Microsoft’s new free home-user package through its
paces, declaring it to be pretty decent overall.
page 18

VBSPAM CERTIFICATIONS
This month’s anti-spam
comparative review
saw yet another
increase in the fi eld
of competitors with
14 products taking their place on the test bench.
Martijn Grooten has the full details.
page 22

2 NOVEMBER 2009

COMMENT

Editor: Helen Martin

Technical Editor: Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
Ian Whalley, IBM Research, USA
Richard Ford, Florida Institute of Technology, USA

HAPPY HOLIDAYS: MOBILE
MALICIOUSNESS
Since the advent of Timofonica in 2000 there has been
a buzz about mobile malicious threats. A boom of
mobile malicious code development in 2004 resulted
in infections in dozens of countries and thousands of
devices. While this was troubling, a more signifi cant
and worrying trend driven by fi nancial fraud is now
exploiting the mobile device vector.

There has been a rapid surge in the adoption of mobile
solutions such as Blackberry, iPhone and countless
other smartphone devices since 2006. Millions of mobile
device users rely on their hand-held solutions not only
for voice communications but also to perform online
banking, surf the Internet, check their email, and more.
The reliance on and trust of such devices by the average
consumer presents fraudsters with great opportunity.

Starting with more traditional forms of fraud, many
‘knock-off’ models of mobile devices exist globally,
produced and sold in attempts to undercut legitimate
market products with cheaper phones which apparently
offer increased functionality. This type of brand-based
fraud signifi cantly impacts the mobile device market and
is diffi cult for consumers to identify.

Social engineering threats are also a notable concern
for mobile device users and are always escalated during
the holiday period – targeted attacks are common and

are potentially a higher risk at this time of year due to
the nature of what and how people communicate with
one another at this time. ‘Check this out’ and ‘holiday
greetings’ are possible spoofed communication vectors
for criminals targeting individuals with mobile malicious
code. A multitude of ring-tone-based malcode threats
will certainly also exist during the 2009 holiday period,
impacting both PCs and mobile devices. Old-school
social engineering tricks such as the downloading of
porn are still in use to trick users into installing mobile
device diallers that make outbound calls to premium
lines at the expense of the victim. The social engineering
vectors are almost limitless, as are the criminals’
opportunities for fi nancial fraud.

Mobile device users are now receiving phone calls, SMS
messages and emails requesting information about their
credit card or other sensitive details. Fraudsters often
have all the information they need but a CVV number
to perform fi nancial fraud and may engineer a call to a
victim to acquire their CVV number. In some advanced
cases of social engineering fraudsters have been known
to call victims for a one-time password (OTP) value
generated from a token used by a victim. If the victim
gives out the OTP the fraudsters cash out in real time
– often while the victim is still speaking with them on
the phone.

Vishing attacks are also on the rise, where VoIP
technology is exploited to automate out-of-band
broadcast calls to large numbers of mobile devices
and/or land lines. The goal is to trick users into entering
sensitive details over the phone into an interactive voice-
recorded and softphone system on a remote VoIP server.
Many consumers don’t understand this new type of attack
vector and how caller ID can easily be spoofed via VoIP.
If reported, these attacks are typically over by the time
the authorities attempt to stop and/or investigate them.

As you prepare for the holiday rush, are you planning on
purchasing a smartphone device for yourself or as a gift
for a loved one? Can you be sure it’s a legitimate phone
from a trusted brand? After purchasing the device do you
know the common best practices for that device to limit
the threat vectors? Are you fully aware of the numerous
ways that fraudsters will attempt to compromise your
device or trick you into revealing sensitive information
for fi nancial fraud?

While VB readers will understand these threats rather
well, most average users of smartphone devices do not
and will never understand all of the above (nor want to).
The security challenges that lie ahead of our industry are
great in light of the challenges identifi ed to date for the
mobile market.

‘Social engineering
threats are a notable
concern for mobile
device users and are
always escalated
during the holiday
period.’
Ken Dunham, iSIGHT Partners

3NOVEMBER 2009

VIRUS BULLETIN www.virusbtn.com

NEWS
NIGERIA TAKES STEPS TO CLEAN UP
ITS ACT
After years of being inextricably linked to the advance
fee fraud scam, the government of Nigeria is launching
an offensive to clamp down on the activity. Despite the
advance fee fraud scam now being prevalent across the
globe, it is widely accepted that the scam originated in
Nigeria – indeed, the type of scam is also commonly known
as both the Nigerian scam and the 419 scam (419 referring
to the section of the Nigerian criminal code violated by the
scam). The government now aims to remove Nigeria from
the top 10 list of countries with the highest incidence of
fraudulent emails.

Nigeria’s Economic and Financial Crimes Commission
(EFCC) announced last month that, aided by Microsoft, it
has begun a large-scale crackdown on its indigenous email
scammers. More than 800 fraudulent email accounts have
already been identifi ed and shut down, while the EFCC
anticipates being able to take down 5,000 fraudulent emails
per month as well as sending around 230,000 advisory
mails to victims and potential victims per month once
the operation gathers full pace. So far there have been 18
arrests of individuals suspected of coordinating organized
cybercrime rings. The operation, dubbed ‘Eagle Claw’, is
expected to be fully operational within six months.

FACEBOOK WINS AGAINST ‘SPAM KING’
WALLACE
Facebook has become the latest global giant to be awarded
damages in a case against ‘Spam King’ Sanford Wallace.
The social networking company was awarded $711.2
million in damages last month.

The company fi led legal action against notorious spammer
Wallace after he was found to have hacked into users’
accounts, made fake postings and sent fake messages
advertising various products and services. A statement on
the Facebook offi cial blog suggested that the company
does not expect to receive ‘the vast majority of the award’.
Wallace himself failed to appear in court, and the judge
referred him to the US Attorney’s Offi ce with a request that
he be prosecuted for criminal contempt (for which he may
face jail time).

Wallace came to prominence as a prolifi c spammer in the
mid 1990s, but in 1998 announced his retirement from the
spamming business after facing lawsuits from AOL and
CompuServe. However, he didn’t stay off the scene for long –
in 2008 MySpace was awarded what was at the time a record
$230 million in a lawsuit against Wallace and his cohort
Walter Rines for spamming and phishing activities. MySpace
has so far failed to collect its damages from the duo.

Prevalence Table – September 2009

Malware Type %

Bredolab Trojan 35.49%

OnlineGames Trojan 26.84%

Invoice Trojan 6.49%

Murlo Trojan 3.17%

Encrypted/Obfuscated Misc 3.16%

Downloader-misc Trojan 3.09%

Mytob Worm 3.05%

FakeAV Trojan 2.78%

NetSky Worm 2.64%

Heuristic/generic Misc 2.04%

Virut Virus 1.77%

Agent Trojan 1.33%

Krap Trojan 1.27%

Mydoom Worm 1.08%

Zlob/Tibs Trojan 0.61%

Lineage/Magania Trojan 0.56%

Small Trojan 0.45%

Bagle Worm 0.39%

Mabezat Virus 0.33%

Sality Virus 0.32%

Dropper-misc Trojan 0.29%

Alman Worm 0.29%

Basine Trojan 0.25%

Delf Trojan 0.21%

Iframe Exploit 0.19%

Backdoor-misc Trojan 0.17%

Zbot Trojan 0.14%

Keylogger-misc Trojan 0.14%

Mywife/Nyxem Worm 0.12%

Buzus Trojan 0.12%

Tiny Trojan 0.11%

Zafi Worm 0.09%

Autorun Worm 0.08%

Others [1] 0.93%

Total 100.00%

[1] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://www.virusbtn.com/resources/malwareDirectory/prevalence/index

VIRUS BULLETIN www.virusbtn.com

4 NOVEMBER 2009

PRESCRIPTION MEDICINE
Peter Ferrie
Microsoft, USA

People often ask how we choose the names for viruses. It
might seem as if it’s in the same way as pharmaceutical
companies choose their product names. Zekneol – chemical
or virus? In this case, it’s a Windows virus: W32/Zekneol.

EXCEPTIONAL BEHAVIOUR
After decryption, the virus begins by discarding a number of
bytes from the stack. The number of bytes to be discarded
is specifi ed in a variable in the virus body. However, the
value in this variable is always zero because the polymorphic
engine in the virus does not support the generation of fake
push instructions.

After ‘emptying’ the stack, the virus retrieves the return
address from it, which points into kernel32.dll. The virus
intends to use this as a starting point for a search for the PE
header of kernel32.dll. As a precaution, the virus registers
a Structured Exception Handler (SEH), which is supposed
to intercept any exception that occurs. The virus will search
up to 256 pages for the PE header. If the header is not
found, then the virus enters an infi nite loop. This loop is
intentional, it’s not a bug. However, if an exception occurs
during the search, the handler is reached, along with the
fi rst two bugs in the code. After restoring the stack pointer,
we see a write to the ExceptionList fi eld in the Thread
Environment Block (TEB). Presumably the virus author
wanted to unhook the handler, but he forgot to initialize
the pointer register fi rst. Thus, the code attempts to write to
an essentially ‘random’ address. This causes a secondary
exception, which destroys the handler pointer that is on the
stack. What happens next depends on the platform.

On Windows 2000 and earlier, the damaged handler pointer
is assumed to be valid, and so it is used. This of course
causes another exception to occur, and the damaged handler
pointer is used again, causing yet another exception, and
ultimately resulting in an infi nite loop. On Windows XP SP2
and later, the handler pointer is recognized as being invalid,
and the application is terminated.

That’s the fi rst bug. The second bug occurs on the same
instruction. Even if the pointer register were initialized,
the wrong value would be written. When registering or
unregistering a handler via SEH, the value to write to the
ExceptionList fi eld in the TEB is a pointer to a structure. The
structure contains a pointer to the handler. The problem is that
the virus tries to store the pointer to the handler itself. The
reason this happens is that, despite the two values being next
to each other on the stack, the virus picked the wrong one.

In fact, there is a third bug in the same region of code. Even
if the write succeeds (if the virus initializes the register
and chooses the correct pointer to use), the virus attempts
to continue the search. The problem is that the search uses
several other registers, all of which have been modifi ed as a
result of the exception, and none of which are now initialized.

THE PURSUIT OF H-API-NESS
If all goes well, and the virus fi nds the PE header for
kernel32.dll, then the virus resolves some APIs including
two which are never used (GetCurrentDirectoryA() and
GetWindowsDirectoryA()). The virus uses hashes instead
of names, but the hashes are sorted according to the
alphabetical order of the string that they represent. This
means that the export table needs to be parsed only once for
all of the APIs, instead of once for each API, as is common
in some other viruses.

After retrieving the API addresses, the virus registers another
Structured Exception Handler. The same two bugs exist
here regarding the handler behaviour of an uninitialized
register and writing the wrong value. The virus uses the
same hashing method to resolve an API from user32.dll and
several from advapi32.dll (including CryptDecrypt(), which
is never used). However, the virus uses the GetProcAddress()
API to retrieve the address of the ChecksumMappedFile()
API from imagehlp.dll and the SfcIsFileProtected() API
from sfc.dll, if those DLLs are available. The use of the
GetProcAddress() API avoids a common problem regarding
import forwarding. The problem is that while the API name
exists in the DLL, the corresponding API address does not.
If a resolver is not aware of import forwarding, then it will
retrieve the address of a string instead of the address of the
code. In this case, support for import forwarding (which the
GetProcAddress() API provides) is necessary to retrieve the
IsFileProtected() API from sfc.dll, since it is forwarded to
sfc_os.dll in Windows XP and later.

MISDEEDS AND MISDIRECTION
The virus selects a random number from one to fi ve, which
it uses as the number of ‘diversion’ API calls to make. Then
the virus counts the number of ‘safe’ APIs that it found
in the host (this will be described in detail below). The
table contains a number of structures, each of which is two
DWORDs large. The fi rst DWORD is the RVA of the ‘safe’
API, and the second one is the number of parameters that
the API accepts. However, there is a bug in the counting
method. Instead of examining every second DWORD, the
virus examines every DWORD for a value of zero. Thus, if
an API accepts no parameters, then the parameter count slot
will be considered the end of the list. The result is a count

MALWARE ANALYSIS

VIRUS BULLETIN www.virusbtn.com

5NOVEMBER 2009

that is both incorrect and invalid, since the end of the list is
now misaligned. This bug is essentially harmless, though.
The virus chooses randomly from among the APIs, using the
wrong number of entries, as calculated previously. However,
a more serious bug does exist. The virus multiplies by eight
the index of the chosen API. The assumption is that the
original count was simply the number of APIs, and therefore
multiplying by eight would be the correct behaviour.
However, since the count is already too large, and if the
table is very full, then as a result of the multiplication the
access will be beyond the end of the table. If, for example, it
should hit one of the variables that exists after the table, then
that variable will be considered the number of parameters
to place on the stack. This number might be very large and
cause a stack-overfl ow exception, and a possible hang as
described above. Even if the parameter count appeared to be
zero, the assumed API itself is still called, which might cause
some unexpected behaviour.

If the corresponding slot in the table is empty, then no
attempt is made to call the API. If an API does exist, and
if that API accepts parameters, then the virus places onto
the stack a corresponding number of random values before
calling the API. An API is considered ‘safe’ if it will return
an error when passed invalid parameters.

The buggy selection is repeated according to the number
of ‘diversion’ API calls to make, which was chosen
previously. The virus then encrypts its memory image, with
the exception of a small window, prior to calling the true
API. Upon return from the true API, the virus decrypts its
memory image, and then performs another set of ‘diversion’
API calls, as described above. The encryption key for the
memory image is changed each time this routine is called.
The intention of the routine is to defeat memory scanners
that perform their scanning whenever certain APIs are called.

