
NOVEMBER 2011

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

2 COMMENT

 Within the margin of error

3 NEWS

 Spammers link to yet-to-be-registered
 domains

 Chemical industry targeted

3 VIRUS PREVALENCE TABLE

4 CONFERENCE REPORT

 Viva Barcelona!

 MALWARE ANALYSES

9 Spitmo – SpyEye component for Symbian

13 Flibi: reloaded

 FEATURES

16 Investigating the abuse of search engines to
 promote illicit online pharmacies

19 The art of stealing banking information – form
 grabbing on fi re

24 END NOTES & NEWS

LIKE A JEWEL IN THE SUN
Helen Martin
reports on a week
in sunny Spain
at the 21st Virus
Bulletin International
Conference.
page 4

SPYEYE GOES MOBILE
Despite the Windows versions of Zeus and SpyEye
now sharing source code, Zitmo and Spitmo – the
mobile components of each – have nothing in
common at the code level. Spitmo was created from
scratch solely for the purpose of stealing mTANs.
Mikko Suominen has all the details.
page 9

SNATCH AND GRAB
Botnets such as Zeus, SpyEye and others use
the effective technique of form grabbing to steal
sensitive information from victims’ machines.
Adtiya Sood and his colleagues take a detailed look
at the form-grabbing technique.
page 19

2 NOVEMBER 2011

COMMENT

Editor: Helen Martin

Technical Editor: Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Web Developer: Paul Hettler

Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
Ian Whalley, IBM Research, USA
Richard Ford, Florida Institute of Technology, USA

WITHIN THE MARGIN OF
ERROR
According to some popular theories, history follows a
circular path, always returning to a previous state albeit
at a higher level of social development. Recently, I
came to the conclusion that anti-virus research follows
a similar path: not only did an experiment fl ash back
from the past, but the result turned out to be virtually
identical.

During the course of the 2001 Virus Bulletin conference
Dr Vesselin Bontchev summarized FRISK’s experiences
of the W97M/Groov.A macro virus. This otherwise
unremarkable macro virus had an interesting payload:
it uploaded IPCONFIG output data to the complex.is
(FRISK) FTP site. Using the server logs it was possible
for the researchers to trace back the infected users,
advise them of the infection, and ask them whether they
wished to receive further notifi cations. Only 3.15% of
them responded positively.

All of the above details were quickly forgotten, but
what was remembered by many (and entered into AV
industry folklore) was Bontchev’s famous summary:
‘97.3% of the human population are [not security
conscious people]’ – though he used a slightly different
and much shorter epithet. In fact, the details were
so poorly remembered by the majority that in later
citations a different number subsisted than in the original

publication (eagle-eyed readers will already have
observed this by adding the two numbers above).

This year’s Virus Bulletin conference featured a similarly
interesting presentation by Stefan Tanase. He described
the process of contacting the webmasters of infected
Romanian websites. The result was interesting: only 3%
of the webmasters responded. As was pointed out by a
member of the audience, Tanase had rediscovered the
Bontchev constant.

Now, if my evil twin were writing this comment, he
would conclude that all the efforts invested in user
education and security consciousness over the last ten
years have resulted in a 0.15% decline in awareness. And
this is in an even more security-oriented audience – since
webmasters ought to be more security-aware than the
average user falling victim to a macro virus. But since
my twin is not only evil but also fair, he would mention
that the difference is within the margin of error resulting
from fi nite sample size – so he would say that, in fact,
the situation is best described as exactly the same as it
was ten years ago.

Fortunately, it is not my evil twin writing, but me at
my most optimistic moment. I feel I must transmit
optimism, otherwise the readers of this magazine would
give up all their efforts and retreat to physics or games
software development. What gives us hope are Tanase’s
further fi ndings – namely that although only 3% of the
webmasters responded, actually 5% of the web pages
were cleaned. And I would even take into account the
additional 1% that were shut down, assuming the best.
Therefore, according to my optimistic calculation,
security consciousness has grown from 3.15% to 6% in
ten years. If we continue with the same effort, we will
reach the clear majority in the year 2165, when half of
the user population will care about security. I can hardly
wait to see that – though I won’t hold my breath.

But all sarcasm aside, we must continue relentlessly
with our efforts in user education. First, we need better
PR. If we are not accepted as educators, our message
will not be received. For me, the most worrying part of
both experiments was the deafening silence: the majority
of users did not even respond to the assistance being
offered by the anti-virus experts. I interpret this as an
indication that the general population does not accept
us as an authority when it comes to computer security
issues.

The anti-virus industry could not overstep the ancient
accusation that we write the viruses ourselves, but now it
is essential for us to convince the public that we are the
good guys. Without their support we can only lose the
battle over cybercrime.

‘Only 3% of the
webmasters
responded... Tanase
had rediscovered the
Bontchev constant.’
Gabor Szappanos
VirusBuster

3NOVEMBER 2011

VIRUS BULLETIN www.virusbtn.com

NEWS
SPAMMERS LINK TO YET-TO-BE
REGISTERED DOMAINS
Commtouch has reported an increase in spamvertized URLs
using domains that are yet to be registered at the time the
spam is sent – making it less likely for such messages to be
blocked by spam fi lters.

The use of domain blacklists and reputation services is
common among spam fi lters and spammers try to avoid
using domains with a bad reputations in their emails – they
may use URL shortening services, for instance, or use links
to compromised pages on a legitimate domain.

A less common trick is to use domains that are not yet
registered – spam fi lters usually do not compute reputation
for non-existent domains.

In such cases the domain is registered some time after the
emails have been sent. Because most spam fi lters do their
work at the moment the email is received, they will have
made their decision by then. However, many users do not
read their email until much later and by that time the links
are expected to be active.

While this trick is not new, spammers have been using it
extensively in recent weeks – another example of spammers
recycling tricks from the past.

CHEMICAL INDUSTRY TARGETED
A report from Symantec has detailed a recent targeted attack
on a number of large companies, many of which are active
in the chemical industry.

Of the 48 companies known to have been targeted in the
attack, 29 are active in the chemical industry.

The attack began in May and was initially targeted at human
rights-related NGOs and the motor industry. In the attack, a
small number of employees of the targeted company receive
an email which appears to be a meeting invitation from an
existing business contact. However, the email contains as
its attachment a variant of the PoisonIvy trojan backdoor
whose primary targets are domain administrator passwords;
using these passwords the attackers can penetrate the
network further and gain access to sensitive materials.

The researchers have managed to trace the attack to a
US-based VPN server owned by a Chinese man. While it
is unlikely that he uses this server for instant messaging as
he claims, it is not known whether he is the sole attacker or
acting on behalf of a larger group.

These attacks are the latest in what has become a worrying
trend for governments and corporations alike. On the eve of
the London Conference on Cyberspace, the UK government
said it has seen an ‘exponential rise’ in cyber attacks.

Prevalence Table – September 2011[1]

Malware Type %

Autorun Worm 8.33%

Encrypted/Obfuscated Misc 6.25%

Heuristic/generic Virus/worm 5.16%

LNK Exploit 4.49%

Sality Virus 4.48%

Adware-misc Adware 4.17%

Confi cker/Downadup Worm 3.73%

Zbot Trojan 3.49%

Agent Trojan 3.19%

Iframe Exploit 2.98%

Heuristic/generic Misc 2.95%

Kryptik Trojan 2.50%

Heuristic/generic Trojan 2.48%

Downloader-misc Trojan 2.38%

Virut Virus 2.19%

VB Worm 2.19%

AutoIt Trojan 1.97%

Injector Trojan 1.94%

FakeAlert/Renos Rogue 1.89%

Crack/Keygen PU 1.86%

Cycbot Trojan 1.71%

OnlineGames Trojan 1.68%

Virtumonde/Vundo Trojan 1.59%

Dorkbot Worm 1.57%

Hupigon Trojan 1.26%

Dropper-misc Trojan 1.17%

Alureon Trojan 1.17%

Slugin Virus 1.10%

Crypt Trojan 1.05%

Ircbot Worm 1.04%

Bifrose/Pakes Trojan 1.02%

Delf Trojan 0.97%

Others [2] 16.05%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://www.virusbtn.com/Prevalence

VIRUS BULLETIN www.virusbtn.com

4 NOVEMBER 2011

VIVA BARCELONA!
Helen Martin

The colourful and
fl amboyant city of Barcelona
has been world famous for
its art, architecture and style
since the late 19th century,
and last month the Catalan
capital played host to more
than 360 anti-malware

experts as the 21st Virus Bulletin International Conference
landed in sunny Spain.

And very sunny it was too – by happy coincidence the
conference was held during a week in which most of
northern Europe experienced a period of unseasonably
warm weather, and we were treated to soaring temperatures,
glorious sunshine and balmy evenings.

Standing at 107m tall, the Hesperia
Tower – the VB2011 conference venue
– is one of Barcelona’s tallest buildings.
Designed by renowned architect
Richard Rogers (whose other creations
include the Pompidou Centre in Paris
and the Millennium Dome in London),
the Hesperia Tower is also one of the
city’s most stylish modern buildings.
And its stylishness does not stop at the
external architecture. In the hotel lobby
funky low sofas, swivel chairs and brightly coloured chunky
rugs contrast with the highly polished black marble fl oor to
create an area that feels arty and elegant while also relaxed
and inviting.

However, some aspects of the highly styled venue simply
served to perplex: the über sleek bathrooms were adorned
with so many mirrors that fi nding the exit became like
navigating one’s way around a labyrinth, while the
hi-tech elevators caused excitement and consternation in
equal measure – even some of the brightest minds of the
anti-malware industry were stumped when faced with
calling the elevator using a set of touch-screen controls.

A purpose-built
auditorium served
as the main
conference room
and home to the
technical stream.
While the tiered
seating provided
the audience with

uninterrupted views of presenters and projector screens, the
layout presented a challenge for the microphone runners
who had to negotiate a long fl ight of steps to get from the
back of the room to the front. Thankfully there were no
casualties, but the thought of rolling down the stairs head
over heels and landing in a heap at the foot of the stage
haunted VB team members all week. Meanwhile, one fl oor
above, a more traditional style ballroom was home to the
corporate stream, offering acres of space and far less of an
obstacle course for weary crew members.

