
APRIL 2013

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

OGEE, OGEE, OGEE
The programming of General-Purpose Graphics
Processing Units (GPGPU) has become a common
way to take advantage of the great power available
on video cards. The programs, known as ‘shaders’,
can be used to implement many things, including
the decryption of arbitrary data – and now there is
a virus that does exactly that. Peter Ferrie takes a
close look at W32/Ogee.
page 4

CLICK FRAUD MODULE
Click fraud has been one of the biggest concerns
for online advertisers for many years, and as
researchers invest effort into developing pattern
recognition and detection mechanisms to identify
the fraudulent patterns, so the attackers tweak and
evolve their click fraud methodologies. Wayne Low
takes a look at the internal workings of the click
fraud module of ZeroAccess.
page 8

PERSISTENT THREAT
The Pushdo botnet has been active in the wild since
January 2007, with three main generations seen to
date. Neo Tan and colleagues take an in-depth look
at three different variants of a new, more advanced
version of Pushdo’s second generation.
page 18

2 COMMENT

 Java security in the era of BYOD

3 NEWS

 Ransomware backs up its message

 CIOs spending more time on security

3 MALWARE PREVALENCE TABLE

 MALWARE ANALYSES

4 Ogee whiz

8 A deeper look into the ZeroAccess clickbot

18 Pushdo’s new second generation

27 TUTORIAL

 Shellcoding ARM: part 3

33 FEATURE

 Phishing and fraud: the make-believe industry

39 END NOTES & NEWS

2 APRIL 2013

COMMENT

Editor: Helen Martin

Technical Editor: Dr Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Perl Developer: Tom Gracey

Consulting Editors:
Nick FitzGerald, AVG, NZ
Ian Whalley, Google, USA
Dr Richard Ford, Florida Institute of Technology, USA

JAVA SECURITY IN THE ERA OF
BYOD
Recent in-the-wild exploitation of the CVE-2013-0422
and CVE-2012-3174 Java vulnerabilities (which together
I will refer to as the MBeanInstantiator.fi ndClass
vulnerability) has led me to some interesting thoughts
about security, especially in the era of BYOD.

Even though the use of Java inside web browsers is
dying out (at least it should be), the number of potential
targets is still large enough for malware writers to
search for vulnerabilities and put them into commercial
malware packages. With the ever increasing number of
devices that can run a web browser (and run Java), it is
likely that if even less than 1% of them are vulnerable, it
is worth the bad guys investing in vulnerability research.

When introducing important changes or new
features to software, it is important always to
remember to double-check your code. The root of the
MBeanInstantiator.fi ndClass vulnerability is a change
in refl ection API as a result of the introduction of new
functionality. The ability of the exploit to bypass policies
and security checks enforced by Java SecurityManager
comes from the fact that not all security-related code
has been upgraded to the new API correctly – in a
world where the complexity of software is increasing
constantly, and new releases have to be pushed out ever
more quickly, security often falls by the wayside.

How many host-based IDS systems trace and can block
the Java call ‘System.setSecurityManager(null)’ – which
removes all Java security from the process? How many
of those can stop the latest exploit without a signature
update?

Whether you love or hate Java, the fact is that the
number of programs that run in some kind of virtual
machine on our devices is rising. As computing power
and memory resources increase, this trend will become
ever more prevalent. Most of these technologies
(including .NET, for example) provide some form of
refl ection-like API and allow access to complex internal
runtime structures that reach a lot further than just a
bytecode representation. Things like security managers
and refl ection APIs are hard to get right from a security
perspective. When designing such a solution you have
to take into account many different situations, a lot of
which are hard to imagine without proper education and
relevant experience.

What does BYOD have to do with any of this? We
are now in the habit of converting all our programs
to mobile applications, which in many cases means
converting to HTML5 and running a tablet web browser
disguised as a dedicated application. HTML5 might be
immune to some of the problems that plagued previous
web technologies, but users tend to change their
behaviour over the years, and we should take the time to
learn from the past.