The whole routine, beginning with the fi rst set of ‘diversion’
API calls, is called whenever the virus wishes to call an API
(with two exceptions: CreateThread and GetTickCount are
called directly – this is probably an oversight, since nearby
APIs within the same routine are called indirectly).

KAMIKAZE CODE
The virus searches within the current directory for ‘.exe’
fi les whose name begins with ‘kaze’. This appears to be a
bug, since the fi rst generation version of the virus uses one
string, but replicants of the virus use another. However, the
string has been duplicated, so the result is always the same.

For each such fi le, the virus begins by checking if the
SfcIsFileProtected API exists. If the API exists, then
the virus retrieves the full path of the fi le, converts the
pathname from ASCII to Unicode, and then checks if the

fi le is protected. This is the correct method to determine the
protection state. Most viruses that perform the check forget
that the API requires the full path to the fi le. However, if
the fi le is protected, the virus attempts to unmap a view of
the fi le and close some handles. The problem is that the fi le
has not yet been either opened or mapped. Fortunately, the
attempt simply returns an error, unless a debugger is present.
If a debugger is present, then closing the handle will cause
an exception, and a possible hang as described above.

If the fi le is not protected, then the virus attempts to open
it. If the attempt fails, then the virus skips the fi le, without
attempting to unmap or close it. If the open succeeds, the
virus maps a view of the fi le.

The virus contains only one bounds check when parsing the
fi le. That check is simply that the PE header starts within the
fi le. There is no check that the header ends within the fi le,
and the existence of an Import Table is assumed. This means
that certain valid but unusual fi les will cause an exception
and a possible hang, as described above. The virus is
interested in PE fi les that are not already infected, and which
contain an Import Table that is less than 4,066 bytes large.
The virus does not care if the fi le is really a DLL or a native
executable. The infection marker is that the second byte in
the time/date stamp in the PE header has a value of 0x36.

The virus places the infection marker immediately, and
resizes the fi le enough to hold the virus code. The virus
does not care about any data that has been appended to the
fi le outside of the image. Any such data will be destroyed
when the fi le is resized.

The virus searches for the section with the largest virtual
address. For fi les that run on Windows NT and later, this
will always be the last section. However, Windows 9x/Me
fi les do not have such a requirement. If the virtual size of
that section is larger than the physical size, then the virus
will not infect the fi le. However, the infection marker and
increased fi le size remain.

RELOCATION REQUIRED
With a 20% chance, and if the fi le contains relocations, the
virus will relocate the image. The virus parses the relocation
table, and applies the relocations to the image using a
new image base of 0x10000. After the relocation has been
completed, the relocation table is no longer required. There
is a bug in the parsing, which is that the virus assumes that
the relocation table ends when the page RVA is zero. The
assumption is incorrect. The size fi eld in the data directory
contains the true size. Further, the virus assumes that any
non-zero value is valid, but if the virus is reading data from
beyond the end of the relocation table, then it might cause
an exception and a possible hang, as described above.

VIRUS BULLETIN www.virusbtn.com

6 NOVEMBER 2009

When parsing the relocation data, the virus supports
only two types of relocation item. They are the IMAGE_
REL_BASED_ABSOLUTE and IMAGE_REL_BASED_
HIGHLOW. There are several other documented relocation
types, and if one of them is seen, then the virus will hit a
breakpoint and possibly hang as described above. However,
it is rare for fi les to use relocation types other than the
supported two.

After relocating the image, the virus chooses a new image
base randomly. The new image base always points into the
upper 2Gb of memory, and is 64kb-aligned. The alignment
is a requirement for Windows NT and later. It is interesting
that the virus appears to have been written to support older
versions of Windows, since it considers the presence of both
imagehlp.dll and sfc.dll to be optional. In fact, imagehlp.dll
was introduced in Windows 98, and sfc.dll was introduced
in Windows 2000, so the support goes back a long way.
However, the use of 0x10000 as the relocated image base
ties the virus to Windows 2000 and later. The reason for
this is that Windows NT does not relocate .exe fi les, and
Windows 9x and Me use 0x400000 as the default image base
for relocated fi les.

DEP-RECATED CODE
The virus increases the size of the last section by 139,264
bytes, and changes the section attributes to read/write/
initialized. Unfortunately for the virus author, the
executable attribute is not set explicitly. As a result, if
the attribute was not already set in the original fi le, then
the virus will fail to execute on systems which have Data
Execution Protection enabled.

The virus saves information about the address and size of
resources and imports. The virus pays special attention
to the imports, parsing the table and saving pointers and
ranges. However, as before, there is no bounds checking
while saving the values, so a very large Import Table could
cause corruption of other entries in the list.

The virus will now choose a decryptor method to use. The
virus uses a crypto-based method 80% of the time. For the
other 20% of the time, it uses a simple 32-bit add-based
decryptor.

CRYPTONITE
If the crypto-based decryptor is chosen, the virus copies the
host’s Import Table to the original end of the last section
and updates its RVA in the data directory. The size of the
Import Table is increased by the size of one Import Table
record, and the Bound Import Table data directory entry is
erased. The virus appends to the Import Table an entry that
refers to the advapi32.dll fi le. The ‘advapi32.dll’ string is

appended to the section, at a random location beyond the
end of the Import Table. The fi ve crypto-related APIs that
the virus uses (CryptAcquireContextA, CryptCreateHash,
CryptHashData, CryptDeriveKey and CryptDecrypt) are
appended to the Import Table, interspersed with one to four
imports chosen randomly from a set of 75 ‘safe’ APIs from
the advapi32.dll fi le. The name of each API is placed at a
random location beyond the end of the Import Table. The
virus also contains code to replace the unused bytes with
random data, but this routine is never called.

SAFETY IN NUMBERS
The virus examines the host Import Table for references to
DLLs that it knows contain ‘safe’ APIs. Those DLLs are
kernel32.dll, ws2_32.dll, user32.dll and gdi32.dll. If one
of the ‘safe’ DLLs is imported, then the virus searches for
references to the ‘safe’ APIs. If any ‘safe’ API is imported,
then the virus adds the reference to a table within the
virus body. There is what might be considered a bug in the
search routine. The virus searches the entire Import Table
for a reference to the fi rst ‘safe’ DLL, then searches for
references to the ‘safe’ APIs of that DLL, then searches for
a reference to the second ‘safe’ DLL, and so on. However,
if the host does not import anything from one of the ‘safe’
DLLs, then the virus stops searching completely. None of
the following DLLs will be checked, and no more ‘safe’
APIs will be added to the table. Thus, in the extreme case, if
the host does not import anything from kernel32.dll, then no
‘safe’ APIs will be added at all.

The virus then copies the decryptor, and optionally inserts
calls to the ‘safe’ API if the crypto-based method was
chosen. As before, the method to choose from the ‘safe’
API table uses a count that is too large, resulting in empty
slots being seen, and thus no API call being inserted in that
instance. However, there are multiple places within the
decryptor where APIs can be inserted, which increases the
chance that at least one of them will succeed.

BAIT AND SWITCH
If the crypto-based method was chosen, the virus changes
the attributes of each section to read/write/initialized, until
the section containing the entrypoint is seen. However, the
virus chooses random locations only from within the section
that contains the entrypoint. The virus saves the contents
from each of the locations that were chosen, since they will
be replaced later by parts of the decryptor.

The virus then constructs a new decryptor. The decryptor
is described using a p-code language, which gives it great
fl exibility. The p-code contains only 57 instructions, but
they are quite capable of producing a seemingly wide

VIRUS BULLETIN www.virusbtn.com

7NOVEMBER 2009

variety of code. However, the characteristics of that code are
instantly recognizable, and the instruction set used is very
small. Some of the instructions are also called recursively,
so that, for example, a simple register assignment fi rst
becomes a series of assignments and adjustments through
other registers. The two types of decryptor together use
fewer than half of the possible instructions, but internally
those instructions use all but one of the remaining
instructions (the missing one is a ‘test’ instruction involving
a memory address and a constant). While interpreting the
p-code, the virus resolves the API calls, both real and fake,
and inserts random numbers for the parameters to the fake
APIs, and real parameters for the real APIs.

If the virus has relocated the image, then it will also
encrypt some of the blocks by using relocation items (for
a description of the process, see VB, April 2001, p.8). The
virus creates a new relocation table that contains only
the items for the decryptor, by overwriting the original
relocation table in the host. However, in contrast to ordinary
fi les, the virus places the relocation items in decreasing
order in the fi le, and calculates some page addresses using
values that are not page-aligned. These two characteristics
immediately make those fi les suspicious. The virus stops
applying relocations when fewer than 328 bytes of space
remain in the original table. There is a bug here, though,
which is that if the original table was less than 328 bytes
long, then the virus sets the table size to zero bytes. The
resulting fi le will no longer load, because when an image
must be relocated, Windows requires that a relocation
table contains at least the page address and the number of
relocation items (even if the number of items is zero).

ROCK CITY FUNK
At this point, the virus copies itself to the fi le in unencrypted
form. The encryption is performed next, on the copy of the
virus body, using the chosen method. The crypto-based
method uses a 128-bit RC4 cipher, with an MD5 hash as the
key. The key is derived from the four-byte Import Lookup
Table RVA in the fi rst entry of the new Import Table.

The virus increases the size of the image by 139,264 bytes,
and if the ChecksumMappedFile API is available, then the
virus uses it to calculate a checksum for the fi le. This results
in a fi le having a checksum that might not have existed
before. Finally, the fi le is unmapped and closed. The virus
then searches for the next fi le to infect.

Once all fi les have been examined, the virus displays the
message ‘Infecté’, if not running a fi rst generation of the
code. If the executing image is not a fi rst generation of the
code, then the virus changes the section attributes to read/
write/executable for the section that contains each block.
Of course, it’s too late to save the virus on DEP-enabled

systems. Since all of the blocks are chosen from the same
section that contains the entrypoint, changing the attributes
multiple times is ultimately pointless. It appears that the
virus author wanted to support blocks in multiple sections,
but this virus does not support it. After changing the
attributes of the blocks, the virus restores their contents.

GOSSAMER THREADS
After restoring the host to an executable state, the virus
creates a thread to search drives for other fi les, then run
the host. The thread registers another Structured Exception
Handler. However, this time only the second bug is present.
The virus initializes the pointer correctly, but the value to
write is still wrong. Further, if an exception occurs, then
the virus wants to exit the thread, but the problem is that
the code uses another register which has been modifi ed as a
result of the exception, and is now not initialized.

If no exception occurred, then the virus begins with drive
‘B:’ and proceeds though drive letters until the fi rst drive is
found which is either fi xed or removable. Only that drive
will be examined. This might also be considered a bug, but
the loop contains no other exit condition, so perhaps it was
intentional to stop after one drive. The idea of starting with
drive ‘B:’ rather than ‘A:’ could also introduce a bug, in the
(admittedly rather unlikely) event that the only drive on the
system is ‘A:’. In that case, all possible values would be
tested, but even so, eventually the value would wrap around
and the ‘A:’ drive would be found. When an appropriate
drive is found, the virus sleeps for one second before
beginning the search for fi les. The search is for ‘kaze’ fi les,
as described above. Upon completing the search for fi les,
the virus will search for directories. If a directory is found,
then the virus will enter the directory and begin the search
again, after sleeping for one second, as before. If no other
directories are found, then the virus will step out of the
current directory and resume the search. After all directories
have been examined, the thread will exit.

In the event that the host process fi nishes before the virus
thread exits, the virus thread will be forcibly terminated.
This could result in a corrupted fi le if the virus was in the
act of infecting it at the time.

CONCLUSION
Zekneol certainly appears to be a complicated virus, but
looks can be deceiving. The crypto-based decryptor has
so many tell-tale signs that detection is straightforward;
the simple decryptor is really very simple; and the new
relocation table looks like no other.

As for how we choose the names for viruses, that’s a
question for another day.

http://www.virusbtn.com/pdf/magazine/2001/200104.pdf

VIRUS BULLETIN www.virusbtn.com

8 NOVEMBER 2009

DATA TAINTING FOR MALWARE
ANALYSIS – PART TWO
Florent Marceau
CERT-LEXSI, France

In this three-part series Florent Marceau studies the use
and advantages of full virtualization in the security fi eld.
Following an introduction to full virtualization in part
one (see VB, September 2009, p.6), this part looks at the
limitations of the technology.

FULL VIRTUALIZATION

Many previous studies have been published on the subject
of full virtualization and its limitations. In particular,
virtualization detection has been the subject of many
publications [1]. For semi-assisted virtualization with
a hypervisor, detection is mainly focused on detection
of the hypervisor itself by looking for the relocation of
key structures of the operating system, such as the IDT
(Interrupt Descriptor Table), the GDT (Global Descriptor
Table), etc. (c.f. [2]).

The main and inherent drawback of full virtualization is the
need to thoroughly implement all the characteristics of the
architecture. This implementation is sometimes incorrect
or incomplete, and then becomes detectable. This kind of
problem can be exploited to develop detection codes for
targeted virtual machines [3, 4] simply through the use
of instruction sequences that will react differently on a
real CPU and on an emulated CPU. For example, you can
use the FPU (Floating Point Unit) mnemonic ‘fnstenv’ to
push the FPU environment into memory, and then use the
FPUInstructionPointer fi eld of this structure as the address
of the last FPU opcode. A real CPU will respond normally,
but on an emulated CPU such as a Qemu, this generally
unused fi eld is never updated. It is thus possible to detect
the presence of the emulator.