EL INICIO
The conference kicked off in the auditorium on
Wednesday morning with an engaging keynote address
from F-Secure’s Mikko Hyppönen and Bob Burls from
the UK’s Police Central e-Crime Unit. Mikko and Bob
described details of a multi-jurisdictional investigation
against the m00p malware-writing group. The pair
revealed the enormous amount of work that went into
the several-year-long investigation as well as some of the
clues that ultimately led to the arrest and conviction of two
of the members of the group (including one member who
embedded his social security number in his malcode, as
well as having had his unique online nickname tattooed on
his arm). The fascinating presentation gave delegates an
insight into how much work goes into such investigations
as well as some of the obstacles faced by investigators of
cybercrime.

Sticking with the theme of online crime, Dmitry Bestuzhev
took a look at the cybercrime ecosystem and the way
it works – highlighting cybercriminals’ moves, their
organization and what sort of people they are. He also
revealed the limitations of the legal systems used against
cybercriminals in several countries – the lack of any real
threat of punishment being one of the reasons why this type
of crime has become rife in certain countries. He revealed,
for example, that despite a new bill having been pending
in congress since 2005, the current law used against
cybercriminals in Brazil is 70 years old.

Dmitry’s colleague Fabio Assolini followed with a
presentation focusing on why Brazil has achieved
worldwide notoriety as a place where cybercrime, and in
particular online banking crimes, fl ourish. He described
examples of Brazilian cybercriminals living the life of Riley
– buying top-of-the-range cars and staying in luxury hotels.
Interestingly, he revealed that rather than looking further
afi eld, many banking trojans specifi cally target Brazilian
IP addresses – with $900 million having been stolen from
Brazilian banks in 2010.

Meanwhile, in the technical stream Rachit Mathur took
a look at the future of stealth malware, and Pierre-Marc

CONFERENCE REPORT

VIRUS BULLETIN www.virusbtn.com

5NOVEMBER 2011

VB2011 saw a special guest appearance from Kermit the frog – or was it his beer-loving Spanish cousin Gustavo?

Bureau presented an interesting look at botnets, suggesting
that the same group is behind some of the most prolifi c bots
seen over the past four years.

After a break for lunch the corporate stream saw
presentations detailing malicious attacks on Facebook (in
which an audience member stole the show by answering
the question ‘What’s your advice for people wanting to
avoid security problems on Facebook?’ with the simple
advice ‘Don’t log in!’), anti-malware product testing and

its associated frustrations, and how much information users
give away on social networks.

Meanwhile, in the technical stream Jeff Edwards explored
Chinese DDoS bots, revealing that a large amount of
code is re-used amongst them. Jeff described a ‘typical’
Chinese DDoS bot and touched on some of the targets of
these attacks which have included Chinese manufacturers
of ice cream and custard-making equipment as well as
prominent international fi nancial and investment companies.

VIRUS BULLETIN www.virusbtn.com

6 NOVEMBER 2011

After a break for tea, Onur Komili took to the podium
in the technical stream to analyse the behaviour of the
malware distribution networks that poison search results
specifi cally to deliver users to web pages that install
fake anti-virus software. Onur explained some of the
methodologies used by those behind rogue security
software and described how Sophos has built tools to
help look for patterns that identify different distribution
networks.

Next, Igor Muttik looked at the use of data mining in the
processing of malware samples. He began by demonstrating
the power of data mining in distinguishing between males
and females – based on buttock circumference. Having
successfully grabbed the audience’s attention (thankfully
not their buttocks), he went on to explain that some 250
parameters exist within the PE header of executable fi les,
from which information can be gathered and differences can
be discerned between malicious and non-malicious fi les.
Although the data-mining method is not robust enough to be
used as a sole method of detection, Igor suggested that the
hit rate is good enough to be used to help prioritize malware
in the sample submission queue.

MUCHA CERVEZA

As usual, the opening day of the conference ended with a
drinks reception. Thanks to the glorious weather, delegates
were able to spill out onto the hotel’s outdoor terrace and,
with the melodious tones of a Spanish guitar duo drifting
out through the doors, it was easy to imagine that we were
enjoying a warm summer’s evening rather than hurtling
towards the end of the year in the fi rst week of October.

A note must be made at this point about
the accessory of choice at this year’s
event: the Avast! beer mug. These were
distributed from the Avast! exhibition
booth and could be fi lled (and re-fi lled)
with beer free of charge. Delegates
were spotted wandering around the
conference with their mugs clutched to
their chests – reluctant to let them out of
their sight lest they lose their precious
‘bottomless’ receptacles. (Regrettably,
it appears that the mugs’ beer-fi lling/

refi lling qualities do not extend beyond the VB conference
– the VB team has checked.)

Avast! also sponsored the beer served at the event’s drink
receptions and gala dinner – and judging by the popularity
of this act of generosity (marketing), one cannot but hope
that the beer bill didn’t bankrupt the company’s marketing
director at the end of the three days!

DIAS EL NÚMERO DOS
With so much free-fl owing beer, Wednesday’s festivities
went on perhaps a little later than usual and delegates were
noticeably thin on the ground at breakfast the next morning.
Thankfully, the promise of an excellent set of presentations
was enough to lure sleepy heads away from their pillows,
and after a couple of servings of coffee audience numbers
returned to full strength.

Axelle Apvrille kicked off in the technical stream with
a popular talk on how to replicate mobile malware in a
secure environment with a fake GSM network built using
OpenBTS.

Andrea Lelli presented the fi rst of the last-minute
presentations in the technical stream with an overview of
reversing the Xpaj virus – revealing that the authors of the
click fraud polymorphic infector earned $46,000 in a year.

Beer all round. Meanwhile (sick of the sight of beer?),
Avast!’s marketing director Milos Korenko raises a glass of

wine.

VIRUS BULLETIN www.virusbtn.com

7NOVEMBER 2011

Other last-minute presenters included Eugene Rodionov,
who presented an overview of the evolution of rootkit
installation; Stefan Tanase, who shared his experience of
attempting to clean up 100 infected websites in the least
amount of time possible (see p.2); and Vicente Diaz who
detailed a recently discovered Twitter fraud campaign.

Meanwhile, in the corporate stream, Rainer Link and David
Sancho shared their experience of sinkholing botnets – a
method that aims to redirect the traffi c intended for the
malicious server to an analysis server – and revealed some
of the problems they have encountered using the technique.

Also in the corporate stream, Martin Lee talked about
mapping targeted attacks, Brett Cove described the
oft-ignored snowshoe spam and Methusela Ferrer delivered
the message that Mac OS X and iOS users are very much
the target of cyber attacks right now, and that running a Mac
anti-malware solution is essential.

Thursday morning also saw VB’s fi rst ‘stealth presenter’.
Denis Maslennikov and Tim Armstrong had been scheduled
to present a paper together on Android malware, but due
to an unfortunate clerical error, Tim was unable to attend
the conference at the last minute. The organizers hastily
arranged for ‘virtual Tim’ to grace the stage, and thanks to
the wonders of Skype the pair were able to co-present from
separate continents.

The day ended with a presentation by platinum sponsor
comScore on its digital market research services, while in
the auditorium a panel of experts discussed the sharing of
information and collaboration (or lack thereof) within the
anti-malware industry.

LA FIESTA
Of course, no VB conference would be complete without
the glitz and glamour of the traditional gala dinner evening

– and this year we were
treated to some truly
spectacular entertainment
to liven up the breaks
between courses.

As soon as everyone
was seated, Brazilian
percussion group
Batek burst into the
room beating out their
infectious rhythms. The
group raised the roof
with their high-energy
routines (and probably
deafened a few diners in
the process).

Later in the evening we reverted to Spanish rhythms with
a stunning performance by the Evna Barcelona fl amenco
dancers and musicians. The dancers’ speed, agility and
artistry was awe inspiring and their expressive performance
made for a suitably colourful and upbeat fi nish to the
offi cial part of the evening. (Of course, thanks to Avast!, the
beer continued to fl ow long after the end of the dinner.)

EL FINAL
Early risers on Friday morning were treated to Gunter
Ollmann discussing various reputation systems and their
strengths and weaknesses, followed by Denis Maslennikov
who took to the stage again (this time without his ‘virtual’
colleague) to explore the problem of cell phone money
laundering in Russia. Meanwhile, the technical stream saw
Aditya Sood detailing browser exploit packs and Zheng
Zhang analysing fake anti-virus packers.

After a quick caffeine boost it was show time in the corporate
stream. Maybe one year Terry Zink and David Perry will
combine their talents and put on a double act, but for now
the two magicians in the pack remain solo artists. Terry
began his presentation on practical cybersecurity with a trick
involving session chairman Per Hellqvist. Per was asked to
splay his hand on a table then choose one of two identical
bags, the contents of which would be emptied onto his
splayed hand. Per made his choice and a small piece of paper
fl uttered out onto his hand – Terry then upturned the second
bag and, to the audience’s delight, a large rock came crashing
to the (now empty) table. Terry then proceeded to describe

The Evna Barcelona dancers bring the dinner to a close
with a true Spanish fl avour.

The deafening sounds of Batek.

VIRUS BULLETIN www.virusbtn.com

8 NOVEMBER 2011

how the human brain works when it learns and retains new
information, and how successful teaching techniques can be
applied to help teach people about cybersecurity. Not to be
out-magicked, David Perry managed to slot two tricks into
his presentation, including producing a six-foot drinking
straw seemingly from thin air and a mind-boggling box trick.

After lunch, Holly Stewart gave an overview of the top
exploits of 2011, revealing that the top OS vulnerability
seen by Microsoft this year has been CplLnk, the Windows
Shell shortcut vulnerability used by Stuxnet as a form of
propagation. She also revealed that as far as documents
are concerned, exploits hidden in Adobe PDFs represented
96% of all document-related exploits affecting systems
at the start of 2011, while exploits in Offi ce documents
represented just 4% of exploits.