It concerns me greatly that my young daughter’s
favourite tablet game requires access to Wi-Fi, contacts,
the operating system, etc. I wonder how many hours
the game’s developer dedicated to pen testing this
game. Probably none. These apps are not written in
assembly language but in high-level frameworks which
have complex APIs like Java refl ection. If I were a bad
guy, I would target a high-profi le game that runs with
extremely high privileges (check out your app store,
most of them do). Now imagine that all the employees
at your workplace bring in the devices their children
have been playing on – complete with malware kits
already installed.

This is just the tip of the iceberg. Users are always
keen to install the latest apps on their devices, so
the constant patch/update cycle is alive and kicking.
However, the problem comes when the time frame for
fi xing a high-profi le vulnerability is big enough for
the bad guys to make a buck on it: in some cases even
a couple of hours can be long enough. Now I’m off to
delete pictures from my wife’s phone since they are
taking up too much space for the latest 1.6GB system
update.

‘It concerns me that
my daughter’s favourite
game requires access
to Wi-Fi, contacts, the
operating system, etc.’
Aleksander P. Czarnowski
AVET, Poland

3APRIL 2013

VIRUS BULLETIN www.virusbtn.com

NEWS
RANSOMWARE BACKS UP ITS MESSAGE
The German Federal Police (Bundeskriminalamt, or BKA)
warned last month about a piece of ransomware that uses
its logo and claims to have suspended use of the victim’s
computer on grounds of unauthorized network activity,
including the viewing of child pornography. To make
its claim seem more credible, the malware displays four
images of child pornography (which it alludes to having
found on the machine). A fi ne of 100 euros is demanded
(with payment to be made via digital payment service
uKash or Paysafecard) in order for an unlocking code to be
sent to release the machine. The BKA has been at pains to
point out that the message is the result of malware and is
not in any way associated with the police – and stresses that
under no circumstances should users pay the fi ne.

Meanwhile, another piece of police ransomware, dubbed
‘Kovter’, goes to even greater lengths to make its scam
seem more believable – by using information gathered from
the victim’s browser history.

The malware displays a (fake) warning purporting to be
from the US Dept of Justice, the US Dept of Homeland
Security and the FBI, claiming that the victim’s computer
has been used to download and distribute illegal content.
The message contains details including the computer’s IP
address, its host name, and a website from which the illegal
material was allegedly downloaded. The malware checks
the victim’s browser history against a list of pornography
sites, and if it fi nds a match it will display the details of
the site the user has visited in the message – thus making
it seem more credible. (If no match is found, the malware
simply includes the details of a random pornography site.)

Ransomware is not a new phenomenon – primitive,
fl oppy-disk-based ransomware appeared as early as 1989
– but with the perpetrators constantly refi ning their attack
mechanisms, both technically and in social engineering
terms, many experts have asserted that it will be one of the
top security concerns for 2013.

CIOs SPENDING MORE TIME ON SECURITY
A recent survey of 100 UK CIOs has found that four in 10
have increased their company’s security budget compared to
three years ago – and of those, more than a half (55%) have
increased it by more than 25%. On average, CIOs report
that they spend almost a quarter of their time managing IT
security, with 37% saying the time they spend managing
security has increased ‘somewhat’ or ‘signifi cantly’
compared with three years ago. The survey, conducted on
behalf of recruitment agency Robert Half Technology, found
that more than three quarters of CIOs consider managing IT
security to be challenging for their business.

Prevalence Table – February 2013 [1]

Malware Type %

Adware-misc Adware 8.84%

Autorun Worm 7.67%

Heuristic/generic Trojan 5.73%

Java-Exploit Exploit 5.12%

OneScan Rogue 4.62%

Sirefef Trojan 4.18%

Crypt/Kryptik Trojan 3.85%

Heuristic/generic Virus/worm 3.72%

Confi cker/Downadup Worm 3.48%

Injector Trojan 2.83%

Sality Virus 2.67%

Iframe-Exploit Exploit 2.51%

Encrypted/Obfuscated Misc 2.41%

Agent Trojan 2.38%

Dorkbot Worm 2.25%

bProtector Adware 1.81%

LNK-Exploit Exploit 1.80%

Potentially Unwanted-misc PU 1.65%

Downloader-misc Trojan 1.64%

Ramnit Trojan 1.53%

BHO/Toolbar-misc Adware 1.36%

Heuristic/generic Misc 1.31%

Virut Virus 1.25%

Brontok/Rontokbro Worm 1.06%

Crack/Keygen PU 1.04%

Backdoor-misc Trojan 1.04%

AutoIt Trojan 0.93%

Exploit-misc Exploit 0.92%

Zbot Trojan 0.80%

Phishing-misc Phish 0.77%

Jeefo Worm 0.77%

Somoto Adware 0.71%

Others [2] 17.34%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://www.virusbtn.com/Prevalence