A much simpler but very popular method of detecting
virtualization is simply to check for the names of the
manufacturers of the different devices. The Qemu hard
drive, for example, is named ‘QEMU HARDDISK’ by
default – this easily reveals the emulator’s presence (and is
also easy to remedy). Moreover, some detection kits have
been seen shared in the malware community. These will
compare the serial number of the Windows host with the
serial number of some well-known public sandboxes, such
as Anubis or CWSandbox. Another very common method
is to monitor the potential activity of an active user (mouse
movement or other). Finally, one common countermeasure
– targeting all kinds of automated analysis platforms – is

to let the code sleep for a long period (an average of 20
minutes) to break out of the analysis time frame.

TAINTED TAGS PROPAGATION POLICY
Data tainting is a mechanism that allows us to track the full
propagation of a given set of data on an information system.
A full description was given in part one of this series (see
VB, September 2009, p.6).

We must now defi ne a tainted tags propagation policy. This
policy is directly dependent on the potential processing
that could be applied to the data we want to track. We must
apply our chosen policy by modifying each opcode handler
on the virtual CPU.

There are two major considerations in the defi nition of
this policy, which are the type of data to track (e.g. code,
confi dential data or other data) and the potential processing
the data may go through (e.g. obfuscation, encryption).

Given the context and previous considerations, the heavy
transformations imposed on our data through obfuscation
and encryption could result in the loss of the tainted marks
of legitimately marked data. It would therefore be logical
to apply a more persistent propagation strategy to preserve
the maximum number of tainted tags. Unfortunately,
a propagation policy that is too permissive will create
illegitimate tainted data, generating taintmap pollution
which leads to many false positives. This pollution will
consult a lot of binary data, strictly speaking ‘viral’,
that will massively pollute the output and drown our
confi guration fi le in garbage, making its use almost
impossible. Pollution will also be caused by legitimate data
owned by the exploitation system that has been merged
with viral data. Here, we have to fi nd a compromise. Later,
we’ll establish the confi guration fi le characterization, but
for the moment we are just searching to keep a consistent
propagation on the viral binary.

Many previous studies have been published on the analysis
of execution and data fl ow, sometimes using static analysis,
sometimes dynamic, and sometimes both. Some of these
studies are applicable only to high-level languages while
others can be applied to closed-source binary. In our case
we are limited to dynamic analysis for closed-source binary.

Let’s examine an overview of the theory.

A perfect propagation is exclusive; this means that strictly
all data to be monitored is marked as tainted and none other.
How do we defi ne ‘monitored’ data?

A lot of studies of data tainting consider the problem from
a confi dentiality point of view: private data is marked as
tainted and the propagation mechanism is used to ensure
that this data can’t illegitimately leave the SI (information

FEATURE 1

http://www.virusbtn.com/pdf/magazine/2009/200909.pdf
http://www.virusbtn.com/pdf/magazine/2009/200909.pdf

VIRUS BULLETIN www.virusbtn.com

9NOVEMBER 2009

system). From this point of view, we want to assure the SI
security integrity and, as defi ned in the non-interference
model created by Goguen and Meseguer [5] (dealing with
both users and data), the data must under no circumstances
interfere with other data that is not explicitly allowed by the
SI security policy.

Although our context requires exactly this kind of non-
interference between the data to be monitored and the
other data, the type of data we wish to track is radically
different: our data is composed of the malicious software
data and executable code (and there is no requirement for
confi dentiality). If in both cases the propagation should
ideally be applied without loss, our tainted data has a
much larger surface of interaction with the exploitation
system, especially because the code will be executed with
administrator privileges, allowing partial or complete
corruption of the operating system by the malware. Thus,
our monitored data clearly breaks out of the established
security policies. Worse, since some of our tracked data are
pieces of code, the attackers have a lot of leeway to perform
various emulation detections such as those described earlier,
and also to implement anti-tainting techniques via different
covert channels (which we will discuss briefl y later).

We assume here that the tainting propagation is only
applied on particular mnemonic types like the assignment,
arithmetic and the logical operation types. This is called
‘explicit direct fl ow’ tracking. It’s the classical dynamic data
tainting implementation. We’ll see that in some cases it will
not be enough to keep a consistent propagation.

For example, a diffi cult scenario would be to handle the
use of a tainted value as an index in a non-tainted character
array (since the array was originally on the system
and therefore not derived from monitored code). The
generated strings are then probably interesting but require
the implementation of tainting propagation between the
pointer and the pointed value. This is perfectly achievable.
However, in the case of an object code that will naturally
make extremely intensive use of pointers, this will lead to
massive propagation pollution.

Let’s look at another illustration of this kind of blind view.
A doubleword (32 bits) received from the network is an
array of bit fl ags used by our process. Bit 7 of these fl ags
will be controlled as follows:

(1) mov eax,[our_data]

(2) and eax,0x80

() je skip

(3) mov ebx,0xffffffff

() skip:

In step (1), eax contains our value and will be tainted. In
step (2), eax would contain only the bit 7 to control. In a

permissive policy eax remains tainted. This bit, which is
considered a part of the data to track, is controlled and will
infl uence the conditional jump. Thus, it defi nes the eventual
assignment of the register ebx. Should ebx be tainted? If
so, this would require propagation at the efl ag bits level in
order to apply propagation on the conditional underlying
code block. Strictly speaking, we should do it, since the ebx
value is derived directly from a tainted value, but in this
case it would introduce binary pollution ({0xffffffff}). This
is a diffi cult choice.

The previous case is known as indirect dependence (or
control dependence) on our explicit fl ows. Another way to
manage these cases without having to propagate at an efl ag
bits level is to taint the PC (Program Counter, EIP on x86
architecture) at each comparison (or on a mnemonic that
will affect efl ag) by the tainted tag value of the operand
involved. Therefore, after each conditional jump, if the
Program Counter is tainted, the different values assigned in
the underlying basic block (in the static analysis meaning)
will be tainted as well. The Program Counter taint value
will then change at the end of the basic block or on a new
comparison.

Note that if this method addresses the previous problem, it
will be effi cient only with a very simple control fl ow. It is
extremely easy to modify the previous example in order to
evade this implementation of control dependency tracking:

() mov eax,[our_data]

() and eax,0x80

() je skip

() xor ecx,ecx

(1) cmp ecx,1

() je skip2

() nop

() skip2:

() mov ebx,0xffffffff

() skip:

We simply have to force a new condition on dummy
untainted values in step (1) in order to remove the tainting
mark of the Program Counter, and consequently we lose
the tainting on the ebx register. To address this, we could
consider a stacking of the different taint values of the
Program Counter in function of the fl ow control call depth.
Obviously, this is completely ineffi cient with obfuscated
code; indeed the purpose of the packer is precisely to add
many opaque predicates that will add complexity to the
control fl ow graph. This, combined with a technique of
hashing the legitimate control fl ow [6], will fi nally make our
previous implementation obsolete and possibly vulnerable.
Moreover, in our context, the initial state involves a large
volume of legitimately tainted data (between 15ko and 1Mo
on average). The tracking of indirect dependencies (such as

VIRUS BULLETIN www.virusbtn.com

10 NOVEMBER 2009

for pointer dependencies) will generate too great a degree of
pollution.

Despite all these problems, we have an interesting
advantage given the fact that we mark the monitored code;
we can consider implementing the propagation of control
dependencies (and pointers) only from a tainted piece of
code. The inner workings of Qemu could lend itself quite
well to this modifi cation, in the sense that Qemu itself uses
basic blocks (this could be developed further in the future).

However, the tracking of indirect dependencies doesn’t
guarantee that no legitimate tainted marks will be lost. The
problem lies in tracking implicit indirect fl ows (a set of
assignments brought about by the non-execution of a piece
of code). With a similar form to the previous example:
() mov byte prt al,[our_data]

() mov ecx,0xff

() do_it:

(3) mov ebx,1

(1) cmp al,cl

() je skip

(2) xor ebx,ebx

() skip:

(4) test ebx,ebx

() jne done

() loop do_it

() done:

In this new case (example taken from [7]), we loop on
ecx, while the value of cl is different from the value in
al that is tainted (1), the register ebx is then tainted (2),
and at each new iteration the taint of ebx is deleted by the
assignment (3). When equality between al and cl is attained
in (1), the value of ebx remains unchanged. Ebx is then not
tainted when in (4) it validates its non null value as a loop
release condition. We then reach the label ‘done’ with a cl
value equal to our tainted value, but without being able to
propagate this taint mark on the register ecx.

There are various methods to propagate the tainting despite
this kind of implicit indirect fl ow, some of them use static
pre-analysis, others only apply on theoretical machine
models dedicated to research (c.f. [8]). There is no absolute
solution here.

Another common problem referred to in the literature
dealing with the data fl ow is the use of covert channels,
but in our context we are not dealing with privacy, and
information leaks through time covert channels, as
discussed in [7] don’t affect us. However, other covert
channels could. The previous example (pointer propagation)
which uses untainted data that was originally present on
the system to illegitimately generate untainted viral data
is proof of this. And that’s not the only example. Let’s
consider malicious software using a confi guration fi le

consisting of only a cryptographic (hash) of its target names
strings. It would then read the current navigation site name,
generate a (hash) digest and compare it with those in its
confi guration fi le. These types of blind views leave the
solution completely ineffective.

CONCLUSION
Data tainting is a powerful tool but very diffi cult to
calibrate. The main diffi culty lies in establishing a
propagation policy that is suffi ciently delicate, but that will
not involve full pollution of the taintmap, and then in its
implementation. This can be done over time by calibrating
against different samples of malicious software.

In the third part of this article we will look at the
implementation of data tainting.

REFERENCES
[1] Raffetseder, T.; Kruegel, C.; Kirda E. Detecting

System Emulators. http://www.seclab.tuwien.ac.at/
papers/detection.pdf.

[2] Rutkowska, J. Red Pill... or how to detect VMM
using (almost) one CPU instruction.
http://www.invisiblethings.org/papers/redpill.html.

[3] Ferrie, P. Attacks on More Virtual Machine
Emulators. http://pferrie.tripod.com/papers/
attacks2.pdf.

[4] Ormandy, T. An Empirical Study into the
Security Exposure to Hosts ofHostile Virtualized
Environments. http://taviso.decsystem.org/
virtsec.pdf, http://www.iseclab.org/papers/
ttanalyze.pdf.

[5] Goguen, J.A.; Meseguer, J. Security Policy and
Security Models, Proc. IEEE Symp. Security and
Privacy, pp.11–20, 1982. http://www.cs.ucsb.edu/
~kemm/courses/cs177/noninter.pdf.

[6] Collberg, C.; Thomborson, C.; Low D. A Taxonomy
of Obfuscating Transformations.
http://www.cs.arizona.edu/~collberg/Research/
Publications/CollbergThomborsonLow97a/A4.pdf.

[7] Cavallaro, L.; Saxena, P.; Sekar R. Anti-Taint-
Analysis: Practical Evasion Techniques Against
Information Flow Based Malware Defense.
http:// www.seclab.cs.sunysb.edu/seclab/pubs/
ata07.pdf.

[8] Le Guernic, G. Confi dentiality Enforcement Using
Dynamic Information Flow Analyses.
http://tel.archives-ouvertes.fr/docs/00/19/86/21/
PDF/thesis_report.pdf.

http://www.seclab.tuwien.ac.at/papers/detection.pdf
http://www.invisiblethings.org/papers/redpill.html
http://pferrie.tripod.com/papers/attacks2.pdf
http://taviso.decsystem.org/virtsec.pdf
http://taviso.decsystem.org/virtsec.pdf
http://www.iseclab.org/papers/ttanalyze.pdf
http://www.iseclab.org/papers/ttanalyze.pdf
http://www.cs.ucsb.edu/~kemm/courses/cs177/noninter.pdf
http://www.cs.arizona.edu/~collberg/Research/Publications/CollbergThomborsonLow97a/A4.pdf
http://www.seclab.cs.sunysb.edu/seclab/pubs/ata07.pdf
http://tel.archives-ouvertes.fr/docs/00/19/86/21/PDF/thesis_report.pdf

VIRUS BULLETIN www.virusbtn.com

11NOVEMBER 2009

DETECTING BOOTKITS
Alisa Shevchenko, Dmitry Oleksiuk
eSage Lab, Russia

This is a short essay about the generic detection of
MBR-infecting malware and, in a wider sense, the generic
detection of malware.

INTRODUCTION
As a previous tool we developed – TDSS remover (see
VB, August 2009, p.6) – proved to be popular with users,
we decided to continue exploring the capabilities and
attempting to fi x the shortcomings of anti-virus software.

A concept presented at a recent conference – the Stoned
Bootkit – reminded us of another popular and poorly
managed threat: the Mebroot (aka Sinowal or Torpig)
trojan, and MBR infectors in general. So we decided to fi nd
out whether, a few years after the fi rst appearance of this
type of malware, anti-virus software has learned to cope
successfully with it.

A very simple test was performed in order to exercise the
capabilities of different software in detecting and removing
MBR-infecting malware, as well as to explore the software’s
approaches to such detection. Despite the test’s relatively
amateur methodology, the results clearly showed that most
anti-virus software is far from able to cope successfully with
MBR-infecting malware. It also showed that most anti-
virus software detects MBR-infecting malware by signature
matching, which means that any Mebroot specimen can be
made undetectable in a matter of minutes.

We decided to create a trivial tool presenting a generic
approach to the detection and cleaning of MBR-infecting
malware.

BACKGROUND
Mebroot’s boot-code-infecting capability is based entirely
on the eEye Boot Root concept [1] presented at Black Hat
2005. Beyond the concept, Mebroot variants have driver-
loading and self-hiding functionality, the latter of which
makes the trojan’s detection and removal particularly tricky.