Maksym Schipka concluded proceedings in the corporate
stream with a look to the future. He predicted that the security
industry will move away from protecting endpoint devices
to concentrate on protecting the backend and its associated
(cloud) services, as traditional endpoints are replaced by thin
clients that purely access remote applications and data.

Drawing the conference to a close in a combined fi nal
session a panel of experts shared their opinions on and
experiences with tackling botnets. They asked who is
responsible for fi xing the botnet problem – the owner of the
computer which became a bot, the owners of the infection
vectors (e.g. websites, producers of vulnerable applications
which get exploited), or the ISPs which can control their
end points’ access to the Internet? The topic is a complex
one involving lots of legal and technical issues and, as with
many of these discussion sessions, more questions were
raised than answered.

LOS INDESEABLES
It was often the case in years gone by that a new virus
or variant would be released during the VB conference
– possibly in the hope that the industry’s top experts would
be otherwise engaged giving or listening to presentations
and sharing tips in a hotel bar, thus allowing the malware to
stay under the radar for as long as possible.

Although this hasn’t been the case for a couple of years,
this year’s conference did attract some unwanted attention.
Within the last couple of years it has become the norm
to see delegates sitting in sessions with their laptops
or mobile devices, busily tweeting their thoughts and
comments on the papers or interesting facts gleaned from
the presenters. This year, however, a rogue tweet appeared
using the ‘#vb2011’ hashtag and promising ‘news from
the VB conference’. BitDefender researchers determined
that the shortened URL in the post actually downloaded a
fi le named VB2011.exe which, once executed, injected a
Windows process and downloaded an installer, resulting in
a slew of adware, gameware and adult content opened in
a web browser. The incident was a good illustration of the
fact that even links that seem related to a trusted security
event may not be all they seem.

MUCHAS GRACIAS
There is never enough
space in these reports to
mention more than a small
selection of the speakers
and presentations at the
conference, and I would
like to extend my warmest
thanks to all of the
VB2011 speakers for their
contributions, as well as to
the sponsors of the event:

AVAST Software, comScore, ESET, Ikarus Security Software,
Qihoo 360, Total Defense, ArcaBit, GFI Software, OPSWAT
and TrustPort. My thanks also go to all of the on-site crew for
working so hard to ensure the event ran smoothly.

Thanks to a number of delegates opting to forego their
printed copies of the VB2011 conference proceedings a
donation of £260 has been made to the WWF. A similar
opt-out scheme will be run again next year.

HASTA LA VISTA!
Next year the conference lands in Dallas, TX, USA with the
event taking place 26–28 September 2012 at the Fairmont
Dallas. And we will be returning to Europe for VB2013
which will be held 2–4 October 2013 in Berlin, Germany. I
very much look forward to welcoming you all to both events.

Photographs courtesy of: John Alexander, Pavel Baudis, Filip
Chytry, Jeannette Jarvis, Andreas Marx, Michael Neitzel, Morton
Swimmer and Eddy Willems. More photographs can be viewed
at http://www.virusbtn.com/conference/vb2011/photos and slides
from the presentations are available at http://www.virusbtn.com/
conference/vb2011/slides/.

The hard working VB crew.

The VB2011 speakers.

http://www.virusbtn.com/conference/vb2011/photos
http://www.virusbtn.com/conference/vb2011/slides
http://www.virusbtn.com/conference/vb2011/slides

VIRUS BULLETIN www.virusbtn.com

9NOVEMBER 2011

SPITMO – SPYEYE COMPONENT
FOR SYMBIAN
Mikko Suominen
F-Secure, Finland

In late 2010 the fi rst mobile trojan that intercepted
mobile transaction authentication numbers (mTANs) was
discovered. That trojan, Zitmo (Zeus In The MObile),
was joined at the hip with Zeus to defeat two-factor
authentication of online banking [1, 2]. Zeus received
competition from [3] and was then merged with the SpyEye
trojan [4], so it did not come as a great surprise when
in March 2011 Spitmo arrived. Spitmo is the Symbian
component of SpyEye, created for the same purpose as
Zitmo was for Zeus. This article presents the technical
details of Spitmo and offers an insight into reconstructing
its high-level language constructs, giving a new view to
reverse engineering a Symbian trojan.

BACKGROUND
To strengthen the security of their online banking systems
many banks have introduced two-factor authentication using
a mobile phone. When a customer carries out a transaction
using online banking, an SMS containing an mTAN is
sent to the customer’s mobile phone. The transaction
cannot be completed until the mTAN is entered into the
online-banking system.

As mentioned in the introduction, the fi rst malware family
to attack mTANs was Zitmo, the mobile counterpart for
the Windows-based Zeus trojans. SpyEye emerged fi rst
as a competitor to the Zeus toolkit, and later the Zeus
source code was bought by the SpyEye author and the two
families were merged. In March 2011, a mobile phone
component to accompany the Windows-based SpyEye
trojan was discovered. The phone component of the trojan
targeted the Symbian operating system and was named
Trojan:SymbOS/Spitmo.A (SPyeye In The MObile).

Even though the Windows versions of Zeus and SpyEye
now share source code [4], Zitmo and Spitmo have nothing
in common at the code level. Zitmo is based on commercial
spyware [1], but Spitmo has been created from scratch
solely for the purpose of stealing mTANs.

IMPLEMENTATION OF THE ATTACK
In the Spitmo.A attack, SpyEye injected banking web pages
with fi elds requesting the victim’s IMEI (International
Mobile Equipment Identity) and mobile phone number. The
injected dialogue also informed the user that ‘a certifi cate’

(i.e. Spitmo) would be generated and that the process could
take up to three days. This delay was due to the way in
which the trojan was digitally signed. Since Symbian S60
third edition, all Symbian applications must be digitally
signed in order for the phone to install them. Spitmo was
signed with a developer certifi cate, which allows software
developers to sign their Symbian installers themselves
without uploading them to the Symbian Signed service.
However, applications signed with a developer certifi cate
can only be installed on phones whose IMEI is listed in
the developer certifi cate itself. It was for this reason that
the IMEI was requested by the Windows component of
SpyEye. As the attackers received IMEIs from new victims,
they requested new developer certifi cates that included the
new IMEIs. The certifi cate was probably acquired through
the OPDA website (http://cer.opda.cn at the time of the
attack), which is an unoffi cial source for Symbian developer
certifi cates. The delay in receiving the new certifi cates
explains the message stating the three-day delay.

Spitmo was delivered to victims in an installer that was
named so that it would look like a certifi cate. The trojan was
in a package named ‘Sms’ and had a single malicious binary
(Sms.exe).

The trojan is confi gured by settings.dat, which among other
things defi nes where the stolen data is uploaded and which
SMS messages are stolen. It also contains a fi le named fi rst.
dat, which is used to check if this is the fi rst time the trojan has
been executed; a resource fi le ([E13D4ECD].rsc) to launch
the trojan every time the phone is started; and an embedded
package called ‘SmsControl’. The only thing SmsControl
does is display a message showing ‘the serial number of
the security certifi cate’, thus completing the illusion that a
certifi cate really has been received from the bank. The fi le
name ‘SmsControl.exe’ is one similarity between Spitmo and
Zitmo – the main executable of a variant of Zitmo discovered
in February 2011 used the same name.

REVERSE ENGINEERING SPITMO’S
CLASSES
Symbian C++ is heavily object-oriented and thus to gain a
thorough understanding of Spitmo we need to look at what
classes it contains and understand their structure – namely
their member variables and functions.

The interception and theft of mTANs directly involves four
classes:

• CSms

• CSettings

• CDataQueue

• CHttpPost

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

10 NOVEMBER 2011

The interception of mTANs is performed in the class called
CSms. This class inherits and implements the Symbian
mixin class MMsvSessionObserver. MMsvSessionObserver
‘Provides the interface for notifi cation of events from a
Message Server session’ [6]. In other words, by inheriting
and implementing the MMsvSessionObserver class, a
Symbian application can monitor all events related to
messaging (SMS, MMS, email).

The member variables of a class can be deduced when offsets
into the object are loaded or stored to registers and from their
subsequent use. API function parameters and return values
are especially informative as their types can be checked
from the SDK documentation. For example, Figure 1 shows
a piece of code which is part of the constructor for CSms.
We see that the return value of CMsvSession::OpenAsyncL
is stored to offset 0x4 of CSms as its fi rst member variable.
From the SDK documentation we can see that the function
returns a pointer to a CMsvSession [5], therefore the fi rst
member variable of CSms is a pointer to a CMSvSession
object. The parameter of the function is also one way
to confi rm that CSms inherits MMsvSessionObserver.
CSms must be a subclass of MMsvSessionObserver as
OpenAsyncL requires an MMsvSessionObserver object as
parameter [5]. By continuing this process and by combining
the information with the reverse engineering of different
member functions, most member variables for Spitmo’s
classes can be resolved.

The member functions for Spitmo’s classes can be found
from its class information. Figure 2 shows the class
information for CSms. An offset that references __si_class_
type_info or __vmi_class_type_info marks the beginning
of the class information. The information block begins with
a table of pointers to the member functions of that class
(vtable).

As can be seen from Figure 2, CSms has just a single member
function, which therefore must be HandleSessionEventL() as
it is the only member function of MMsvSessionObserver and

must be implemented for the class
to function [6]. With the member
variables and function now solved,
the header fi le for CSms can be
reconstructed (the variable names
are, of course, not the original ones).

Listing 1 shows the member
variables and member function
of Spitmo’s CSms class. Of
the member variables, all but
iError and iErrorCounter can be
deduced from the constructor and
different API calls in
CSms::HandleSessionEventL().

Class CSms : public MMsvSessionObserver

{

public:

void HandleSessionEventL(TMsvSessionEvent, TAny*,
TAny*, TAny*) {};

private:

 CMsvSession* iMsvSession;

 CClientMtmRegistry* iMtmRegistry;

 CBaseMtm* iBaseMtm;

 CMsvEntry* iMsvEntry;

 TInt iError;

 TInt iErrorCounter;

 CSettings* iSettings;

 CLogFile* iLogFile;

 CDataQueue* iDataQueue;

 CHttpPost* iHttpPost;

};

Listing 1: An approximation of the original header fi le for
Spitmo’s CSms class.