VIRUS BULLETIN www.virusbtn.com

4 APRIL 2013

OGEE WHIZ
Peter Ferrie
Microsoft, USA

The programming of General-Purpose Graphics Processing
Units (GPGPU) has become a common way to take
advantage of the great power available on video cards. The
programs, known as ‘shaders’, have a language that has
evolved over the years to become something so high-level
that it resembles a dialect of the C programming language.
Many things can be implemented using shader programs,
including the decryption of arbitrary data, and now we have
a virus that does exactly that. We call it W32/Ogee.

STACKING THE DECK
The virus begins by pushing the RVA of the host entry
point onto the stack, along with a pointer to the Process
Environment Block. Both of these values are used in the
fi nal stage. The virus then retrieves the base address of
kernel32.dll. It does this by walking the
InLoadOrderModuleList from the PEB_LDR_DATA
structure in the Process Environment Block (the address of
kernel32.dll is always the second entry on the list). If the
virus fi nds the PE header for kernel32.dll, it resolves the
addresses of the required APIs.

The virus uses hashes instead of names, but the hashes are
sorted alphabetically according to the strings they represent.
This means that the export table needs to be parsed only
once for all of the APIs instead of once for each API, as is
common in some other viruses. Each API address is placed
on the stack for easy access, but because stacks move
downwards in memory, the addresses end up in reverse
order in memory. This becomes important later on.

The virus resolves the addresses of just four APIs from
kernel32.dll: GetModuleHandleA(), GetProcAddress(),
LoadLibraryA() and VirtualAlloc(), but then uses only
three of them (GetProcAddress() is not used). It uses the
LoadLibrary() API to load glu32.dll. The address of only
one API is resolved from here: gluOrtho2D(). The virus
uses the GetModuleHandle() API to access the copy of
gdi32.dll that is loaded implicitly by glu32.dll. It is
not clear why the virus doesn’t use the LoadLibrary()
API instead, to avoid the need to import the
GetModuleHandle() API. The virus resolves the addresses
of two APIs from gdi32.dll: ChoosePixelFormat() and
SetPixelFormat(). It uses the GetModuleHandle() API
again to access the copy of user32.dll that is also loaded
implicitly by glu32.dll. Once again, it is not clear why the
LoadLibrary() API was not used instead. The virus never
frees the DLLs, so the increased reference count should

not affect anything. In fact, even if the virus attempted to
free the DLLs, the behaviour of the nVidia video drivers,
for example, would prevent the action from succeeding
– the drivers intercept calls to the ChoosePixelFormat()
API, and create a thread which does not terminate until the
process does.

The virus resolves the addresses of fi ve APIs from
user32: CreateWindowExA(), DefWindowProcA(),
DestroyWindow(), GetDC() and ReleaseDC(). The virus
uses the GetModuleHandle() API to access the copy of
opengl32.dll that is loaded implicitly by glu32.dll,
and resolves the addresses of 21 APIs, including
wglGetProcAddress(). All of the resolved API addresses
from all of the loaded DLLs are placed on the stack.

The virus caches the value of the stack pointer in a register
in order to access the existing APIs as well as the APIs that
are subsequently loaded. This allows the virus to access
stack elements, such as the APIs, without having to keep
track of the value of the stack pointer. It also has a benefi t
in terms of the size of the code, provided that no more than
32 DWORD elements exist above or below the cached
pointer value. Of course, the value of the cached pointer
can be biased at the time it is calculated, such that it points
into the middle of the block of values to access, in order to
maximize the number of elements that remain within the
+/-32 DWORD range. There is also a secondary benefi t
here, but it is minor in comparison: it provides a neater
way to free an accumulation of stack parameters below the
cached value, simply by assigning the cached value back
to the stack pointer (biased by whatever value was applied
when it was cached in the fi rst place).