Let us remind you about Mebroot’s basic features:

1. Mebroot starts from a modifi ed piece of the Master
Boot Record code. It doesn’t have its own executable
fi le on the fi lesystem; instead, it stores its code in the
MBR and fi rst disk sectors.

2. During system boot, malicious boot code hooks
IoInitSystem after the operating system kernel code is
read from disk.

3. The IoInitSystem injection provides mapping of a
malicious driver into kernel memory.

4. The malicious driver code hooks fi lesystem drivers,
so that an attempt at reading the system MBR would
return a seemingly normal boot code.

5. Finally, payload code is injected into user-mode
processes from the driver.

THE STONED BOOTKIT
Technologically, the Stoned Bootkit [2] is no different from
Mebroot where MBR infection is concerned. This is exactly
why it is frustrating that anti-virus tools fail to detect it.

THE TEST
The main objective of the test was to fi gure out whether
anti-virus tools can detect and remove MBR malware in
general, rather than just known Mebroot variants. The
idea is that those that can, would certainly succeed in the
detection of a theoretical new Mebroot variant which is
different from an ordinary Mebroot only in its boot code.

To emulate such a piece of malware, a regular Mebroot
body (MD5: c8b9853a2a40ab6e9f0363397386f86e [3])
was utilized. We applied a simple obfuscation to the real
Mebroot’s boot code, so that it could no longer be detected
by signature.

Two other test goats were:

• A regular, second-generation Mebroot variant (same
MD5) – as a historical, ‘must succeed’ case.

• The above-mentioned Stoned Bootkit – as a real-world
‘new challenge’.

We focused on testing specifi c anti-Mebroot tools, since
they must embody anti-virus best practices. Some other
cleaning tools and anti-virus solutions were also tested. In
the results table, target software is grouped as follows:

1. A random selection of major anti-virus solutions.

2. Specifi c anti-Mebroot anti-virus tools.

3. Non-specifi c advanced cleaning tools from anti-virus
vendors.

4. A third-party anti-rootkit solution.

The test conditions were kept simple:

1. All tests were run on the same snapshot of VMWare,
i.e. in identical conditions.

2. Windows 2003 Server was installed on VMWare.

3. The latest stable releases of software were installed.

FEATURE 2

http://www.virusbtn.com/pdf/magazine/2009/200908.pdf

VIRUS BULLETIN www.virusbtn.com

12 NOVEMBER 2009

4. Anti-virus software was confi gured to provide
maximum protection.

5. Anti-virus databases were up to date.

The test results can be seen in Table 1.

ANALYSING THE RESULTS
As can be seen from the results table, none of the anti-virus
solutions tested is ready for a simple new Mebroot.

Q: Is it easy to produce a new Mebroot variant that would
be undetected by the listed software?

A: It is as trivial as a 10-minute exercise in assembly.

Q: Why is ESET Antivirus the only software to detect the
Stoned Bootkit?

A: Probably because ESET is the only anti-virus among
those listed that adds signature detections for proof-of-
concept code.

Q: Why did ESET Antivirus fail to cure a regular Mebroot
infection in the fi rst test, while the ESET Mebroot Remover
tool succeeded in the same task?

A: Actually, ESET Antivirus does cure the Mebroot
infection. But, because such cleaning requires non-trivial
scripting manipulations, we decided to put a ‘-’ in the
results table.

Q: Why did some specifi c anti-Mebroot tools and some
advanced virus cleaning tools fail completely?

A: As opposed to automatically updated anti-virus
solutions, stand-alone tools are not updated regularly, and

thus easily and quickly become outdated. This is not a
problem unless a stand-alone tool relies on signatures or
other fast-expiring technology, while its nature is to rely on
advanced generic solutions.

Q: In the second test, why did most of the software succeed
in detecting an active rootkit, but fail to disinfect it?

A: Probably because they detected (and tried to cure) a
Mebroot driver in memory while ignoring (and thus missing
the fi x of) the unknown boot code.

Q: Why did software ignore the modifi ed Mebroot boot
code?

A: Probably because a boot code detection is triggered by a
known signature and not triggered by modifi ed boot code.
Even stand-alone, non-standard boot code is worthy of
suspicion. In combination with invisibility, it presents clear
evidence of an MBR infector.

Q: Why did RootRepeal succeed in the fi rst two tests, and
fail in the last?

A: It looks like RootRepeal is the only software to
implement the anomaly-based detection of MBR malware
mentioned in the previous paragraph. A detection is
triggered if a custom boot code is found, and if it is hidden.
In this case, the boot sector is disinfected. Stoned Bootkit
isn’t detected since it doesn’t hide.

Q: What is the idea behind detecting MBR-infecting
malware generically?

A: A generic detection is the detection of the essential
characteristics of a malware family. As an example, the
essential characteristic of any Mebroot-like malware is boot

 Product name Version Sinowal-b Sinowal-b modifi ed Stoned Bootkit

1

McAfee VirusScan 13.15.101 +/+ –/– –/–

Kaspersky Antivirus 2010 9.0.0.463 +/+ +/– –/–

ESET NOD32 Antivirus 4.0.437.0 +/– +/– +/–

avast! Professional Edition 4.8.1356.0 –

2

ESET Mebroot Remover 1.7 +/+ +/– –/–

Norman Sinowal Cleaner 2008/05/13 –

Symantec Trojan.Mebroot Removal Tool 1.0.1.0 –

3

Dr.Web CureIt! 5.0.2.9230 +/+ –/– –/–

F-Secure BlackLight 2.2.1092.0 –

Avast! Virus Cleaner 1.0.211 –

4 RootRepeal 1.3.5.0 +/+ +/+ –/–

Table 1: Test results for detection and disinfection of three pieces of malware (‘+’ signifi es the product detects/disinfects
successfully, ‘–’ signifi es the product fails to detect/disinfect successfully).

VIRUS BULLETIN www.virusbtn.com

13NOVEMBER 2009

code infection. Thus, a generic detection of Mebroot-like
malware would be detecting boot code anomalies. With
such an approach, detection and disinfection of the driver
in memory and other malware evidence can be skipped,
because cleaning of the boot code will cure an MBR
infector completely.

Q: Why is generic detection necessary?

A: Because a detection that can be bypassed in 10 minutes
is a waste.

BOOTKIT REMOVER
We created a simple tool that is capable of detecting and
disinfecting MBR malware: Bootkit Remover [4].

In the tool’s output, three verdicts are possible:

1. Boot code is clean

2. Boot code is modifi ed

3. Boot code is hidden by a rootkit.

Modifi ed boot code can be cleaned by launching the tool
with the ‘fi x’ command. In this case, the infected MBR
will be overwritten by the operating system’s default boot
code. Without an infected boot code the Mebroot (or similar
malware) will fail to start at the next reboot, so no further
cleaning is necessary.

Currently the tool does not recognize custom boot sector
code (such as GRUB or Lilo), which means that the second
verdict (‘boot code is modifi ed’) will not necessarily refl ect
a malicious boot code modifi cation. However, all MBR
malware hides its boot code, which means that in case of an
MBR infection one will always get the third verdict.

It should be underlined that we are not claiming to present
an infallible technology. Basically, Bootkit Remover is
an advanced analogue of fi xmbr with rootkit detecting
capabilities. At the same time, the tool does allow easy
detection and disinfection of virtually any piece of MBR
malware, thus demonstrating the concept of generic
detection of the latter.

REFERENCES
[1] http://www.blackhat.com/presentations/bh-usa-05/

bh-us-05-soeder.pdf.

[2] http://www.stoned-vienna.com/.

[3] http://www.virustotal.com/analisis/b29a3d803c513b
4ce3b5e10c1455669ccc3581b3d01270840d509af70
e3b4130-1254266311.

[4] http://esagelab.com/resources.php?s=bootkit_
remover.

COLLABORATIVE SPAM
FILTERING WITH THE HASHING
TRICK
Josh Attenberg
Polytechnic Institute of NYU, USA

Kilian Weinberger, Alex Smola, Anirban Dasgupta,
Martin Zinkevich
Yahoo! Research, USA

User feedback is vital to the quality of the collaborative
spam fi lters frequently used in open membership email
systems such as Yahoo! Mail or Gmail. Users occasionally
designate emails as spam or non-spam (often termed as
ham), and these labels are subsequently used to train the
spam fi lter. Although the majority of users provide very
little data, as a collective the amount of training data is very
large (many millions of emails per day). Unfortunately,
there is substantial deviation in users’ notions of what
constitutes spam and ham. Additionally, the open
membership policy of these systems makes it vulnerable
to users with malicious intent – spammers who wish to see
their emails accepted by any spam fi ltration system can
create accounts and use these to give malicious feedback
to ‘train’ the spam fi lter in giving their emails a free pass.
When combined, these realities make it extremely diffi cult
to assemble a single, global spam classifi er.

The aforementioned problems could be avoided entirely if
we could create a completely separate classifi er for each
user based solely on that user’s feedback. Unfortunately,
few users provide the magnitude of feedback required
for this approach (many not providing any feedback at
all). The number of emails labelled by an individual
user approximates a power law distribution. Purely
individualized classifi ers offer the possibility of excellent
performance to a few users with many labelled emails, at
the expense of the great many users whose classifi ers will
become unreliable due to a lack of training data.

This article illustrates a simple and effective technique that
is able to balance the wide coverage provided by a global
spam fi lter with the fl exibility provided by personalized
fi lters. By using ideas from multi-task learning, we build a
hybrid method that combines both global and personalized
fi lters. By training both the collection of personal and global
classifi ers simultaneously we are able to accommodate
the idiosyncrasies of each user, as well as provide a global
classifi er for users that label few emails. In fact, as is well
known in multi-task learning [1], in addition to improving
the experience of users who label many examples, this
multi-task learning approach actually mitigates the impact

FEATURE 3

http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-soeder.pdf
http://www.stoned-vienna.com/
http://www.virustotal.com/analisis/b29a3d803c513b4ce3b5e10c1455669ccc3581b3d01270840d509af70e3b4130-1254266311
http://esagelab.com/resources.php?s=bootkit_remover

VIRUS BULLETIN www.virusbtn.com

14 NOVEMBER 2009

of malicious users on the global fi lter. By offering specifi c
consideration to the intents of the most active and unusual
users, a global classifi er is created that focuses on the truly
common aspects of the classifi cation problem. The end
result is improved classifi er performance for everyone,
including users who label relatively few emails.

With large-scale open membership email systems such as
Yahoo! Mail, one of the main hurdles to a hybrid personal/
global spam fi lter is the enormous amount of memory
required to store individual classifi ers for every user. We
circumvent this obstacle with the use of the hashing trick
[2, 3]. The hashing trick allows a fi xed amount of memory
to store all of the parameters for all the personal classifi ers
and a global classifi er by mapping all personal and global
features into a single low-dimensional feature space, in a
way which bounds the required memory independently
of the input. In this space, a single parameter vector, w,
is trained which captures both global spam activity and
the individual aspects of all active users. Feature hashing
provides an extremely simple means of dimensionality
reduction, eliminating the large word-to-dimension
dictionary data structure typically needed for text-based
classifi cation, providing substantial savings in both
complexity and available system memory.

1. HASHING TRICK

The standard way to represent instances (i.e. emails) in
text classifi cation is the so-called bag-of-words approach.
This method assumes the existence of a dictionary that
contains all possible words and represents an email as
a very large vector, , with as many entries as there are
words in the dictionary. For a specifi c email, the ith entry in
the vector contains the number of occurrences of word i in
the email. Naturally, this method lends itself to very sparse
representations of instances and examples – as the great
majority of words do not appear in any specifi c text, almost
all entries in the data vectors are zero. However, when
building a classifi er one often has to maintain information
on all words in the entire corpus (e.g. in a weight vector),
and this can become unmanageable in large corpora.

The hashing trick is a dimensionality reduction technique
used to give traditional learning algorithms a foothold in
high dimensional input spaces (i.e. in settings with large
dictionaries), by reducing the memory footprint of learning,
and reducing the infl uence of noisy features.

The main idea behind the hashing trick is simple and
intuitive: instead of generating bag-of-word feature vectors
through a dictionary that maps tokens to word indices,
one uses a hash function that hashes words directly into a
feature vector of size b. The hash function

h : {Strings} → [1..b] operates directly on strings and
should be approximately uniform1.

In [3] we propose using a second independent hash
function ξ : {Strings} → {-1, 1}, that determines whether
the particular hashed dimension of a token should be
incremented or decremented. This causes the hashed feature
vectors to be unbiased, since the expectation of the noise for
any entry is zero. The algorithm below shows a pseudo-code
implementation of the hashing trick that generates a hashed
bag-of-words feature vector for an email:

hashingtrick([string] email)

 =
for word in email do

i = h(word)

 = + ξ(word)
end for

return

The key point behind this hashing is that every hashed
feature effectively represents an infi nite number of
unhashed features. It is the mathematical equivalent of a
group of homographs (e.g. lie and lie) or homophones (e.g.
you’re and your) – words with different meanings that look
or sound alike. It is important to realize that having two
meanings of the same feature is no more and no less of an
issue than a homograph or homophone: if a computer can
guess the meaning of the feature, or more importantly, the
impact of the feature on the label of the message, it will
change its decision based upon the feature. If not, then
it will try to make its decision based on the rest of the
email. The wonderful thing about hashing is that instead
of trying to cram a lot of different confl icting meanings
into short words as humans do, we are trying to randomly
spread the meanings evenly into over a million different
features in our hashed language. So, although a word like
‘antidisestablishmentarianism’ might accidentally run into
‘the’, our hashing function is a lot less likely to make two
meaningful words homographs in our hashed language than
those already put there by human beings.