The class information can also be used to locate the
constructor for that class. The fi rst four bytes of an object will
hold the address of the vtable for that class. For that reason
the constructor will have a reference to the vtable as it stores
it to the objects of that class. The function that references
the vtable and stores a pointer to it to the start of a freshly
allocated heap block is the second-stage constructor of the
class. The second-stage constructor is called by the fi rst-stage
constructor, which performs the heap allocation.

These steps were repeated for Spitmo’s classes to reveal
what exactly it steals and how it performs the theft.

INTERCEPTION OF MTANS
From the reconstructed header fi le it is already clear that
CSms deals only with messages and uses objects of other
user code classes to access settings and perform an HTTP

Figure 1: An example of a member variable being stored to a CSms object.

Figure 2: Class information for CSms (vtable offset and member function have been
renamed manually).

VIRUS BULLETIN www.virusbtn.com

11NOVEMBER 2011

post. Next, the only member function of the class will be
analysed to reveal the details of the mTAN theft.

MMsvSessionObserver::HandleSessionEventL() is called by
the operating system when a messaging event has happened
so that the class that implements MMsvSessionObserver can
handle the event. CSms::HandleSessionEventL() receives
the following as parameters [6]:

• TMsvSessionEvent, the type of event

• CMsvEntrySelection, an array of IDs of the affected
messages

• TMsvId, the ID of the parent of the message (the folder
of the message).

Spitmo is interested in three different kinds of messaging
events as it compares the TMsvSessionEvent to three
different values: EMsvEntriesCreated (numerical value
0), EMsvCloseSession (7), and EMsvServerReady (8). Of
these, only EMsvEntriesCreated is related to individual
messages, the other two being status notifi cations from the
messaging server. When Spitmo receives an event notifying
it of a new messaging entry, HandleSessionEventL() will
call another subroutine to further process the message.
TMsvId and CMsvEntrySelection are passed to the
subroutine as parameters. TMsvId will be compared
to KMsvGlobalInBoxIndexEntryId (numerical value
0x1002), and the message is further processed only if the
message is in the inbox – meaning that Spitmo is only
interested in incoming messages. The other parameter,
CMsvEntrySelection, contains an array of message entry IDs.
Spitmo will iterate through this array and from each message
identifi ed as an SMS message, extract the message body
(with CBaseMtm::Body()) and the phone number from which
the message was sent (using CSmsPDU::ToFromAddress()).
The decision on whether or not to steal a particular message
is made by a member function of CSettings.

Member functions are called with a BLX R3 instruction
and the type of object pointed to by R0 defi nes what class
the member function belongs to. The type of object is
known after fi guring out the member variables of CSms
and their offsets within the CSms object. Listing 2 shows
the sequence of instructions used for member function calls
in Spitmo. An offset into the vtable for that class is clearly
visible so fi nding the correct function from the vtable is
trivial. Additional dereferencing instructions are among the
code when the member function in question belongs to an
object that is a member of some other object.

The function (at address 0xF058) receives the phone
number from which the SMS came and the message body as
parameters. The function will return 1 if the value of tag P5
from the settings.dat fi le is found in the message body. (The
content of settings.dat will be covered in more detail later.)

Interestingly, the phone number is not used by the target
comparison function in any way. Is this an indication that
the attackers fi rst planned to identify the mTAN messages
based on phone number and not message content? And is
this why the parameter still remained in the source code
when Spitmo was compiled?

UPLOADING THE STOLEN DATA

If the message is identifi ed as an mTAN, the message body
is stored in an instance of CDataQueue. CDataQueue is a
simple container object that holds the stolen messages in an
array together with a timestamp of when they were stored
to the queue. As its member functions CDataQueue offers
an interface to add, remove and retrieve items or determine
the number of items in the queue. Messages identifi ed as
containing mTANs are then deleted by Spitmo to hide the
fact that a banking transaction is being carried out without
the victim’s knowledge. After stealing and deleting the
message Spitmo calls a member function of CHttpPost,
which will form a multipart message together with the
victim’s IMEI and phone number, the stolen message,
and the time when the http data is formed for all items in
the CDataQueue object. The multipart message is then
promptly posted to a remote server.

The URL to which the data is uploaded is defi ned in tag
P3 of settings.dat. Uploading the stolen data is not the only
HTTP connection the trojan makes, as at regular intervals
it will contact the same URL and send the IMEI, phone
number, operating system version, phone model and time on
the phone as URL parameters. The fi rst connection is made
shortly after infection, but can be changed with tag P13 in
the settings.dat fi le. The connection is then repeated with
intervals defi ned in tag P4 of settings.dat.

SETTINGS FILE
Settings.dat is the confi guration fi le for the trojan and is
in XML format, where the names of the tags can range
from P0 to P15. The confi guration fi le is parsed by
CSettingsLoader and an instance of CSettings class will
store the values as its member variables.

LDR R3, [R11,#pointer_to_an_object]

MOV R2, #0xXX ; offset into the vtable of the object

LDR R3, [R3]

ADD R3, R2, R3

LDR R3, [R3]

LDR R0, [R11,#pointer_to_an_object]

BLX R3 ; call member function of the object

Listing 2: Resolving member function calls.

VIRUS BULLETIN www.virusbtn.com

12 NOVEMBER 2011

Trojan:SymbOs/Spitmo.A has fi ve different values in its
settings fi le, with tags ranging from P3 to P7. Figure 3
shows the content of the settings fi le that was included in the
installer of Spitmo.A. The remaining values are not required
for the trojan to work and many of them are assigned default
values by the constructor of CSettings if the tags are not
found in settings.dat. Table 1 shows the purposes of all tags
found in Spitmo.A’s confi guration fi le and several additional
ones that were reverse engineered during analysis.

Figure 3: The settings fi le for Trojan:SymbOS/Spitmo.A.

CONCLUSION
The method of social engineering (pretending to be a
certifi cate) and fi le names used by Spitmo suggest that
its authors are at least superfi cially familiar with Zitmo.
However, its implementation is completely different and
it uses a simple method offered by the Symbian API to
monitor new incoming SMS messages. As the target for the
theft is defi ned through a confi guration fi le, the same trojan
could be used to attack any bank whose mTAN messages
have some constant part that can be used to identify them.
The use of HTTP traffi c instead of sending SMS messages
to deliver the mTANs to the attacker makes the trojan
appear less suspicious as, although not extremely rare
in legitimate Symbian applications, SMS sending is still
considerably rarer than making HTTP connections.

Spitmo’s code – like Symbian C++ in general – is
object-oriented and gaining a full understanding of the
trojan requires the ability to reverse engineer the content
and relationships of its classes. As shown, by leveraging the
class information in the binary it is possible to reconstruct
the content of the malicious classes to a high degree using
static analysis with IDA Pro.

REFERENCES
[1] http://www.virusbtn.com/virusbulletin/

archive/2011/03/vb201103-Zitmo.

[2] http://www.virusbtn.com/virusbulletin/
archive/2011/04/vb201104-Zitmo.

[3] http://krebsonsecurity.com/2010/04/spyeye-vs-
zeus-rivalry/.

[4] http://krebsonsecurity.com/2010/10/spyeye-v-zeus-
rivalry-ends-in-quiet-merger/.

[5] http://library.developer.nokia.com/topic/S60_
5th_Edition_Cpp_Developers_Library/GUID-
35228542-8C95-4849-A73F-2B4F082F0C44/sdk/
doc_source/reference/reference-cpp/Message_
Server_and_Store/CMsvSessionClass.html.

[6] http://library.developer.nokia.com/index.jsp?
topic=/S60_5th_Edition_Cpp_Developers_
Library/GUID-35228542-8C95-4849-A73F-
2B4F082F0C44/sdk/doc_source/reference/
reference-cpp/Message_Server_and_Store/
MMsvSessionObserverClass.html.

Tag Purpose
Default
value

P0 1

P1
If set to 0 the trojan will be disabled as it
exits after creating the CSettings object
and checking this value.

1

P2

If set to 1 logging will be enabled.
The content of stolen messages will be
written to c:\data\sms.log, together with a
time stamp.

0

P3 URL to which stolen data will be sent.

P4

Interval in minutes between repeating
contact with the remote server. This
does not defi ne how often stolen SMS
messages are relayed to the attacker.

60

P5
mTAN identifi cation string. If this is
found in an SMS, the message content is
stolen and the SMS is deleted.

P6

URL from which an installer can be
downloaded. The name of the class
handling the download (CHttpUpdate)
suggests the installer will be a new
version of Spitmo and not additional
malware.

P7
Path to which the downloaded installer is
saved on the phone.

P8 5

P9 2

P10
Delay in milliseconds between retries
if CSms::HandleSessionEventL()
encounters errors.

500,000

P11
Maximum number of retries in CSms::
HandleSessionEventL() before moving
on to the next message.

9

P12 15

P13
Delay in seconds before making fi rst
contact with server after infection.

10

P14 3

P15 3

Table 1: Defi nitions for different XML tags in settings.dat.

http://www.virusbtn.com/virusbulletin/archive/2011/03/vb201103-Zitmo
http://www.virusbtn.com/virusbulletin/archive/2011/04/vb201104-Zitmo
http://krebsonsecurity.com/2010/04/spyeye-vs-zeus-rivalry/
http://krebsonsecurity.com/2010/10/spyeye-v-zeus-rivalry-ends-in-quiet-merger/
http://library.developer.nokia.com/topic/S60_5th_Edition_Cpp_Developers_Library/GUID-35228542-8C95-4849-A73F-2B4F082F0C44/sdk/doc_source/reference/reference-cpp/Message_Server_and_Store/CMsvSessionClass.html
http://library.developer.nokia.com/index.jsp?topic=/S60_5th_Edition_Cpp_Developers_Library/GUID-35228542-8C95-4849-A73F-2B4F082F0C44/sdk/doc_source/reference/reference-cpp/Message_Server_and_Store/MMsvSessionObserverClass.html

VIRUS BULLETIN www.virusbtn.com

13NOVEMBER 2011

FLIBI: RELOADED
Peter Ferrie
Microsoft, USA

A new version of the W32/Flibi virus [1, 2] has been
released. It now supports assemble-time or compile-time
polymorphism during construction of the fi rst generation
translator code. Its parallels with molecular biology have
increased with major changes to the replication process:
horizontal gene transfer1, codon2 exchange, the introduction
of start and stop codons3, and optionally the addition of
introns4.