WINDOW OF OPPORTUNITY
The virus creates a window with a width and height of zero
pixels, using the class-name ‘EDIT’. The window is made
as small as possible because it cannot be made invisible
during the creation stage – it can only be hidden by the
use of an additional API call, which presumably the virus
writer wanted to avoid. ‘EDIT’ is the smallest built-in
class-name, and conveniently fi ts within a single DWORD.
The virus chooses a pixel format for the window which is
intended to be 32 bits of 8/8/8/0 in RGBA format, but there
is a bug in the structure layout. The bug probably results
from a miscounting of the zero bytes during the dynamic
structure construction, so the green shift is assigned eight
bits, and the blue channel is assigned zero bits instead.
Fortunately for the virus writer, this has no practical effect
on the behaviour of the virus code, because the virus does
not write anything to the window. In fact, none of the
channels needed to be specifi ed at all, and even the colour
bit-count could have been zero. The virus sets the returned

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5APRIL 2013

pixel format for the window, and uses it to create the GL
context.

It resolves the addresses of 18 GL APIs by name. Since
opengl.dll does not export these functions in a table that
the virus can parse, it must use the wglGetProcAddress()
API. Interestingly, the list of names does not contain an
explicit sentinel. Instead, the virus relies on the fact that a
double zero appears later in the code, with no single zero
in between. This makes the code extremely fragile – and
could cause some trouble for any wannabe virus writers
who try to alter it. The reliance on the double zero allows
the virus to fetch a ‘fake’ API address which is placed on
the stack automatically, and which is used as a placeholder
for the next API call. All this to save a single byte of code.
The virus creates a new framebuffer object and binds to it,
and then proceeds to use old-style rendering initialization,
via the MatrixMode() and LoadIdentity() APIs. These APIs
have been deprecated since OpenGL 3.0, but are needed to
maintain compatibility with older software. This is probably
another example of the extreme legacy support that the virus
exhibits later.

The virus creates a square orthographic projection space
that is equal to the size of the texture. This is used to hold
the texture data during projection mode. The size of the
texture is calculated by the fi rst-generation sample, and
never changes. To calculate the size of the texture, the virus
takes the size of its code, doubles it, takes its square root
to derive the size of the square that would hold the code,
divides the square root by four to produce the number of
DWORDs in that square, and then rounds up the result to
avoid truncation. It then reloads the model view identity.
Presumably, the virus avoided using the PushMatrix() and
PopMatrix() APIs because it would have increased the
number of APIs in use, and thus the number of elements on
the stack. Increasing the number of elements on the stack
could result in some elements being outside of the +/-
32 DWORD range from above.

The virus creates a viewport which is used to specify the
affi ne transformation between the internal representation
and the window that it has created. The virus requires a
one-to-one mapping between the two representations,
to avoid scaling or wrapping of the texture. If the virus
had created the window with the proper dimensions,
then the viewport would have been assigned the proper
dimensions too, when the context was created – in that case,
there would be no need to create the viewport explicitly.
Furthermore, the preceding initialization code could have
been replaced by just three API calls from glut32.dll.
However, despite that DLL being present on many
Windows systems, it is not installed by default – which,
presumably, is the reason the virus writer did not attempt to
make use of it.

A QUESTION OF TEXTURE
The virus creates three texture arrays: one to hold the
encrypted code, one to hold the decryption keys, and one
to hold the decrypted code. During the infection phase, the
roles of the fi rst and third texture arrays are reversed. The
virus binds the three texture arrays, and then sets parameters
for each texture: min fi lter, mag fi lter, wrap s and wrap t.
These parameters correspond to the fi lters for minifying,
magnifying and wrapping of a texture. Interestingly, none
of these parameters is needed, since the texture will never
need to be scaled, and it will always fi t within the co-
ordinate space. It seems likely that this code was copied
blindly from a tutorial. The virus defi nes the parameters for
a texture image, but does not point it to any data. Instead,
in non-ATI mode, the virus defi nes the parameters for a
texture sub-image which overlaps the parent image entirely.
This sub-image points to the texture data, but since the
sub-image completely covers the parent image, it is not
needed at all, and the data could have been supplied by
the parent image alone. It seems likely that this code was
also copied blindly from a tutorial. There is an indication
that the virus supports an alternative method for the texture
generation for ATI cards, but this has not been verifi ed.
Finally, the texture environment is set to copy the values
exactly, so that no blending or interpolation occurs.