Of course there are so many features in our hashed
language, that in the context of spam detection most
features won’t mean anything at all.

In the context of email spam fi ltering, the hashing trick
by itself has several great advantages over the traditional
dictionary-based bag-of-words method: 1. It considers even
low-frequency tokens that might traditionally be ignored to
keep the dictionary manageable – this is especially useful
in view of attacks by spammers using rare variants of words

1 For the experiments in this paper we used a public domain
implementation of a hash function from http://burtleburtle.net/bob/
hash/doobs.html.

http://burtleburtle.net/bob/hash/doobs.html

VIRUS BULLETIN www.virusbtn.com

15NOVEMBER 2009

(e.g. misspellings like ‘viogra’). 2. Hashing the terms
makes a classifi er agnostic to changes in the set of terms
used, and if the spam classifi er is used in an online setting,
the hashing trick equips the classifi er with a dictionary of
effectively infi nite size, which helps it adapt naturally to
changes in the language of spam and ham. 3. By associating
many raw words in its ‘infi nite’ dictionary (most of which
never occur) with a single parameter, the meaning of
this parameter changes depending upon which words are
common, rare, or absent from the corpus.

So, how large a language can this hashing trick handle? As
we show in the next section, if it allows us to ‘square’ the
number of unhashed features we may possibly see, it could
help us handle personalization.

2. PERSONALIZATION
As the hashing trick frees up a lot of memory, the number
of parameters a spam classifi er can manage increases. In
fact, we can train multiple classifi ers which ‘share’ the same
parameter space [3]. For a set of users, U, and a dictionary
size d, our goal is to train one global classifi er, , that is

shared amongst all users and one local classifi er, , for
each user u ∈U. In a system with | U | users, we need | U | +
1 classifi ers. When an email arrives, it is classifi ed by the
combination of the recipient’s local classifi er and the global

classifi er + – we call this the hybrid classifi er.
Traditionally, this goal would be very hard to achieve, as
each classifi er has d parameters, and hence the total
number of parameters we need to store becomes (| U | +
1)d. Systems like Yahoo! Mail handle billions of emails for
hundreds of millions of users per day. With millions of users
and millions of words, storing all vectors would require
hundreds of terabytes of parameters. Further, to load the
appropriate classifi er for any given user in time when an
email arrives would be prohibitively expensive.

The hashing trick provides a convenient solution to the
aforementioned complexity, allowing us to perform
personalized and global spam fi ltration in a single hashed
bag-of-words representation. Instead of training | U | + 1
classifi ers, we train a single classifi er with a very large
feature space. For each email, we create a personalized bag
of words by concatenating the recipient’s user id to each
word of the email2, and add to this the traditional global bag
of words. All the elements in these bags are hashed into one
of b buckets to form a b-dimensional representation of the
email, which is then fed into the classifi er. Effectively, this
process allows | U | +1 classifi ers to share a b-dimensional
parameter space nicely [3]. It is important to point out that

2 We use the ° symbol to indicate string concatenation.

the one classifi er – over b hashed features – is trained
after hashing. Because b will be much smaller than d × | U |,
there will be many hash collisions.

However, because of the sparsity and high redundancy of
each email, we can show that the theoretical number of
possible collisions does not really matter for most of the
emails.

Moreover, because the classifi er is aware of any collisions
before the weights are learned, the classifi er is not likely
to put weights of high magnitude on features with an
ambiguous meaning.

Figure 1: Global/personal hybrid spam fi ltering with feature
hashing.

Intuitively, the weights on the individualized tokens (i.e.
those that are concatenated with the recipient’s id) indicate
the personal eccentricities of the particular users. Imagine
for example that user ‘barney’ likes emails containing the
word ‘viagra’, whereas the majority of users do not. The
personalized hashing trick will learn that ‘viagra’ itself is a
spam indicative word, whereas ‘BARNEY_viagra’ is not.
The entire process is illustrated in Figure 1. See the algorithm
below for details on a pseudo-code implementation of the
personalized hashing trick. Note that with the personalized
hashing trick, using a hash function h : {Strings} → [1..b],
we only require b parameters independent of how many users
or words appear in our system.

personalized_hashingtrick(string userid, [string] email)

 =
for word in email do

i = h(word)

 = + ξ(word)
j = h(word userid)

 = + ξ(word userid)
end for

return

3. EXPERIMENTAL SET-UP AND RESULTS

To assess the validity of our proposed techniques, we
conducted a series of experiments on the freely distributed

VIRUS BULLETIN www.virusbtn.com

16 NOVEMBER 2009

trec07p benchmark data set, and on a large-scale proprietary
data set representing the realities of an open-membership
email system. The trec data set contains 75,419 labelled
and chronologically ordered emails taken from a single
email server over four months in 2007 and compiled for
trec spam fi ltering competitions [4]. Our proprietary data
was collected over 14 days and contains n = 3.2 million
anonymized emails from | U | = 400,000 anonymized users.
Here the fi rst ten days are used for training, and the last
four days are used for experimental validation. Emails
are either spam (positive) or ham (non-spam, negative).
All spam fi lter experiments utilize the Vowpal Wabbit
(VW) [5] linear classifi er trained with stochastic gradient
descent on a squared loss. Note that the hashing trick is
independent of the classifi cation scheme used; the hashing
trick could apply equally well with many learning-based
spam fi ltration solutions. To analyse the performance of
our classifi cation scheme we evaluate the spam catch rate
(SCR, the percentage of spam emails detected) of our
classifi er at a fi xed 1% ham misclassifi cation rate (HMR,
the percentage of good emails erroneously labelled as
spam). We note that the proprietary nature of the latter data
set precludes publishing of exact performance numbers.
Instead we compare the performance to a baseline classifi er,
a global classifi er hashed onto b = 226 dimensions. Since 226
is far larger than the actual number of terms used, d = 40M,
we believe this is representative of full-text classifi cation
without feature hashing.

4. THE VALIDITY OF HASHING IN EMAIL
SPAM FILTERING
To measure the performance of the hashing trick and the
infl uence of aggressive dimensionality reduction on classifi er
quality, we compare global classifi er performance to that
of our baseline classifi er when hashing onto spaces of
dimension b = {218, 220, 222, 224, 226} on our proprietary data

set. The results of this experiment are displayed as the blue
line in Figure 2. Note that using 218 bins results in only an 8%
reduction in classifi er performance, despite large numbers of
hash collisions. Increasing b to 220 improves the performance
to within 3% of the baseline. Given that our data set has 40M
unique tokens, this means that using a weight vector of 0.6%
of the size of the full data results in approximately the same
performance as a classifi er using all dimensions.

Previously, we have proposed using hybrid global/personal
spam fi ltering via feature hashing as a means for effectively
mitigating the effects of differing opinions of spam and ham
amongst a population of email users. We now seek to verify
the effi cacy of these techniques in a realistic setting. On our
proprietary data set, we examine the techniques illustrated
in Section 2 and display the results as the red line in Figure
2. Considering that our hybrid technique results from the
cross product of | U | = 400K users and d = 40M tokens, a
total of 16 trillion possible features, it is understandable
that noise induced by collisions in the hash table adversely
affects classifi er performance when b is small. As the
number of hash bins grows to 222, personalization already
offers a 30% spam reduction over the baseline, despite
aggressive hashing.

In any open email system, the number of emails labelled
as either spam or non-spam varies greatly among users.
Overall, the labelling distribution approximates a power law
distribution. With this in mind, one possible explanation for
the improved performance of the hybrid classifi er in Figure 2
could be that we are heavily benefi ting those few users with
a rich set of personally labelled examples, while the masses
of email users – those with few labelled examples – actually
suffer. In fact, many users do not appear at all during
training time and are only present in our test set. For these
users, personalized features are mapped into hash buckets
with weights set exclusively by other examples, resulting in
some interference being added to the global spam prediction.

Figure 2: The results of the global and hybrid classifi ers
applied to a large-scale real-world data set of 3.2 million

emails.

Figure 3: The amount of spam left in users’ inboxes, relative
to the baseline. The users are binned by the amount of

training data they provide.

VIRUS BULLETIN www.virusbtn.com

17NOVEMBER 2009

In Section 2, we hypothesized that using a hybrid spam
classifi er could mitigate the idiosyncrasies of the most active
spam labellers, thereby creating a more general classifi er
for the remaining users, benefi ting everyone. To validate
this claim, we segregate users according to the number of
training labels provided in our proprietary data. As before,
a hybrid classifi er is trained with b = {218, 220, 222, 224, 226}
bins. The results of this experiment are seen in Figure 3.

Note that for small b, it does indeed appear that the most
active users benefi t at the expense of those with few labelled
examples. However, as b increases, therefore reducing
the noise due to hash collisions, users with no or very few
examples in the training set also benefi t from the added
personalization. This improvement can be explained if we
recall the subjective nature of spam and ham – users do not
always agree, especially in the case of business emails or
newsletters. Additionally, spammers may have infi ltrated the
data set with malicious labels. The hybrid classifi er absorbs
these peculiarities with the personal component, freeing the
global component to truly refl ect a common defi nition of
spam and ham and leading to better overall generalization,
which benefi ts all users.

5. MITIGATING THE ACTIONS OF MALICIOUS
USERS WITH HYBRID HASHING
In order to simulate the infl uence of deliberate noise in a
controlled setting we performed additional experiments
on the trec data set. We chose some percentage, mal, of
‘malicious’ users uniformly at random from the pool of
email receivers, and set their email labels at random. Note
that having malicious users label randomly is actually
a harder case than having them label adversarially in a
consistent fashion – as then the personalized spam fi lter
could potentially learn and invert their preferences.

Figure 4 presents a comparison of global and hybrid
spam fi lters under varying loads of malicious activity and
different sized hash tables. Here we set mal ∈ {0%, 20%,
40%}. Note that malicious activity does indeed harm
the overall spam fi lter performance for a fi xed classifi er
confi guration. The random nature of our induced malicious
activity leads to a ‘background noise’ occurring in many
bins of our hash table, increasing the harmful nature of
collisions. Both global and hybrid classifi ers can mitigate
this impact somewhat if the number of hash bins b is
increased. In short, with malicious users, both global
(dashed line) and hybrid (solid line) classifi ers require more
hash bins to achieve near-optimum performance. Since
the hybrid classifi er has more tokens, the number of hash
collisions is also correspondingly larger. Given a large
enough number of hash bins, the hybrid classifi er clearly
outperforms the single global classifi er under the malicious

settings. We do not include the results of a pure local
approach, as the performance is abysmal for many users due
to a lack of training data.

6. CONCLUSION
This work demonstrates the hashing trick as an effective
method for collaborative spam fi ltering. It allows spam
fi ltering without the necessity of a memory-consuming
dictionary and strictly bounds the overall memory required
by the classifi er. Further, the hashing trick allows the
compression of many (thousands of) classifi ers into a single,
fi nite-sized weight vector. This allows us to run personalized
and global classifi cation together with very little additional
computational overhead. We provide strong empirical
evidence that the resulting classifi er is more robust against
noise and absorbs individual preferences that are common
in the context of open-membership spam classifi cation.

REFERENCES
[1] Caruana, R. Algorithms and applications for

multitask learning. Proc. Intl. Conf. Machine
Learning, pp.87–95. Morgan Kaufmann, 1996.

[2] Attenberg, J.; Weinberger, K.; Dasgupta, A.; Smola.
A.; Zinkevich, M. Collaborative email-spam fi ltering
with the hashing trick. Proceedings of the Sixth
Conference on Email and Spam, CEAS 2009, 2009.

[3] Weinberger, K.; Dasgupta, A.; Attenberg, J.;
Langford, J.; Smola, A. Feature hashing for large
scale multitask learning. ICML, 2009.

[4] Cormack, G. TREC 2007 spam track overview. The
Sixteenth Text REtrieval Conference (TREC 2007)
Proceedings, 2007.

[5] Langford, J.; Li, L.; Strehl, A. Vowpal Wabbit online
learning project. http://hunch.net/?p=309, 2007.

Figure 4: The infl uence of the number of hash bins on global
and hybrid classifi er performance with varying percentages

of malicious users.

http://hunch.net/?p=309

VIRUS BULLETIN www.virusbtn.com

18 NOVEMBER 2009

MICROSOFT SECURITY
ESSENTIALS
John Hawes

Microsoft Security Essentials, the long-awaited replacement
for the Windows Live OneCare package, is fi nally with us.
When the globe-straddling giant began its push into the
anti-malware sphere a few years back, some initial poor
test results dented the launch of OneCare, and sluggish
performance and general lack of user interest were
immediately apparent. Despite a much improved version 2,
Microsoft quickly decided to give up on the product – and
its retirement and replacement were announced almost a
year ago. The new project, codenamed ‘Morro’, excited a
great deal of debate and no little controversy around the
topic of free AV – and the debate continues to rumble on
now that Security Essentials is available to the public.

One question which has received little attention amongst
the hype and hyperbole surrounding the launch of Security
Essentials is: what is meant by ‘free AV’? We know from
correspondence with our readers that some people always
run some high-quality, multi-function suite without paying
for it. They do so quite legally, simply by switching from
one free trial to another every few months. Others get free
access to security software via a value-added model. Should
I need one, I could get myself set up with an expensive
security suite at no charge thanks to extras thrown in with
my bank account, my ISP, my phone line or TV provider, or
any of a number of others.