REMOVE BEFORE USE
This version of the virus lacks several of the commands
that were present in the previous version. There are only 32
commands in this version. The commands that have been
removed are as follows:

• _subsaved

• _zer0

• _add0004, _add0010, _add0040, _add0100, _add0400,
_add1000, _add4000

• _JzDown

• _CallAPIMessageBox, _CallAPISleep

The removed commands have been replaced with equivalent
sequences using the remaining instruction set, exactly as
described in [2]. Both ‘_subsaved’ and ‘_zer0’ still appear
in the source code, but they have been converted to macros.
None of the other commands appear. The ‘_subsaved’
macro uses the ‘_addsaved’ command, after negating
the value to add. The negate operation is achieved by
performing an ‘_xor’ with negative one, and then adding
one. The ‘_zer0’ macro uses a combination of the ‘_save’
and ‘_xor’ commands, which is equivalent to using xor on a
register value with itself.

The ‘_addnnnn’ commands have been replaced by a generic
‘add’ command. This command uses an instruction sequence

1 Horizontal gene transfer is a process in which one organism
incorporates genetic material from another without being the offspring
of that organism. See http://en.wikipedia.org/w/index.php?title=
Horizontal_gene_transfer&oldid=452313076.
2 A codon is a trinucleotide sequence of DNA or RNA that corresponds
to a specifi c amino acid. See http://www.genome.gov/Glossary/
index.cfm?id=36.
3 A stop codon is a nucleotide triplet within mRNA that signals a
termination of translation. See http://en.wikipedia.org/w/index.php?
title=Genetic_code&oldid=412677908#Start.2Fstop_codons.
4 An intron is a nucleotide sequence within a gene that is removed by
RNA splicing to generate the fi nal mature RNA product of a gene. See
http://en.wikipedia.org/w/index.php?title=Intron&oldid=456036842.

MALWARE ANALYSIS 2
that combines the ‘_shl’ and ‘_add0001’ commands in
an appropriate way to construct the required value. The
‘_JzDown’ command has been replaced by a combination of
‘_JnzDown’ commands, where one ‘_JnzDown’ command
branches to a ‘_call’ command to reach the destination of
the ‘true’ condition, and the other ‘_JnzDown’ command
branches over the ‘_call’ command to reach the destination
of the ‘false’ condition. The MessageBox API has been
removed because the virus no longer has a payload, and the
Sleep API has been removed because the virus uses a new
hashing that does not produce the same false match.

ASSEMBLE-TIME POLY
Depending on the version that is used, the translator code
polymorphism is either assemble-time or compile-time. The
assemble-time polymorphism is achieved by using a routine
that generates garbage instructions in the translator code. The
assemble-time translator code garbage generator (ATGG)
is composed of macros that are interpreted while the source
code is being assembled into the fi rst generation of the virus
code. The randomness is achieved by seeding a random
number generator with the current time, which the assembler
allows. The ATGG is called eight times initially, and then
once after each non-conditional instruction sequence,
and after the single API call. In the case of a conditional
instruction sequence (that is, a cmp instruction followed by
a branch instruction), the sequence will not be separated. In
the case of the API call, the parameters are not separated.

The ATGG chooses randomly if it will run, with a 50%
chance of doing so. Once it is running, it emits one
instruction sequence at a time, chosen randomly from a set
of 15 instruction sequences. It then chooses randomly if
it will continue to run, with about a 94% chance of doing
so. The instruction sequences consist of operations that do
not alter any registers, so they are harmless to the code.
However, a number of them do alter the fl ags as a side effect
of their operation, which is why they cannot be placed
between a cmp and branch instruction sequence. There
are some instructions that do not have any side effects,
which could be used to break a cmp and branch instruction
sequence, but selecting them from the list would increase
the complexity of the routine for little gain.

COMPILE-TIME POLY
Compile-time translator code polymorphism is achieved
by using a program to generate the assembler code that is
then assembled into the fi rst generation of the virus code.
It still applies to the translator code, but it replaces the
garbage generator in the assemble-time polymorphism
described above. The compile-time translator code garbage

http://en.wikipedia.org/w/index.php?title=Horizontal_gene_transfer&oldid=452313076
http://www.genome.gov/Glossary/index.cfm?id=36
http://en.wikipedia.org/w/index.php?title=Genetic_code&oldid=412677908#Start.2Fstop_codons
http://en.wikipedia.org/w/index.php?title=Intron&oldid=456036842

VIRUS BULLETIN www.virusbtn.com

14 NOVEMBER 2011

generator (CTGG) can perform multiple operations on
randomly selected registers, and the instruction set is larger.
The CTGG knows which registers are currently in use and
avoids generating operations on them. The CTGG can also
be directed only to use instructions that do not alter the
fl ags, which allows a conditional instruction sequence to be
separated. The CTGG contains the set of six instructions
that do not alter the fl ags (although, due to a bug, only
fi ve of them can be selected). A second set contains 11
instructions, six of which are the same as the set which does
not alter the fl ags, and the other fi ve instructions will alter
the fl ags as a side effect of their operation.

The CTGG chooses randomly if it will run, with a 50%
chance of doing so. Once it is running, it emits one
instruction sequence at a time, chosen randomly from the
appropriate set. It then chooses randomly if it will continue
to run, with about a 94% chance of doing so. The CTGG
is called in a loop initially, with only a 10% chance that
the loop will exit on any iteration. Thereafter, the CTGG is
called after each real instruction.

The reason why both kinds of polymorphism were
introduced is because the translator code is the weakest part
of the virus in two ways. It is weak because it is native code,
allowing a detection to be guided by the presence of that
routine. The polymorphism complicates the detection a little.
It is also weak because it is native code. Since the routine is
small, and the opcodes generally have no alternative values,
mutations in this routine are often lethal. The introduction
of garbage instructions results in a smaller risk of lethal
mutation because the risk is spread over a wider area.

LET ME COUNT THE WAYS
There are three other polymorphism methods which are
applied at assemble time, but which are also contained
in the assembler code that is the output of the compiled
code. The fi rst part of this assemble-time polymorphism is
that the native instructions no longer begin on eight-byte
boundaries (with the exception of the ‘_getEIP’, ‘_JnzUp’
and ‘_JnzDown’ commands), followed by no-operation
instructions to fi ll the gap. Instead, the block begins on
eight-byte boundaries, but the native instructions are placed
randomly within the eight-byte block and surrounded by
no-operation instructions.

The second part of the assemble-time polymorphism is
that since there are only a few commands, many of them
are duplicated enough times to fi ll the 256 slots available.
Then, whenever a command is requested, its value is chosen
randomly from the list that might contain multiple entries
for that command. Thus, even the fi rst generation of the
virus will likely have multiple codons referring to the same
amino acid.

The third part of the assemble-time polymorphism is
applied optionally, by setting the appropriate value in
a particular variable in the assembler source code. The
alphabet that is used can either be a pre-generated one or
a dynamically generated one. The dynamically generated
one will fi ll the slots randomly. There is a minor bug in the
routine when assigning the ‘unused’ command to a slot
– the wrong command name is displayed as informational
text, but it has no effect on the execution of the virus.

MINOR UPDATE
The virus has some minor changes to its code, too. There is
a new hashing algorithm, a new fi lename, and a rewritten
nop insertion routine.

HASH COOKIES

The new hashing algorithm simply sums 16 bits at a
time (though two comments in the source code show two
different algorithms, neither of which is the one that is
used) at each position of the API name, up to and including
the fi nal zero (so ‘AddAtomA\0’ is ‘Ad’ + ‘dd’ + ‘dA’ +
‘At’ + ‘to’ + ‘om’ + ‘mA’ + ‘A\0’). The low 12 bits of the
result are retained and compared to an entry in a hash table
that the virus carries. The API is considered to be found
when the hashes match. This routine is repeated until all of
the required APIs are found. The routine loads APIs from
‘kernel32.dll’ fi rst, and then ‘advapi32.dll’ (despite the
comments in the source code referring again to
‘kernel32.dll’).

The virus constructs a new fi lename for the next-generation
fi le, in the same manner as the previous version, and copies
itself as ‘x:\evolusss.exe’, where ‘x’ is the drive letter
taken from the command line. It also copies itself to the
next-generation fi lename.

The virus opens the next-generation fi le and maps it into
memory. As with the previous version, it will fl ip bits or
dwords throughout its body. A bug has been fi xed here,
which is that the dword exchange will not occur within the
last nine bytes of the fi le, to avoid a possible exception from
occurring because of an out-of-bounds access.

NOP INSERTION

The nop insertion routine has been corrected to no longer
delete the bytes immediately following the insertion point.
Instead, all of the bytes following the insertion point are
moved towards the end of the fi le according to the size of
the gap to be introduced. The virus inserts a gap of up to 32
bytes in size, and fi lls the gap with no-operation commands.

VIRUS BULLETIN www.virusbtn.com

15NOVEMBER 2011

GENE TRANSFER
The horizontal gene transfer works by ‘borrowing’ bytes
from a single randomly located fi le, and inserting them into
the virus body. This can introduce new behaviours if the new
bytes happen to make sense in the context of the current code.
The routine has a 20% chance of running. If it runs, then it
searches within the current directory for any object. It tries
to detect directories by checking the exact attribute, instead
of masking off all other bits. As a result, it fails to detect a
directory if the directory has additional attributes set (such
as ‘hidden’). However, this is a minor bug which is harmless
because any attempt to open the directory will fail. For any
fi le that is found, there is a 20% chance that the routine will
attempt to open it. The routine attempts to copy up to ten
bytes from a random location in the fi le it has found to a
random location in the virus fi le. There is a bug in this routine,
which is that there is no check that the fi le it has found is not
empty. If the fi le is empty, then any attempt to copy content
from it will cause an exception and the virus will crash.