FIFTY SHADES OF CODE
The virus creates a new program and shader object,
then binds the shader source to the shader object. The
shader source is very simple, and implements the formula
‘x=a+b*c’, where ‘a’ is the texture array that holds the
encrypted code, ‘b’ is the texture array that holds the
decryption keys, and ‘c’ is a randomly chosen modifi er
value. The shader source is compiled and attached to the
program object, then the program is linked. The virus
determines the locations of the three variables within the
compiled program in order to assign them the appropriate
values. It is unclear why the virus does this at this time,
given that they will still be available later – one possible
reason is that the register that is used to locate the variables
is used for a different purpose later. However, it seems that
the virus author overlooked the fact that there was a spare
register that could have been used instead. By using the
spare register, the virus would also have avoided the need
to cache the variable locations, and that would have saved
three stack elements.

PRIMITIVE GEOMETRY
The virus attaches the input and output textures to the
framebuffer object, and adds the program to the rendering

VIRUS BULLETIN www.virusbtn.com

6 APRIL 2013

pipeline. It activates a texture unit, binds the decryption
key texture array to it, and then assigns the texture index
to the ‘b’ variable. The virus assigns the modifi er value to
the ‘c’ variable. This value is selected during the infection
phase. The virus selects the colour buffer for the drawing
target, activates a texture unit, binds the encrypted code
texture array to it, and then assigns the texture index to the
‘a’ variable. The virus defi nes the vertices of the primitive
as a quadrilateral, defi nes the vertices for the square, and
then initiates the rendering (decryption). It selects the
colour buffer for the output, reads the decrypted code into
the buffer, and then decodes the decrypted code. The need
to decode the decrypted code is because the encoded form
uses 32 bits to store each value, but the virus requires only
the low 16 bits. After decoding the code, the virus runs
it. The code begins by detaching and deleting the shader
object, and deleting the program and framebuffer objects,
the texture arrays and the context, and the window. At this
point, the main virus body is reached.

SHARE AND ENJOY

The main virus body begins by allocating some memory
and copying itself to that memory. It registers a Structured
Exception Handler in order to intercept any errors that
occur during infection. It also initializes the random
number generator by reading a value directly from the
KUSER_SHARED_DATA structure in memory, instead
of using an API such as GetTickCount(). The reason for
this behaviour is because no APIs were resolved earlier
that could be used as the seed for the random number
generator, and the virus has not resolved any additional
APIs at this point. The virus chooses a random number
and assigns it to the modifi er value. It then generates
the table of decryption keys and encrypts the code at the
same time.

The Random Number Generator (RNG) is interesting in
itself, since it is neither the usual GetTickCount()-based
randomizer nor the Knuth-inspired algorithm. Instead,
the virus uses a complex RNG known as the ‘Mersenne
Twister’, named after the kind of prime number at its heart.
The virus author has used this RNG in almost all of his
viruses for which he requires a source of random numbers.

hAPI hAPI, JOY JOY

The virus uses the LoadLibrary() API to load kernel32.dll,
then it resolves the addresses of the required APIs. The virus
uses hashes instead of names here, too. After retrieving the
API addresses from kernel32.dll, the virus attempts to load
‘sfc_os.dll’. If this fails, then it attempts to load ‘sfc.dll’.

If either of these attempts succeed, then the virus resolves
the SfcIsFileProtected() API. The reason the virus attempts
to load both DLLs is that the API resolver in the virus code
does not support import forwarding. The problem with
import forwarding is that while the API name exists in the
DLL, the corresponding API address does not. If a resolver
is not aware of import forwarding, then it will retrieve the
address of a string instead of the address of the code. In the
case of the SfcIsFileProtected() API, the API is forwarded
in Windows XP and later from sfc.dll to sfc_os.dll.

CULTURAL AWARENESS

The virus retrieves both the ASCII and Unicode versions
of the required APIs. Due to the way in which the
virus uses the APIs, it must swap the address of the
CreateFileW() API and the CreateFileMappingA() API on
the stack, even though this goes against the alphabetical
ordering. The reason for the swap is that the virus requires
the ASCII and Unicode versions of any given API to be
sequential on the stack. This allows for transparent use of
the appropriate API.