Of course, none of these are completely free – the trial
option requires considerable investment of effort, while the
value-added path depends on having paid for the original
product or service. What about the people who don’t have
the time or inclination to regularly reinstall software, and
who can’t afford the kind of service contracts that throw
in extras? For them, the most common answer is the
free-for-home-use model, under which developers make
pared-down versions of their software available free of
charge, on the condition that it is only for personal use.

The free-for-home-use fi eld is currently dominated by
the three ‘A’s: Alwil (avast!), AVG and Avira. Many other
providers also release parts of their product range without
charge, but it is these big three which dominate. According
to a recent blog post by Alwil’s CEO, 50% of the world’s
500 million consumer machines run one of the three,
compared to 20% running one of the ‘market-leading’
brands, Symantec, McAfee, Trend Micro and Kaspersky1.
The business model is a simple one, providing the

1 http://blog.avast.com/2009/10/02/and-what-about-microsoft-security-
essentials%e2%80%94mse/

companies with wide market penetration and excellent brand
recognition. A small fraction of users of free products will
upgrade to paid editions, while the widespread distribution
of the free products also provides the companies with an
additional source of fresh samples that’s pretty hard to
beat. All this can be achieved for no more than the cost of
a little server space and bandwidth for updates, and a few
man-hours for the monitoring of help forums (which are
essentially fan-maintained).

So where will Security Essentials fi nd its place? Clearly
Microsoft has slightly different goals here – the fi rm has
little need of additional publicity, and it seems unlikely
that many users of Security Essentials will be tempted to
upgrade to its corporate big brother Forefront (Security
Essentials is targeted squarely at home users). There will, of
course, be some advantage to be gained from the increase in
new samples fl owing into the company’s labs, but with such
massive presence in all sorts of areas, this should not make
a great impact.

The stated aim of the product is to provide protection for
those users currently running their machines unprotected,
particularly in less developed nations (some reports
have estimated as many as 50% of users are not running
up-to-date security software2). As always when Microsoft
takes steps in the security world however, many sceptical
commentators have viewed such altruistic claims with
suspicion, muttering that such efforts may simply be part
of an ongoing campaign to counterbalance the company’s
reputation for insecurity in its operating systems. Despite
making great strides in recent releases, that reputation
lingers thanks to the continual discovery of new fl aws and
vulnerabilities in many areas – perhaps inevitably, given
the breadth and scope of the company’s product range, and
the armies of hackers beavering away looking for cracks to
crowbar open.

Once the decision to retire OneCare had been taken, releasing
the Security Essentials product seemed almost to have no
downside for Microsoft. The interface will likely require little
maintenance, support will likely be kept to a minimum, while
the engine teams and malware analysts will already be hard
at work maintaining Forefront – so it could just be that the
proclaimed altruism is genuine, and the improvement of the
fi rm’s security image just a side effect. There are similarly
few downsides for users – the product is available free of
charge to those who want it, and even if it is only taken up by
a tiny fraction of potential users and only provides minimal
protection, it will still contribute positively to the overall
security picture. The uptake may well depend on the quality
of the product, but will also doubtless be infl uenced by
promotion, marketing and the response of users.

2 http://www.theregister.co.uk/2009/09/29/ms_security_essentials/

PRODUCT REVIEW

http://blog.avast.com/2009/10/02/and-what-about-microsoft-security-essentials%e2%80%94mse/
http://www.theregister.co.uk/2009/09/29/ms_security_essentials/

VIRUS BULLETIN www.virusbtn.com

19NOVEMBER 2009

SECURITY ESSENTIALS: PROMOTION,
INFORMATION AND SUPPORT

The initial announcement of the retirement of OneCare
and its replacement with a free offering attracted
considerable interest, and a public beta release was heavily
oversubscribed with many more users trying to get hold of it
than expected. However, the fi nal full release came with less
of a fanfare, with interest somewhat depleted after almost a
year of waiting, a staggered release into different territories
and the impending release of Windows 7 all factors in the
relative quietness of the product’s emergence.

Considerable attention was paid by the technical branches
of the media however, with a mixed bag of early reviews
appearing in the weeks following the offi cial public launch.
Many commented favourably on the product’s simplicity
and ease of use, while some – rather unfairly – criticized the
absence of the full range of additional layers of protection,
such as fi rewall and HIPS protection, found at the more
advanced end of the suite market. Despite the somewhat
tepid reaction, downloads were reported to have reached
1.5 million within the fi rst week.

The product can be acquired from the microsite located
at www.microsoft.com/Security_Essentials. The landing
page is pretty simple and straightforward, with a big
download button taking centre stage along with some basic
information about the product. The fact that the product
is free only for home users of genuine licensed copies of
Windows is clearly highlighted; business users are directed
to Forefront, while those seeking more information on
malware are provided with a link to the Malware Protection
Center (MMPC) portal. A selection of certifi cation badges
appeared soon after the site went live.

The most prominent buttons on the page are for help,
support and an installation video (the use of which involved
allowing scripting in the browser and, to view the video,
installation of Microsoft’s Silverlight system). An option was
provided to download the video as a WMV fi le and watch
it the old-fashioned way, but it appeared to be beyond the
abilities of several older copies of Windows Media Player3.

A resources tab provides more links to the MMPC, the
EULA and privacy policy (for the SpyNet system, which
we’ll come to later), and the system requirements – the
product claims support for Windows versions from XP
SP2 up via Vista to the new Windows 7, and needs 140MB
of hard drive space, a 500MHZ processor and 512MB of
RAM (rising to 1GHz and 1GB for the Vista and Windows 7
version). This all seems pretty reasonable, given the

3 Further product information and videos are at
http://www.microsoft.com/presspass/presskits/microsoftsecurityessentials/
materials.aspx

requirements of the operating systems, and hopefully few
users will fi nd themselves unable to use the product through
a lack of computing power.

The fi nal part of the page – probably the most important
once users have acquired and installed the product – is
the support area. This is already well stocked with FAQs,
guides and how-tos alongside the videos mentioned earlier,
and also provides access to a community-driven forum
for resolving more specifi c problems. This seems to have
generated some useful content already, and appears to
be well staffed by some helpful and knowledgeable pros
alongside the user community. With no proper manual
apparent, there seems to be ample information available to
steer users through any potential issues they might have,
while a proper online support-case submission system is
also provided for more troublesome matters, alongside a
new threat reporting system.

The whole thing is smooth and slick (some issues with the
videos notwithstanding), but there was one thing that did
stand out like a sore thumb throughout the site: just about
every page appears to carry advertising. Some layer of ad
fi ltering managed to block the advertising on most systems
we used to visit the site, but this spoiled the smooth clean
lines with clunky block messages. I suppose we could have
allowed the ads to see whether they would fi t in nicely with
the look and feel of the surroundings. Either way, though, the
idea that help – even for a free product – is a suitable place
for advertising seems rather uncomfortable, and somewhat
dents the supposed altruistic ethos behind the project.

USER EXPERIENCE
With the product downloaded – a small initial fi le which
took seconds to download with a fast connection – the
installation process is pretty straightforward. It sails lightly
and quickly through the standard set-up steps, with the
only less usual one being a check for the genuineness
of Windows. As honest, well-behaved people we did not
have any unlicensed or pirate copies of Windows to hand
to observe how it would respond in such circumstances,
but on legitimate systems it trips through nice and quickly
(even more so if the Genuine Advantage set-up has already
been performed). The check for the legitimacy of the
running Windows system has proved controversial, with
some commentators arguing that the bulk of the audience
Microsoft is aiming for – those running unprotected systems
in less advanced regions – are likely also to be running
unlicensed copies of Windows. However, the decision not
to allow these users to protect themselves does make some
business sense.

At the end of the installation process the product connects
back to base to update itself, and offers to run a full system

http://www.microsoft.com/presspass/presskits/microsoftsecurityessentials/materials.aspx

VIRUS BULLETIN www.virusbtn.com

20 NOVEMBER 2009

scan once it is complete. In our tests the update never
took more than a couple of minutes, even with a less than
ideal web connection or having waited several weeks
after the initial download. Once installed, a rather lumpy
icon (which, after a few moments of staring, we deduced
represented a square castle fl ying a large fl ag) appears in the
system tray to indicate protection is in place.

The product itself is remarkably simple and clear, with
a main page offering bare data on the protected status
of the system (a bar turning red if any kind of threat has
been observed), and a few buttons for different kinds of
on-demand scans. An update tab provides some information
on update status and a button to run a fresh update; a history
tab reports details of threats detected and how they have
been treated; and a settings tab provides some confi guration
options – with rather more choice available than might
have been expected. There is a sensible set of defaults and
a selection of useful options – including the exclusion of
certain areas, types of fi les and even running processes from
scanning – but there is not quite the in-depth confi guration
available as seen in the most sophisticated products. The
scheduler allows only a single job, and as in so many
systems is set to run in the middle of the night on a Sunday;
some users may want to adjust this, particularly if using
laptops or saving energy by shutting down at such times.

The most interesting part of the settings tab are the
controls for the ‘SpyNet’ system, yet another online
community-reporting system designed to gather information
on what is being detected. The default ‘basic’ setting
provides Microsoft with minimal details of any detection
that occurs, mainly limited to what was detected and when.
Meanwhile the ‘advanced membership’ option allows
the product to upload much more detailed information
including fi lenames and locations of dangerous fi les. There
is no option to run without reporting data to base, which
may worry some users from a privacy angle, but in most
circumstances even the advanced setting is unlikely to

breach anyone’s privacy. As such systems help measure
and monitor the malware problem, providing useful
information on how infections function and spread, I would
recommend that any user not crippled by paranoia enable
the advanced mode.

Running the product for a while and putting it through
our standard set of speed measurements showed it had
a reasonably low footprint, not interfering with normal
usage even while scanning, thanks to judicious use of
prioritization. A full set of speed measurements were taken
in direct comparison with the last VB100 test – which
was admittedly on an unsupported server platform, but
this seemed not to impede the product’s operation and
showed that it fi tted fairly neatly into the upper end of the
range for speed and overheads, with both on-demand and
on-access speeds around a third faster than those recorded
for big brother Forefront across the board. We got similar
results on XP and Vista, and should have more accurate and
complete results available, including details of Windows 7
performance, once the product has been through a full
VB100 comparative in a month’s time. As well as standard
on-access and on-demand scanning, the product also checks
web downloads and email attachments specifi cally as they
arrive by integration with standard Windows functions for
this. Here, a noticeable but totally acceptable additional
delay was added to the download.

We did note a fairly hefty slowdown of the system in a
couple of cases, particularly when running on low-end
netbooks at the bottom end of the supported power range.
This was most evident during boot-up and recovering from
hibernation, and was quickly diagnosed – when the product
is installed, its updating system is integrated with Windows
Update, which on some systems I have found it best to run
manually thanks to this slowdown during boot-up as new
patches are downloaded. Enabling the update system for the
malware defi nitions also enables the full Windows updates,
and led to the problems noted. In most cases of course,
users should always have Windows Update active to ensure

VIRUS BULLETIN www.virusbtn.com

21NOVEMBER 2009

they get the latest security fi xes as quickly as possible, so
this will not affect most users.

Having surveyed the product in its normal, fairly dormant
state, it was time to see how well it fared in more
challenging times.

PROTECTION CAPABILITIES
Continuing the process from the speed testing, we pushed
the product through the full set of VB100 tests from the
previous comparative (see VB, October 2009, p.17), albeit
with defi nitions around a month newer than the offi cial test
deadline. We found detection scores as expected closely
mirroring those achieved by Forefront, with the newer
samples in the RAP sets covered much better thanks to the
intervening time since the sets were gathered. Across the full
trojan set and all of the RAP sets detection rates were steady
and reliable, never dipping below 95%. The other standard
sets were handled pretty impeccably, with no issues in the
WildList set despite even larger numbers of highly complex
polymorphic strains added in recent weeks. Several other
variants of W32/Virut, which continues to show up high on
our prevalence charts, were also tested and detected perfectly.
Stability was excellent and the product behaved impeccably
throughout, even when handling sets of strange and
malformed fi les known to cause problems for some engines.
We also liked the way the on-access scanner does not feel the
need to bombard the user with alert pop-ups, instead going
about its business simply and quietly and recording malicious
activity in its main interface, to be reviewed at leisure.

There was one minor oddity in the history set-up though
– one that perhaps is unique to the likes of us. Having run a
scan of our full sets, we opted not to let the product plough
slowly through the whole lot removing, cleaning
and quarantining tens of thousands of fi les, so simply

closed the scan window. On checking the history area later,
although it claimed to contain details of all threats detected,
it reported nothing. We later found that reports seemed to
make their way into the history only if they have been acted
on in some way – either cleaned or allowed. As this is the
default and probably most sensible way to operate, it seems
unlikely that this will affect most users, but it is still perhaps
a little misleading.

As well as the test sets used in the last comparative, we also
built an updated RAP-style set from samples received shortly
before and just after installing the product. Once again we
saw some excellent detection rates – particularly impressive
in the week +1 set which contained mostly items not seen by
the labs before. The strong team being built up by Microsoft
for its anti-malware department has already had great success
as the scores achieved by the company’s products, both in
our own and other independent tests, have steadily increased
in the last year or so to reach some extremely competitive
levels – this trend shows no sign of abating any time soon.
Our next test was to run the product against samples from the
latest WildList, which again caused no problems.

Scanning our full clean sets produced no false positives,
even in the batches of samples deemed too obscure or
bizarre to include in our offi cial set. Microsoft’s products
have shown a pretty clean performance in this area in our
tests for some time now, with not a single false positive since
OneCare fi rst entered the VB100 several years ago – a pretty
strong achievement perhaps helped by the fi rm’s massive
software certifi cation programmes and penetrating ability to
see what people are running on systems around the world.