CODON EXCHANGE
The codon exchange routine searches within the alphabet
for amino acids referred to by multiple codons, and
randomly exchanges the codons within the virus body.

START AND STOP
The start and stop codons allow the explicit delimiting of a
block of valid code (an exon). Any values that appear after
a stop codon and before a start codon are junk (introns) that
will not be executed by the virus. However, in the event of a
mutation that corrupts a stop codon, the junk would become
part of the exon until the next stop codon is encountered.
This allows for a more rapid introduction of new behaviours.

CONCLUSION
W32/Flibi is more like a life form than ever before. It looks
like a heavily armoured threat whose spread might be
diffi cult to stop – perhaps like a cane toad. However, much
like the cane toad, it has a soft underbelly which we can
learn to attack.

REFERENCES
[1] Ferrie, P. Virus Bulletin, March 2011, p.4.

http://www.virusbtn.com/virusbulletin/
archive/2011/03/vb201103-Flibi.

[2] Ferrie, P. Virus Bulletin, May 2011, p.6.
http://www.virusbtn.com/virusbulletin/
archive/2011/05/vb201105-fl ibi-evolution.

‘Securing your Organization in
the Age of Cybercrime’

A one-day seminar in association
with the MCT Faculty of

The Open University

- Are your systems SECURE?

- Is your organization’s data at
RISK?

- Are your users your greatest
THREAT?

- What’s the real DANGER?

Learn from top IT security experts
about the latest threats, strategies
and solutions for protecting your

organization’s data.

For more details:

www.virusbtn.com/seminar
or call 01235 555139

SEMINAR
19 April 2012
Milton Keynes, UK

http://www.virusbtn.com/pdf/magazine/2011/201103.pdf
http://www.virusbtn.com/pdf/magazine/2011/201105.pdf
http://www.virusbtn.com/seminar

VIRUS BULLETIN www.virusbtn.com

16 NOVEMBER 2011

INVESTIGATING THE ABUSE OF
SEARCH ENGINES TO PROMOTE
ILLICIT ONLINE PHARMACIES
Tyler Moore
Wellesley College, USA

Unauthorized online pharmacies that sell prescription drugs
without requiring a prescription have been a fi xture of the
web for many years. Given the questionable legality of
these shops’ business models, it is not surprising that most
resort to illegal methods for promoting their wares. Most
prominently, email spam has relentlessly advertised illicit
pharmacies. Researchers have measured the conversion rate
of such spam [1], fi nding it to be surprisingly low. Upon
refl ection, this makes sense, the unsolicited and untargeted
nature of spam. A more successful approach for the
pharmacies would be to target users who have expressed an
interest in purchasing drugs, such as those searching the web
for online pharmacies. The trouble is that dodgy pharmacy
websites don’t always garner the highest PageRanks on their
own merits, and so some form of black hat search engine
optimization (SEO) [2] may be required in order for such
sites to appear near the top of web search results.

Indeed, by gathering the top web search results for 218
drug-related queries daily over nine months in 2010–2011,
Nektarios Leontiadis, Nicolas Christin and I have found
evidence of substantial manipulation of web search results
to promote unauthorized pharmacies. In particular, we have
found that around one third of the collected search results
represented 7,000 infected hosts triggered to redirect to a
few hundred pharmacy websites. In the pervasive search-
redirection attacks, miscreants compromise high-ranking
websites and dynamically redirect traffi c to different
pharmacies based on the particular search terms issued by
the consumer1.

SEARCH-REDIRECTION ATTACKS

Figure 1 illustrates the search-redirection attack in action.
In response to the query ‘cialis without prescription’,
the top eight results include fi ve .edu sites, one .com
site with a seemingly unrelated domain name, and two
online pharmacies. At fi rst glance, the .edu and one of the
.com sites have absolutely nothing to do with the sale of
prescription drugs. However, clicking on some of these
links, including the top search result framed in Figure 1,
takes the visitor not to the requested site, but to an online
pharmacy store.

1 The full details of the study can be found in [3].

Search-redirection attacks combine several well worn tactics
from black hat SEO and web security. First, an attacker
identifi es high-visibility websites (e.g. at universities) that
are vulnerable to code-injection attacks. The attacker injects
code onto the server that intercepts all incoming HTTP
requests to the compromised page and responds differently
based on the type of request:

• Requests from search engine crawlers return a mix
of the original content, along with links to websites
promoted by the attacker and text that makes the
website appealing to drug-related queries.

• Requests from users arriving from search engines are
checked for drug terms in the original search query.
If a drug name is found in the search term, then the
compromised server redirects the user to a pharmacy
site or another intermediary, which then redirects the
user to a pharmacy site.

• All other requests, including typing the link directly
into a browser, return the infected website’s original
content.

The net effect is that web users are seamlessly delivered
to illicit pharmacies via infected web servers, and the

Figure 1: Example of a search-redirection attack.

FEATURE 1

VIRUS BULLETIN www.virusbtn.com

17NOVEMBER 2011

compromise is kept hidden from the affected host’s
webmaster in nearly all circumstances.

EMPIRICAL ANALYSIS OF SEARCH-
REDIRECTION ATTACKS

Upon inspecting search results, we identifi ed 7,000
websites that had been compromised in this manner
between April 2010 and February 2011. One quarter of
the top ten search results were observed to actively redirect
to pharmacies, and another 15% of the top results were
for sites that no longer redirected but which had previously
been compromised. We also found that legitimate health
resources, including authorized pharmacies, were largely
crowded out of the top results by search-redirection
attacks as well as blog and forum spam promoting fake
pharmacies.

One obvious question when measuring the dynamics of
attack and defence is how long infections persist. We defi ne
the ‘lifetime’ of a source infection as the number of days
between the fi rst and last appearance of the domain in the
search results while the domain is actively redirecting to
pharmacies. We observed the median lifetime of infected
websites to be 47 days, but that 16% of the websites
remained infected at the end of our study.

We used survival analysis to examine the characteristics
of infected websites that could affect the duration of
infections. The survival function S(t) measures the

Figure 2: Survival analysis of search-redirection attacks shows that TLD and PageRank infl uence infection lifetimes.

probability that the infection’s lifetime is greater than
time t. The left-hand graph in Figure 2 plots the survival
function estimates for each of the four major TLDs (.com,
.org, .edu and .net), plus all others. Survival functions to
the right of the primary black survival graph (e.g. .edu)
have consistently longer lifetimes, while plots to the left
(e.g., other and .net) have consistently shorter lifetimes.
The upshot is that websites on the .edu and .org TLDs are
infected disproportionately more often and the infections
persist far longer than websites on other domains. For
example, the median lifetime of .edu infections was 113
days. In contrast, the less popular TLDs taken together have
a median lifetime of just 28 days.

Another factor is also likely at play: the relative reputation
of domains. Web domains with higher PageRank are
naturally more likely to appear at the top of search results,
and so are more likely to persist in the results. Indeed, we
observe this in the graph on the right-hand side of Figure 2.
Infected websites with PageRank 7 (out of a possible 9) or
higher have a median lifetime of 153 days, compared to
just 17 days for infections on websites with PageRank 0.
We therefore conclude that high-ranking websites and those
present on .edu domains are the most lucrative targets for
miscreants.

Using estimates of the popularity of drug-related search
terms and the payment processing websites used by the
pharmacies, we are able to derive a ball park fi gure for the
conversion rate of between 0.3% and 3.2%. In other words,
for every 1,000 web searches for pharmaceuticals, between

VIRUS BULLETIN www.virusbtn.com

18 NOVEMBER 2011

three and 32 purchases are made via websites infected
by search-redirection attacks. Consequently, while email
spam promoting pharmacies has attracted more attention,
we conclude that the bulk of illegal pharmaceutical sales
are likely dominated by referrals from web search. This is
not surprising, given that most people fi nd it more natural
to turn to their search engine of choice than to their spam
folder when shopping online.

COUNTERING SEARCH-REDIRECTION
ATTACKS
For those whose aim is to reduce unauthorized
pharmaceutical sales, the implication is clear: more
emphasis on combating transactions facilitated by
web search is warranted. The existing public-private
partnership initiated by the White House [4] has so far
focused on areas other than search-redirection attacks.
Domain name registrars (led by GoDaddy) can shut down
maliciously registered domains, while Google has focused
on blocking advertisements (but not necessarily search
results) from unauthorized pharmacies. Unfortunately, no
single entity speaks for the many webmasters whose sites
have unknowingly been recruited to drive traffi c to illicit
pharmacies.

Nonetheless, eradicating source infections at key websites
could be disruptive, at least in the short term. 10% of
source infections account for over 80% of total impact, in
terms of appearing most often at the top of search results.
If these infections were cleaned up, then attackers would
likely struggle to adapt quickly, since placing websites
at high-ranking search positions through search engine
optimization can be a slow process.

Furthermore, search engines could take a more active role,
and indeed Google has begun issuing notices of suspected
compromised websites in its search results. However,
this does not go nearly as far as interstitial warnings
that actively block the user from visiting web servers
that distribute malware. We encourage search engines to
consider dropping such infected results altogether, given the
illegal activity being facilitated.

Finally, by examining the redirection chains from
infected hosts to pharmacies, we found a high degree of
interconnection between seemingly disparate websites.
Infected websites typically redirect to an intermediate
website before redirecting once more to the destination
pharmacy website. It turns out that over 92% of the
pharmacies observed to be receiving traffi c from
search-redirection attacks are connected to 96% of the
source infections. Additionally, we have found that a few
intermediate redirectors connect most source infections to

pharmacy websites. Consequently, we expect that taking
down a few of these key redirectors could disrupt the
affi liate network promoting pharmacies.

CONCLUSION
Given the enormous value of web search, it is no surprise
that miscreants have taken aim at manipulating its results.
We have gathered evidence of systematic compromise
of high-ranking websites that have been reprogrammed
to dynamically redirect to illicit online pharmacies.
These search-redirection attacks are present in one
third of the search results we collected. The infections
persist for months, and 96% of the infected hosts are
connected through redirections. We have also observed
that legitimate health resources are nearly absent from the
search results, having been completely pushed out of the
search results by blog and forum spam and compromised
websites.

However, we remain optimistic that the Internet’s
defenders can disrupt this gloomy status quo. In order to
successfully thwart search-redirection attacks, we believe
that it is essential for any future countermeasures to involve
important intermediaries such as web search engines, and
to target malicious activity in the search results, not just
their ads.

REFERENCES
[1] Kanich, C.; Kreibich, C.; Levchenko, K.; Enright,

B.; Voelker, G.; Paxson, V.; Savage, S. Spamalytics:
An empirical analysis of spam marketing
conversion. In Conference on Computer and
Communications Security (CCS), Alexandria, VA,
October 2008.

[2] Wang, Y.-M.; Ma, M.; Niu, Y.; Chen, H. Spam
double-funnel: connecting web spammers with
advertisers. 16th international conference on World
Wide Web, WWW ‘07, pp.291-300, Ban, Alberta,
Canada, 2007.

[3] Leontiadis, N.; Moore, T.; Christin, N. Measuring
and analyzing search-redirection attacks in the
illicit online prescription drug trade. Proceedings of
USENIX Security 2011, San Francisco, CA, August
2011.

[4] Jackson Higgins, K. Google, GoDaddy help
form group to fi ght fake online pharmacies. Dark
Reading, December 2010.
http://www.darkreading.com/security/
privacy/228800671/google-godaddy-help-form-
group-to-fi ght-fake-online-pharmacies.html.

http://www.darkreading.com/security/privacy/228800671/google-godaddy-help-form-group-to-fight-fake-online-pharmacies.html

VIRUS BULLETIN www.virusbtn.com

19NOVEMBER 2011

THE ART OF STEALING
BANKING INFORMATION – FORM
GRABBING ON FIRE
Aditya K. Sood, Richard J. Enbody
Michigan State University, USA

Rohit Bansal
SecNiche Security, USA

Third generation banking botnets pose a great threat to the
online banking industry. Botnets such as Zeus, SpyEye and
others use the effective technique of form grabbing to steal
sensitive information from victims’ machines. This paper
takes a detailed look at the form-grabbing technique.

INFORMATION STEALING
Third generation botnets such as Zeus and SpyEye exploit
their victims’ user sessions with banking websites in
order to steal fi nancial information. There are a number of
different information-stealing techniques available:

• Keylogging is an established technique in which all
the keystrokes on a victim’s machine are captured
and sent back to the C&C server for analysis,
and the desired information is extracted from the
keystroke logs. This technique captures all types of
data including keystrokes such as white space and
backslashes. From an attacker’s perspective, the
technique works well in certain scenarios, but in
a distributed infection environment the enormous
amount of data generated can be overwhelming.
In addition, defensive strategies such as the use of
virtual keyboards have been developed to hide critical
information from keyloggers.

• Screen scraping (aka screen shot capturing) is another
technique that is used extensively. Here, the bot is able
to take a screenshot of the victim’s machine when a
particular key is pressed and send this to the attacker’s
server. This technique can circumvent virtual keyboard
technology. Screen scraping generates huge data sets
and signifi cant effort is required to extract the desired
information. In spite of the extra effort required, this
technique has been deployed successfully as part of
botnet functionalities.

• Browser protected storage is a built-in browser
storage mechanism which stores user credentials as part
of the browser’s form auto-complete feature. A botnet
can extract information such as login credentials, SSL
certifi cates and other user preferences. Successful use
of this technique depends on the user having selected

the ‘Remember my password’ option, or the option
being on by default.

• Redirection through phishing and pharming is
a technique that redirects the victim’s browser to a
malicious domain when the user clicks a certain link.
This technique is not limited to phishing emails.
Malware installed on the victim’s machine can
independently inject location headers in responses
to redirect the browser to a malware-driven website.
Other similar sets of attacks such as cross site scripting
(XSS) or header spoofi ng can be used to support this
technique.

• Form grabbing is currently one of the most widely
used methods for stealing information and specifi cally
targets the information entered into web forms.
Third generation botnets use this technique to extract
information from a victim’s browser when the victim
has an active session with a banking website. A detailed
explanation of form grabbing follows in the next
section.

Every method currently employed by botnets for stealing
information in browsers has both advantages and
disadvantages depending on the environment in which it is
implemented. Currently, form grabbing is the most widely
used and most profi table method of extracting information.

FORM GRABBING AND
MAN-IN-THE-BROWSER (MITB) ANATOMY
Form grabbing has proven to be a very effective technique
for stealing information. One valuable aspect of the
technique is that information is extracted from forms, so
it is very easy to identify desirable information such as
account details and passwords. This technique has been
put into practice to bypass several browser protection
mechanisms. The basic idea is to intercept form information
before it is sent to the Internet – the GET/POST data. Form
grabbing uses two basic methods to steal the information:

• All the GET/POST data is sniffed from the outgoing
data using PCAP (Packet Capture). However, this
technique only works for unencrypted communication
(i.e. it doesn’t work if SSL/TLS is implemented over
HTTP).

• Robust form grabbing uses hooking. In this approach,
malware residing on the victim’s machine hooks the
browser’s Dynamic Link Libraries (DLLs) in order
to steal the content before it is sent to the server. If
done correctly, the content can be stolen before it is
encrypted. This theft can be accomplished by a variety
of hooking mechanisms – a malicious browser add-on
is one example.

FEATURE 2

VIRUS BULLETIN www.virusbtn.com

20 NOVEMBER 2011

Within browser exploitation, form grabbing can occur as
part of a man-in-the-browser (MITB) attack [1, 2]. In this
type of attack, malware installed on the system can modify
web pages and perform illegitimate operations on behalf
of the user. All the malware classes as described in our
Browser Malware Taxonomy (BMT) [3] can execute this
type of attack. Since the MITB malware resides on the
victim’s machine and does not interact with traffi c on the
wire, this type of attack is effective even if SSL/TLS or
two-factor authentication is enforced. A MITB attack can
be deployed in a variety of environments depending on the
browser behaviour. MITB is very robust.

LIFE CYCLE – FORM-GRABBING
TECHNIQUE
In order to implement form grabbing effectively, the
following cycle of activities must be maintained:

• A victim must be lured into visiting a malicious
domain confi gured with malware. As soon as the
victim’s browser opens the infected website, a drive-
by download exploits a vulnerability in the browser to
drop malware onto the victim’s system. The malware
could be a bot which is designed to conduct a MITB
attack to allow form grabbing.

• Once the downloaded malware (bot) is installed on the
victim’s machine it automatically hooks the browser’s
DLL. A variety of hooking techniques can be applied
such as inline hooking, Import Address Table (IAT)
hooking [4] or the Create Remote Thread (CRT)
method. Generally, browser hooking is done in user
mode.

• Form grabbing controls the ingress and egress browser
traffi c to and from the victim’s browser. Generally, the
malware captures all the GET/POST data present in
web forms and sends it back to the attacker’s domain.
Form grabbing provides the attacker with legitimate
credentials, IP address and target website address. The
technique differs from keylogging in that form data is
labelled so the desired data is readily available.

EXPLOITING HOT PATCHING – DLL
INJECTION AND HOOKING
Attackers prefer inline hooking. Import Address Table (IAT)
hooking is less desirable because it requires binding time
when the API is called. With inline hooking the designed
hook replaces (overwrites) the fi rst two to three bytes of
data with a legitimate JMP instruction to redirect the code
fl ow. This technique is quite robust, and can be used in
either kernel land or user land. For example, the Zeus and

SpyEye bots are ring 3 malware, which means that the
hooks execute in user land rather than kernel land. Inline
hooking, also known as hot patching, is a process in which a
vulnerable function is patched with a hot-fi x function during
runtime by overwriting the function’s prolog. Consider the
function prolog as presented in Listing 1:

MOV EDI, EDI

PUSH EBP

MOV EBP, ESP

Listing 1: Function prolog with hot patching instruction.

In Listing 1, PUSH EBP and MOV EBP/ESP is the
generic code for every function prolog which establishes
a stack frame pointer to the base register. The MOV EDI,
EDI instruction is a two-byte NOP instruction provided
by Microsoft in certain versions of Windows such as XP
SP2, which enables hot patching. It means it is possible
to replace the MOV EDI, EDI instruction or overwrite
it with other code when the target function is hooked by
the malware. Possible overwrites include a short jump
to a long jump instruction that jumps to attacker-defi ned
code. This process does not require a system reboot but is
executed silently.

An alternative to inline hooking is the CreateRemoteThread
hooking technique. For example, in Internet Explorer
the wininet.dll library is loaded in order to hook the
HttpSendRequestA function using CreateRemoteThread.

The prototype presented in Listing 2 can be used to handle
the data in GET/POST requests in Internet Explorer.
We need to fi nd the address of WININT DLL using
LoadLibrary, which is mostly loaded at the same address
for every process in any particular version of Windows.
The CreateToolhelp32Snapshot function is applied to
take a snapshot of the required process and its memory
structures such as heaps, modules and respective threads
that are used by a specifi ed process. The GetProcAddress
function is called to load the address of the imported
function from a particular library (in this case
wininet.dll). The Process32 function is invoked to retrieve
the information about the next process recorded in the
system snapshot using CreateToolhelp32Snapshot.
After this step, the target process is opened using
the OpenProcess function (with full privileges) and
VirtualAllocEx is used to allocate memory to hold the
path to the DLL fi le (injected data) in the process’s
memory. Once the required memory is allocated, the
WriteProcessMemory function is called to write the path
to the target DLL (wininet.dll) in the specifi ed location.
In the fi nal step, CreateRemoteThread is used to create
a remote thread in the address space of iexplorer.exe
in order to perform the hooking during runtime. As the

VIRUS BULLETIN www.virusbtn.com

21NOVEMBER 2011

Include requisite libraries for importing functions.