All in all the basics of straightforward static anti-malware
protection seemed to be provided to a very satisfactory
standard. The set of tests we performed would easily
have qualifi ed the product for a VB100 award had it been
under offi cial conditions, and it looks pretty likely that,
barring surprise disasters, certifi cation will be achieved at
the fi rst attempt (which will hopefully be in the upcoming
Windows 7 test).

Cleaning seemed pretty solid too, with most of the handful
of items we tested removed without diffi culty. As is usually
the case, a few innocuous remnants were left behind in some
cases, along with a few registry entries and changes to the
hosts fi le – this is par for the course though and few products
will be brave enough to remove all possible side effects of
some attacks for fear of damaging important existing settings.

Moving on to other features, we learned early on from the
product literature and early reviews that there is a little
more than basic protection here, with the SpyNet reporting
system also featuring a level of cloud-based intelligence
and even some behavioural monitoring, apparently
watching unknown fi les for suspect behaviour, checking

http://www.virusbtn.com/pdf/magazine/2009/200910.pdf

VIRUS BULLETIN www.virusbtn.com

22 NOVEMBER 2009

for confi rmations from other sources and automatically
blocking new threats. We endeavoured to test this behaviour,
having found a selection of newly gathered samples that
were not being detected by the signature scanner which we
ran on sacrifi cial systems with limited networking to allow
the product to connect out while minimizing the potential
danger of the malware. Unfortunately, despite our best
efforts, we could fi nd no confi rmation of any additional
protection provided by the cloud-based system – with each
of the samples not spotted by the straight scanner allowed
to operate as they pleased. We will keep an eye on this new
technology and see how it develops.

CONCLUSIONS
Overall, Security Essentials proved a pretty decent product
for the price bracket. Some commentators have complained
about the lack of additional suite-type features, but there
are still many similar standard anti-malware products on the
market, with great demand for such protection even if paid
for. The ability to pick and choose protective components
remains important to many, while the prices of the more
complete suites put them out of range for many others. We
tried the product in combination with a number of third-
party fi rewalls, spam fi lters and even behavioural monitors,
with no sign of any clash or incompatibility, and we were
able to provide ourselves with a fairly decent sense of
security without spending a penny. Of course this takes
some effort and perhaps a little skill, and for many users
Security Essentials will in fact be their security be-all and
end-all; while such an approach is not to be encouraged, it
is far preferable to having no security at all.

Providing an extremely respectable level of detection of
known malware, some top-notch heuristic and generic
coverage of emerging threats, and a simple approach
to usability which shouldn’t baffl e even the most
technophobic, Security Essentials makes a strong addition
to the line-up of free solutions on the market. If it is indeed
taken up by the vast armies of unprotected systems out
there, it should make quite some dent in the number of
zombie systems attacking and spamming the rest of us.

COMPARATIVE REVIEW
ANTI-SPAM COMPARATIVE
REVIEW
Martijn Grooten

This month’s anti-spam comparative review saw yet another
increase in the fi eld of competitors with 14 products taking
their place on the test bench; the same 12 products that
participated in the September test were joined by two new
ones. One of the new products is the fi rst anti-spam solution
to take part in our test that runs on a virtual machine
– demonstrating yet another possibility for administrators
searching for a decent anti-spam solution to run in their
organization. The 12 VBSpam awards given out this month
– another record – demonstrate that there is plenty of choice
when it comes to very good solutions.

THE TEST SET-UP
No changes were made to the test set-up, apart from some
modifi cations to the corpora used, as is explained below. As
usual, the full methodology can be found at
http://www.virusbtn.com/vbspam/methodology/.

The products that needed to be installed on a server were
installed on a Dell PowerEdge R200, with a 3.0GHz dual
core processor and 4GB of RAM. Those running on Linux
ran on SuSE Linux Enterprise Server 11; the Windows
Server products ran either the 2003 or the 2008 version,
depending on which was recommended by the vendor.

THE EMAIL CORPUS

The test ran from 1pm UK time on 16 October 2009 to
12pm UK time on 30 October 2009 – with the end of British
Summer Time coming in the middle of the test, this meant
the test ran for two weeks exactly. The corpus contained a
total of 199,842 emails: 2,121 ham messages and 197,721
spam messages. The latter consisted of 176,667 messages
provided by Project Honey Pot and 21,054 spam messages
sent to @virusbtn.com addresses.

The ham emails consisted of all legitimate emails sent to
@virusbtn.com addresses. This time, however, some senders
were excluded from the test set: these were the senders of
emails that regularly discuss spam- and malware-related
topics (for example anti-spam discussion lists) and as such
regularly contain links to malicious and/or spamvertised
URLs. We believe that not only are such emails unlikely
to occur in the legitimate email stream of an average
organization, but also that the recipients of such emails
generally have the level of knowledge and technical
ability required to whitelist these particular senders. All

http://www.virusbtn.com/vbspam/methodology/

VIRUS BULLETIN www.virusbtn.com

23NOVEMBER 2009

emails from these senders were removed from the test
set, regardless of the contents of the individual emails.
(Of course, it is possible that other legitimate senders also
included malicious and/or spamvertised URLs in their
emails – however, these were not excluded from the test set.)

Unsurprisingly, this affected the products’ false positive
rates and only one product blocked more than one per
cent of all legitimate emails in the test. Interestingly, no
legitimate email was blocked by more than four products
– so while developers might argue that certain emails are
hard to recognize as legitimate, it can also be pointed out
that for every email they incorrectly blocked, there were at
least ten other products that correctly recognized it as ham.

To make up for the exclusion of some senders, we
subscribed some of our addresses to a number of email
discussion lists. We believe this has several advantages:
fi rstly, it adds to the variety of topics discussed in the
ham stream, as well as to the variety of sending domains
and IP addresses, and thus makes the test results more
representative for an average company. Secondly, these
emails are generally very much wanted by their recipients
and as such do not fall in the grey area of legitimate-yet-
not-particularly-wanted emails. And thirdly, because we can
(and will) vary the lists subscribed to over time, we can give
the full contents of the emails to developers whose products
blocked them – in doing so neither compromising our own
confi dentiality nor introducing the possibility for developers
to whitelist these senders and thus gain unfair advantage
over their competitors. Finally, it should be noted that spam
is occasionally sent to discussion lists – for instance when
a subscriber’s email account has been compromised. This
happened once during the running of the test and this email
was classifi ed as spam.

RESULTS
In previous reviews we have published both the overall false
positive (FP) rate and the false positive rate as a ratio of the
total VB mail stream – the latter number is of little practical
use, but has been included in the past for reference.
However, because of the modifi cations described above,
the mail corpora used are not those of a real company and
therefore we have decided to leave this FP ratio out of the
report; interested readers will still be able to compute the
ratio themselves.

BitDefender Security for Mail Servers 3.0.2
SC rate (total): 97.89%

SC rate (Project Honey Pot corpus): 98.90%

SC rate (VB spam corpus): 89.37%

FP rate: 0.707%

Two interesting papers presented at
VB2009 demonstrated that BitDefender
does more than simply use existing
technologies to fi ght spam: the developers
in the company’s Bucharest-based anti-
spam lab are working hard to fi nd new
ways to stay ahead of the spammers.
The product has won a VBSpam award
in each of the three previous anti-spam
tests and while this month the spam catch
rate is slightly lower than that of the previous test, it is still
suffi cient for the product – again, the Linux version – to win
a VBSpam Gold award.

(Note: In the previous test report it was stated that
BitDefender had 11 false positives. Careful investigation
of these showed that a mistake was made and one reported
false positive should not have been counted as such. This
did not affect the level of the award earned by the product.)

Fortinet FortiMail

SC rate (total): 98.47%

SC rate (Project Honey Pot corpus): 98.98%

SC rate (VB spam corpus): 94.12%

FP rate: 0.047%

FortiMail, a hardware appliance from
Canadian company Fortinet, won a
VBSpam Silver award in the two previous
tests and while not entirely unhappy with
that, its developers believed the product
was capable of doing better. For this test,
the product’s spam criteria were loosened
in an attempt to reduce the false positive
rate (which, so far, has prevented it from
winning a higher level award), while an
upgrade of the fi rmware was intended to help maintain a
high spam catch rate. The latter worked very well, but even
more impressive was the product’s low false positive rate:
out of well over 2,000 emails, only one newsletter was
missed. A VBSpam Platinum award is well deserved and
the developers’ faith in their product fully justifi ed.

Kaspersky Anti-Spam 3.0

SC rate (total): 97.52%

SC rate (Project Honey Pot corpus): 98.58%

SC rate (VB spam corpus): 88.65%

FP rate: 0.141%

In previous reports I have lauded Kaspersky’s anti-spam
solution for the minimal maintenance it requires: it is
installed on a Linux machine and works straight away. Of

N
ov

 2
00

9

VIRUS BULLETIN www.virusbtn.com

24 NOVEMBER 2009

course ‘works’ doesn’t necessarily mean
‘works well’, but it does in the case of
Kaspersky. Particularly impressive is the
product’s consistently low false positive
rate – only three emails were incorrectly
blocked during the test. This combined
with a good spam catch rate earns the
product yet another VBSpam Gold award.

McAfee Email Gateway
(formerly IronMail)

SC rate (total): 99.02%

SC rate (Project Honey Pot corpus): 99.85%

SC rate (VB spam corpus): 92.00%

FP rate: 0.707%

Like last time, McAfee’s Email Gateway
appliance (also sold under its former
name IronMail) was the only product
that scanned and, in cases of suspected
spam, blocked emails during the SMTP
transaction, with only the harder-to-
fi lter emails being scanned at a later
stage. This solution worked well: the
product once again had a very high
spam catch rate. The false positive rate
was signifi cantly lower than on the last occasion and all
but a few of these false positives were scanned at a later
stage; in a real scenario these emails would probably have
been stored in quarantine rather than being discarded
altogether. With still a few too many false positives for a
platinum award, the product won its second consecutive
VBSpam Gold award.

McAfee Email and Web Security Appliance

SC rate (total): 98.75%

SC rate (Project Honey Pot corpus): 99.28%

SC rate (VB spam corpus): 94.36%

FP rate: 0.189%

‘Never change a winning formula’, they
must have thought at McAfee and in a
system administrator’s ideal scenario the
appliance – the only product to win a
VBSpam Platinum award in the last test
– was run using exactly the same set-up.
This scenario worked well for the product
and combining a very low false positive
rate with a very high spam catch rate,
it won its second consecutive VBSpam
Platinum award.

M86 MailMarshal SMTP

SC rate (total): 99.62%

SC rate (Project Honey Pot corpus): 99.94%

SC rate (VB spam corpus): 96.92%

FP rate: 0.519%

The brand M86 Security has been around
in the world of computer security for
barely two months; before that the
company was known as Marshal8e6,
which in turn was the merger of Marshal
and 8e6. The company offers a number
of security solutions including its
MailMarshal SMTP spam fi lter.

This product, which comes with its
own MTA and was run on Windows Server 2003, uses a
multi-layered approach where an email has to pass several
tests before it is sent to the user’s inbox. Among these
tests are SpamBotCensor, which uses knowledge about the
engines used by various spam bots to detect spammers at
the SMTP level, and SpamCensor, which uses heuristics
to block spam based on the contents of the email. The
product’s user interface gives the administrator plenty of
opportunities to modify the rules for the various tests and
can easily be fi ne-tuned to meet the needs of a particular
organization.

Unfortunately, the SpamBotCensor could not be applied
during our test, but MailMarshal still had the highest spam
catch rate of all participating products. Combined with a
low false positive rate, it just missed out on a platinum-level
award; a VBSpam Gold award nevertheless marks an
excellent debut for MailMarshal.

MessageStream

SC rate (total): 99.49%

SC rate (Project Honey Pot corpus): 99.82%

SC rate (VB spam corpus): 96.64%

FP rate: 0.471%

One reason why organizations may want
to choose a hosted anti-spam solution is
the little maintenance it requires. That is
certainly the case with MessageStream,
the hosted solution provided by Giacom.
Without a lot of intervention from the
developers it achieved yet another very
high spam catch rate and missed out on
a platinum award by just a few emails;
it is the only product to have won four
VBSpam Gold awards in a row.

N
ov

 2
00

9

VIRUS BULLETIN www.virusbtn.com

25NOVEMBER 2009

Messaging Architects M+Guardian

SC rate (total): 98.75%

SC rate (Project Honey Pot corpus): 99.26%

SC rate (VB spam corpus): 94.47%

FP rate: 0.943%

It is always disappointing to see a
product win a lower-level award in a
test than in the previous one. In reality,
the M+Guardian appliance performed
better on this occasion than in the last
test – however, since the thresholds have
become stricter the product’s fourth
VBSpam award is a silver one. It will be
interesting to see whether the product
will be able to do better again next time
around.

Microsoft Forefront Protection 2010 for
Exchange Server

SC rate (total): 99.00%

SC rate (Project Honey Pot corpus): 99.46%

SC rate (VB spam corpus): 95.16%

FP rate: 0.471%

Few will have been awaiting this review
more eagerly than the developers at
Microsoft: their Forefront product won a
VBSpam Silver award in its fi rst test in
September. At the time the product was
still a release candidate, and in the weeks
following that test they believed some
issues had been solved – thus they were
eager to see if the changes had made an
improvement. They had: the product’s
false positive rate was reduced by almost four-fi fths
compared to the last test, while it maintained a high spam
catch rate. A VBSpam Gold award will be an extra reason
to celebrate the offi cial release of the product in the second
week of November.