#include< *.h> [*= required libraries]

Declaring a function for injecting data

typedef struct {

DWORD *HttpSend;

} Inject_Data;

int Inject(Inject_Data *hooked);

Defi ning the main routine of the code

int main()

{

Declare browser DLL’s as name as variables to be called in the code

 Inject_Data Data;

 LPVOID memory;

 HANDLE remoteThread;

 LPCSTR kernel_dll = <DLL Name>;

 LPCSTR winint_dll = <DLL Name>;

Creating a snapshot of the process

 HANDLE handle = CreateToolhelp32Snapshot();

 PROCESSENTRY32 ProcessInfo;

 ProcessInfo.dwSize = sizeof(PROCESSENTRY32);

Calling Load Library and GetProcAddress function

 LoadLibrary();

 hooked.HttpSend = (DWORD*)GetProcAddress(GetModuleHandle(Winnit),”HttpSendRequestA”);

 Process32First();

Start iteration

 while(Process32Next())

 {

Open the target process

 handle = OpenProcess();

Allocate memory and then write memory

 memory = VirtualAllocEx();

 WriteProcessMemory();

Create remote thread in the target process

 remoteThread = CreateRemoteThread();

 WaitForSingleObject();

 CloseHandle(handle);

 }

 return 0;

}

Listing 2: Prototype for hooking wininet.dll. (All arguments and values required to run this code have been removed.)

HttpSendRequestA function is hooked in wininet.dll, the
data is sent back to the attacker’s domain.

FORM GRABBER – CASE STUDY
The form-grabbing module depends a lot on the browser
type because of architectural differences and the way DLLs
work. The attacker can design the form-grabber plug-in to

steal data from the victim’s machine and send it back to the
attacker’s domain via an email using socket functions. To
determine the data exfi ltration mechanisms we analysed an
independent form-grabbing module which is used by some
malware. This module is similar to the form grabber used
by botnets such as Zeus and SpyEye. Figure 1 shows how
the form-grabbing module works in Internet Explorer and
Mozilla Firefox respectively.

VIRUS BULLETIN www.virusbtn.com

22 NOVEMBER 2011

Figure 1: Form-grabbing process in action.

When the malware is installed on the system, it fi rst
performs DLL injection into the requisite browser process
(fi refox.exe or iexplore.exe) and then performs hooking
into the context of the respective running process. During
analysis of the malware, we found that the form-grabbing
module performs DLL injection using CreateRemoteThread
and WriteProcessMemory, as presented in Figure 2.

Once the injection is successful, the malware hooks the
pr_write function in nspr4.dll for Firefox and
EncryptMessage in the secure32.dll library for Internet
Explorer, as shown in Figures 3 and 4 respectively.

In this case, GetProcAddress and GetModuleHandleA are
used collaboratively to load a specifi c function for injecting
a hook into the requisite process. The malware attempts to
generate a log fi le that consists of all the data from
GET/POST requests which are used in submission forms on
banking websites. Figure 5 shows the creation of the log fi le.

The last step requires the stolen content to be sent to the
data server. The malware creates a fi le using CreateFileA
with the supplied name of ‘injector_form_log.txt’ where the
stolen information is logged using WriteFile. This fi le acts
as a data repository which is later sent back to the attacker.
Figure 6 shows the way the analysed sample of malware
performs this step.

The malware sends a POST request to an embedded domain
name. It sets the HTTP headers required to execute the
POST request successfully. The Content-Type parameter is
set to ‘application/x-www-form-urlencoded’, which handles
the form data. The Content-Length parameter shows the
size of data to be posted with the HTTP request. In this way
a complete HTTP request is sent to the attacker’s domain
for collecting form credentials.

In this case study, we have presented a detailed layout of a
form-grabbing module. This method of stealing information

has become popular and one of the preferred choices
of attackers. It is very diffi cult to design any protection
mechanism against this kind of attack because it exploits the
built-in hooking mechanism. Since the malware possessing
this characteristic falls into the rootkit [5, 6] category, any
anti-virus protection used must be able to detect rootkits.

CONCLUSION
In this paper, we have discussed different
information-stealing methods used by malware. In

Figure 2: WriteProcessMemory in action.

Figure 3: Hooking pr_write function in nspr4.dll.

Figure 4: Hooking EncryptMessage in secure32.dll.

VIRUS BULLETIN www.virusbtn.com

23NOVEMBER 2011

particular, we have presented details of a form-grabbing
method which is used extensively in botnet operations
to steal information from victim machines. This method
requires careful attention because malware exploits this
technique in conjunction with other infection strategies to
achieve maximum damage.

REFERENCES
[1] Man In The Browser. http://blog.fi reeye.com/

research/2010/02/man-in-the-browser.html.

[2] Gühring, P. Concepts against man in the browser
attacks. http://www.cacert.at/svn/
sourcerer/CAcert/SecureClient.pdf.

[3] Sood, A.K.; Enbody, R.J. A browser malware
taxonomy. http://www.virusbtn.com/virusbulletin/
archive/2011/06/vb201106-browser-malware-
taxonomy.

[4] Import Address Table.
http://win32assembly.online.fr/pe-tut6.html.

[5] Butler, J.; Silberman, P. Rootkit Analysis,
Identifi cation and Elimination. Black Hat Europe
2006. http://www.blackhat.com/presentations/bh-
europe-06/bh-eu-06-Silberman-Butler.pdf.

[6] Kasslin, K. Hide and seek – full stealth is back.
http://www.virusbtn.com/pdf/conference_
slides/2005/Kimmo%20Kasslin.pdf.

Figure 5: Log fi le with form data.

Figure 6: Sending stolen data to the attacker’s server.

http://blog.fireeye.com/research/2010/02/man-in-the-browser.html
http://www.cacert.at/svn/sourcerer/CAcert/SecureClient.pdf
http://www.virusbtn.com/virusbulletin/archive/2011/06/vb201106-browser-malware-taxonomy
http://win32assembly.online.fr/pe-tut6.html
http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Silberman-Butler.pdf
http://www.virusbtn.com/pdf/conference_slides/2005/Kimmo%20Kasslin.pdf

NOVEMBER 2011

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

24

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, Causata, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Costin Raiu, Kaspersky Lab, Russia

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2011 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2011/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

The 14th AVAR Conference (AVAR2011) and international
festival of IT Security will be held 9–11 November 2011 in Hong
Kong. For details see http://aavar.org/avar2011/.

Ruxcon takes place 19–20 November 2011 in Melbourne,
Australia. A mixture of live presentations, activities and
demonstrations will be presented by security experts from the
Aus-Pacifi c region and invited guests from around the world. For
more information see http://www.ruxcon.org.au/.

Oil and Gas Cyber Security Forum takes place 21–22 November
2011 in London, UK. For more information see
http://www.smi-online.co.uk/2011cyber-security26.asp.

Takedowncon 2 – Mobile and Wireless Security will be held 2–7
December 2011 in Las Vegas, NV, USA. EC-Council’s new technical
IT security conference series aims to bring industry professionals
together to promote knowledge sharing, collaboration and social
networking. See http://www.takedowncon.com/ for more details.

Black Hat Abu Dhabi takes place 12–15 December 2011 in
Abu Dhabi. Registration for the event is now open. For full details
see http://www.blackhat.com/.

FloCon 2012 will be held 9–12 January 2012 in Austin, TX, USA.
For more information see http://www.fl ocon.org/.

RSA Conference 2012 will be held 27 February to 2 March 2012
in San Francisco, CA, USA. Registration is now open with an early
bird rate available until 18 November. For full details see
http://www.rsaconference.com/events/2012/usa/index.htm.

Black Hat Europe takes place 14–16 March 2012 in Amsterdam,
The Netherlands. For details see http://www.blackhat.com/.

SOURCE Boston 2012 will be held 17–19 April 2012 in Boston,
MA, USA. For further details see http://www.sourceconference.com/
boston/.

The 3rd VB ‘Securing Your Organization in the Age of
Cybercrime’ Seminar takes place 19 April 2012 in Milton
Keynes, UK. Held in association with the MCT Faculty of The Open
University, the seminar gives IT professionals an opportunity to learn
from and interact with security experts at the top of their fi eld and
take away invaluable advice and information on the latest threats,
strategies and solutions for protecting their organizations. For details
see http://www.virusbtn.com/seminar/.

The 21st EICAR Conference takes place 7–8 May 2012 in Lisbon,
Portugal. The theme for this event will be ‘“Cyber attacks” – myths
and reality in contemporary context’. For full details see
http://www.eicar.org/17-0-General-Info.html.

NISC12 will be held 13–15 June 2012 in Cumbernauld, Scotland.
The event will concentrate on ‘The Diminishing Network Perimeter’.
For more information see http://www.nisc.org.uk/.

Black Hat USA will take place 21–26 July 2012 in Las Vegas, NV,
USA. For details see http://www.blackhat.com/.

VB2012 will take place 26–28 September 2012 in Dallas, TX,
USA. More details will be revealed in due course at
http://www.virusbtn.com/conference/vb2012/. In the meantime, please
address any queries to conference@virusbtn.com.

VB2013 will take place 2–4 October 2013 in Berlin, Germany.
More details will be revealed in due course at
http://www.virusbtn.com/conference/vb2013/. In the meantime, please
address any queries to conference@virusbtn.com.

http://aavar.org/avar2011/
http://www.ruxcon.org.au/
http://www.smi-online.co.uk/2011cyber-security26.asp
http://www.takedowncon.com/
http://www.blackhat.com/
http://www.flocon.org/
http://www.rsaconference.com/events/2012/usa/index.htm
http://www.blackhat.com/
http://www.sourceconference.com/boston/
http://www.virusbtn.com/seminar/
http://www.eicar.org/17-0-General-Info.html
http://www.nisc.org.uk/
http://www.blackhat.com/
http://www.virusbtn.com/conference/vb2012/
mailto:conference@virusbtn.com
mailto:conference@virusbtn.com
mailto:editorial@virusbtn.com
http://www.virusbtn.com/conference/vb2013/
http://www.virusbtn.com/
http://www.virusbtn.com/virusbulletin/subscriptions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