Sanesecurity signatures for ClamAV

SC rate (total): 72.40%

SC rate (Project Honey Pot corpus): 73.24%

SC rate (VB spam corpus): 65.34%

FP rate: 0.33%

In previous reviews it has not been made clear enough
that while the Sanesecurity signatures work together with
ClamAV, they have little to do with that product (which is

mainly an anti-malware product). Perhaps unsurprisingly for
something that scans emails purely based on content, this
product sees a greater fl uctuation from day to day than other
products; in this case it means that some ‘bad days’ in the fi rst
week of the test caused the product’s fi nal spam catch rate to
be signifi cantly lower than during the previous test. Still, for
what is only a partial solution – which would be an effective
part of a multi-layered solution – a spam catch rate of well
over 70% is a rather good score, although a number of false
positives caused by incorrectly blacklisted URLs demonstrate
that the product isn’t entirely without fault either.

SPAMfi ghter Mail Gateway

SC rate (total): 97.22%

SC rate (Project Honey Pot corpus): 97.36%

SC rate (VB spam corpus): 96.10%

FP rate: 0.66%

SPAMfi ghter’s Mail Gateway debuted
in the previous VBSpam test, but failed
to win an award. The developers at the
Danish company believed this may have
been the result of the product being set up
in a manner that was less than ideal for
our test; they also believed their product
might have been disproportionately
disadvantaged by issues with the
network. While these issues were solved,
the product was set to fi lter less stringently to reduce the
number of false positives, while at the same time the linger
fi lter was turned on. This fi lter will hold on to emails that
aren’t immediately recognized as either ham or spam and
rescan them after a certain amount of time, by which time
the content might be recognized by the updated spam fi lter.
Of course, this may cause delays for legitimate email, but
the fi lter can be set to work only at certain times of day
(such as outside offi ce hours), when delays aren’t generally
noted; in this test it was turned on 24 hours a day.

The changes certainly had a very positive effect on the
product’s performance: the false positive rate was reduced
greatly and the spam catch rate was still rather good; the
product performed almost equally well on both spam
corpora, showing that its performance wasn’t just luck. A
VBSpam Gold award is well deserved.

SpamTitan

SC rate (total): 99.48%

SC rate (Project Honey Pot corpus): 99.97%

SC rate (VB spam corpus): 95.41%

FP rate: 0.377%

VIRUS BULLETIN www.virusbtn.com

26 NOVEMBER 2009

Spam fi lters are essential for any
organization, but for smaller companies
buying separate hardware for spam
fi ltering might not always be an option.
Running the fi lter on a virtual machine
could then be a solution and SpamTitan,
a company based on the Irish west coast,
offers such a solution. The product can
easily be installed under VMware – for
larger organizations, the same product is
available as an ISO image that contains a complete operating
system – and works almost immediately after installing. That
is not to say the spam rules cannot be customized to suit a
particular organization’s needs: a web interface lets the user
customize many rules of the blended approach the product
uses to fi ght spam. I was particularly charmed by the simple,
yet accurate explanations of the various anti-spam rules.

The fact that this approach worked well to block spam can be
seen from the spam catch rate – which was among the highest
in this test. At the same time, the product had a very low false
positive rate, missing out on a platinum award by just a single
email; a VBSpam Gold award is more than deserved.

Vircom modusGate
SC rate (total): 94.01%

SC rate (Project Honey Pot corpus): 94.37%

SC rate (VB spam corpus): 90.92%

FP rate: 3.772%

Vircom’s modusGate product has failed to win an award in
the last two VBSpam tests, but its developers are working
hard to fi x the issues that they believe are the cause of the
poor performance in our tests. Still, with a false positive
rate of more than three per cent and a spam catch rate
signifi cantly lower than that of most of its competitors, we
cannot but deny Vircom’s modusGate a VBSpam award on
this occasion.

Webroot E-Mail Security SaaS

SC rate (total): 99.31%

SC rate (Project Honey Pot corpus): 99.67%

SC rate (VB spam corpus): 96.31%

FP rate: 0.613%

Webroot only just missed out on a
VBSpam Gold award in the last round
of testing, winning its second VBSpam
Silver award instead. Making small
improvements is not a trivial task though,
especially if competitors do the same
thing and the thresholds thus become
stricter. However, the developers of this
hosted solution managed to improve their
product enough to see the number of false
positives reduced, while still having among the
highest spam catch rates and thus this time Webroot earns a
VBSpam Gold award.

Total spam Project Honey Pot spam VB corpus

True
negative

FP FP
rate

False
negative

 True
positive

SC rate False
negative

True
positive

SC rate False
negative

True
positive

SC rate

BitDefender 2,106 15 0.71% 4,172 193,549 97.89% 1,935 174,732 98.90% 2,237 18,817 89.37%

FortiMail 2,120 1 0.05% 3,033 194,688 98.47% 1,794 174,873 98.98% 1,239 19,815 94.12%

Kaspersky 2,118 3 0.14% 4,904 192,817 97.52% 2,515 174,152 98.58% 2,389 18,665 88.65%

McAfee Email Gateway 2,106 15 0.71% 1,941 195,780 99.02% 257 176,410 99.85% 1,684 19,370 92.00%

McAfee EWSA 2,117 4 0.19% 2,466 195,255 98.75% 1,278 175,389 99.28% 1,188 19,866 94.36%

MailMarshal 2,110 11 0.52% 752 196,969 99.62% 103 176,564 99.94% 649 20,405 96.92%

MessageStream 2,111 10 0.47% 1,017 196,704 99.49% 310 176,357 99.82% 707 20,347 96.64%

M+Guardian 2,101 20 0.94% 2,472 195,249 98.75% 1,307 175,360 99.26% 1,165 19,889 94.47%

MS Forefront 2,111 10 0.47% 1,975 195,746 99.00% 955 175,712 99.46% 1,020 20,034 95.16%

Sanesecurity 2,114 7 0.33% 54,567 143,154 72.40% 47,269 129,398 73.24% 7,298 13,756 65.34%

SPAMfi ghter 2,107 14 0.66% 5,488 192,233 97.22% 4,667 172,000 97.36% 821 20,233 96.10%

SpamTitan 2,113 8 0.38% 1,025 196,696 99.48% 59 176,608 99.97% 966 20,088 95.41%

Vircom modusGate 2,041 80 3.77% 11,851 185,870 94.01% 9,940 166,727 94.37% 1,911 19,143 90.92%

Webroot 2,108 13 0.61% 1,358 196,363 99.31% 581 176,086 99.67% 777 20,277 96.31%

VIRUS BULLETIN www.virusbtn.com

27NOVEMBER 2009

AWARDS
As in the previous test, the levels of the awards earned by
products are defi ned as follows:

• VBSpam Platinum for products with a total spam
catch rate twice as high and a false positive rate
twice as low as the average in the test.

• VBSpam Gold for products with a total spam catch
rate at least as high and a false positive rate at least
as low as the average in the test.

• VBSpam Silver for products whose total spam catch
rate and false positive rates are no more than 50%
worse than the average in the test.

To avoid the averages being skewed by one or more
malperforming products, the scores for any product with a
false positive rate of more than 10% and/or a spam catch rate
of less than 70% are removed from the computation of the
averages; this did not apply to any of the products this month.

This month’s benchmarks are then as follows:

• Platinum: SC 98.25%; FP 0.36%

• Gold: SC 95.60%; FP 0.71%

• Silver: SC 94.75%; FP 1.07%

The table shows the scores for all of the products on test.
The highlighted columns show the scores used for the

benchmark calculations. In the graph, SaneSecurity has
been left out: this is only a partial solution and, as such,
should not be compared directly with the other products.

CONCLUSION
The period between tests is used by developers to make
improvements to their products. At the same time, we
use this period to make improvements to the test set-up
and to review our methodology. With the catch rates and
(especially) the false positive rates of the various products
edging closer to each other than ever, we believe that the
way in which the product certifi cations are determined
could do with some improvements. These changes will be
announced in due course (well before the start of the next
test) at http://www.virusbtn.com/vbspam.

The next test is set to run throughout December and the
deadline for product submission will be 27 November 2009;
any developers interested in submitting a product should
email martijn.grooten@virusbtn.com. A number of new
products have already committed to their participation and
we are looking forward to an even bigger test.

December has traditionally been the month when spam
levels rise to unprecedented heights, so it will be interesting
to see which products are best at keeping their users’
inboxes clean during the holiday period.

BitDefender

FortiMail

Kaspersky

McAfee Email Gateway

McAfee EWSA

MailMarshal MessageStream

M+Guardian

MS Forefront

SPAMfighter

SpamTitan

Vircom modusGate

Webroot

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

0.00%0.50%1.00%1.50%2.00%2.50%3.00%3.50%4.00%

SC
 r

at
e

FP rate

VB spam test results November 2009

http://www.virusbtn.com/vbspam/
mailto:martijn.grooten@virusbtn.com

NOVEMBER 2009

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

28

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

John Graham-Cumming, UK

Shimon Gruper, Aladdin Knowledge Systems Ltd, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, Microsoft, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Costin Raiu, Kaspersky Lab, Russia

Péter Ször, Symantec, USA

Roger Thompson, AVG, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for 1 year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500
Corporate rates include a licence for intranet publication.

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:
Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England
Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153
Email: editorial@virusbtn.com Web: http://www.virusbtn.com/
No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.
This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.
VIRUS BULLETIN © 2009 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. /2009/$0.00+2.50. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any
form without the prior written permission of the publishers.

The 19th USENIX Security Symposium will take place 11–13
August 2010 in Washington, DC, USA. For more details see
http://usenix.org/.

VB2010 will take place 29 September to
1 October 2010 in Vancouver, Canada.
For details of sponsorship opportunities and
any other queries relating to VB2010, please
contact conference@virusbtn.com.

AVAR2009 will take place 4–6 November 2009 in Kyoto, Japan.
For more details see http://www.aavar.org/avar2009/.

A step-by-step masterclass in digital forensics and cybercrime
will be run by ICFE on 19 November 2009 in Kuala Lumpur,
Malaysia. The masterclass follows the launch of CSI Malaysia. See
http://www.icfe-cg.com/.

ACSAC 2009 will be held 7–11 December 2009 in Honolulu,
Hawaii. For details see http://www.acsac.org/.

The 26th Chaos Communication Congress (26C3) takes place
27–30 December 2009 in Berlin, Germany. The Congress offers
lectures and workshops on a multitude of topics and attracts a diverse
audience of hackers, scientists, artists and utopians from around the
world. For more information see http://events.ccc.de/congress/2009/.

Black Hat DC 2010 takes place 31 January to 3 February 2010 in
Washington, DC, USA. Online registration is now open. For details
see http://www.blackhat.com/.

RSA Conference 2010 will be held 1–5 March 2010 in San
Francisco, CA, USA. Registration is now open, with early bird
discounted rates until 5 December 2009. For details see
http://www.rsaconference.com/.

The 11th annual CanSecWest conference will be held 22–26
March 2010 in Vancouver, Canada. A call for papers is now open,
with a submission deadline of 30 November 2009. For more details
see http://cansecwest.com/.

The MIT Spam Conference 2010 is scheduled to take place 25–26
March 2010. A call for papers, venue announcements, and other
details will be announced in due course at http://projects.csail.mit.edu/
spamconf/.

Black Hat Europe 2010 takes place 12–15 April 2010 in
Barcelona, Spain. A call for papers will open in January. See
http://www.blackhat.com/.

Infosecurity Europe 2010 will take place 27–29 April 2010 in
London, UK. For more details see http://www.infosec.co.uk/.

The 19th EICAR conference will be held 10–11 May 2010 in
Paris, France with the theme ‘ICT security: quo vadis?’. A call for
papers has been issued, with submission deadlines of 20 December
2009 for peer-reviewed papers and 13 December for non-reviewed
papers. For more information see http://www.eicar.org/conference/.

NISC11 will be held 19–21 May 2010 in St Andrews, Scotland.
Interest in attending can be registered at http://nisc.org.uk/.

The 22nd Annual FIRST Conference on Computer Security
Incident Handling takes place 13–18 June 2010 in Miami,
FL, USA. The conference promotes worldwide coordination and
cooperation among Computer Security Incident Response Teams and
provides a forum for sharing goals, ideas and information on how to
improve global computer security. For more details see
http://conference.fi rst.org/.

CEAS 2010 – the 7th annual Collaboration, Electronic
messaging, Anti-Abuse and Spam Conference – will be held
13–14 July 2010 in Redmond, WA, USA. For details see
http://ceas.cc/.

Black Hat USA 2010 takes place 24–29 July 2010 in Las Vegas,
NV, USA. DEFCON 18 follows the Black Hat event, taking place
29 July to 1 August, also in Las Vegas. For more information see
http://www.blackhat.com/ and http://www.defcon.org/.

VANCOUVER
2010

http://www.aavar.org/avar2009/
http://www.icfe-cg.com/
http://www.acsac.org/
http://events.ccc.de/congress/2009/
http://www.blackhat.com/
http://www.rsaconference.com/
http://cansecwest.com/
http://projects.csail.mit.edu/spamconf/
http://www.blackhat.com/
http://www.infosec.co.uk/
http://www.eicar.org/conference/
http://conference.first.org/
http://ceas.cc/
http://www.blackhat.com/
http://www.defcon.org/
http://usenix.org/
mailto:conference@virusbtn.com
http://www.virusbtn.com/virusbulletin/subscriptions/index
http://www.virusbtn.com/
mailto:editorial@virusbtn.com
http://www.nisc.org.uk/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