Specifi cally, the virus calls the GetVersion() API to
determine the current Windows platform, and uses the result
to select the appropriate API set (ASCII for Windows 9x/
Me, and Unicode for Windows NT and later). Despite some
of the virus author’s more recent creations that support only
Windows NT and later, this virus still supports Windows 95!
This is because the infection engine used here is the same
as the one we fi rst saw the virus author use in 2002. In fact,
the only updates to the code are the addition of support for
Data Execution Prevention for Windows XP and later (by
setting the executable bit in the section characteristics),
and the DLL imagebase resolution for Windows 7 and later
(by walking the InLoadOrderModuleList list instead of the
Structured Exception Handler list).

The GetVersion() API returns a bit that specifi es whether
the platform is Windows 9x-based (1) or Windows
NT-based (0). The virus multiplies this value by four,
adds the stack pointer value to it, and places the result
in a register. Now, whenever the virus wishes to use an
API which exists in the two forms, it simply calls the
function relative to the register. As such, there is no need
ever to check for the platform again. For example, the
virus can call ‘[ebp+CreateFile]’, where ebp contains the
platform-specifi c value. If ebp is zero, the CreateFileW()
API is called, and if ebp is four, the CreateFileA() API
is called. This is why the reverse alphabetical order is
important for the API addresses on the stack, and why
the CreateFileW() and the CreateFileMappingA() API
addresses had to be swapped.

VIRUS BULLETIN www.virusbtn.com

7APRIL 2013

FILTRATION SYSTEM
After fi nishing with the API trickiness, the virus searches
for fi les. The virus searches for fi les in the current
directory and all subdirectories, using a linked list instead
of a recursive function. This is important from the point of
view of the virus author, because the virus infects DLLs,
whose stack size can be very small. The virus avoids any
directory that begins with a ‘.’. This is intended to skip
the ‘.’ and ‘..’ directories, but in Windows NT and later,
directories can legitimately begin with this character if
other characters follow. As a result, those directories will
also be skipped.

Files are examined for their potential to be infected,
regardless of their suffi x, and will be infected if they
pass a very strict set of fi lters. The fi rst of these fi lters
is that the fi le must not be protected by the System File
Checker that exists in Windows 98/Me, and Windows
2000 and later. Since directory searching on the Windows
9x/Me platforms uses ANSI paths, and since the
SfcIsFileProtected() API requires a Unicode path, the
virus converts the path from ANSI to Unicode, if
appropriate, before calling the API.

The remaining fi lters include the condition that the fi le
being examined must be a Windows Portable Executable
fi le, a character mode or GUI application for the Intel
386+ CPU, that the fi le must have no digital certifi cates,
and that it must have no bytes outside of the image.
Additionally, if the fi le is a DLL, then it must have an
entry point.

TOUCH AND GO
When a fi le is found that meets the infection criteria, it
will be infected. The virus resizes the fi le by a random
amount in the range of 4KB to 6KB in addition to the size
of the virus. This data will exist outside of the image, and
serve as the infection marker. Interestingly, despite its
reliance on exceptions during the infection process, the
virus does not check that exceptions are allowed by the
host – the NO_SEH (No Structured Exception Handling)
fl ag is not cleared in the header. If the fl ag is not cleared,
Windows will terminate the application at the moment an
exception occurs.

If relocation data is present at the end of the fi le, the virus
will move the data to a larger offset in the fi le and place its
own code in the gap that has been created. If no relocation
data is present at the end of the fi le, the virus code will be
placed there. The virus checks for the presence of relocation
data by checking a fl ag in the PE header. However, this
method is unreliable because even though the fl ag causes
Address Space Layout Randomization to be disabled if it

is set, Windows will ignore it and use the base relocation
table directly if the image must be relocated due to
address confl ict.

The virus increases the physical size of the last section
by the size of the virus code, then aligns the result. If
the virtual size of the last section is smaller than its new
physical size, then the virus sets the virtual size to be
equal to the physical size, and increases and aligns the
size of the image to compensate for the change. The virus
also changes the attributes of the last section to include
the executable and writable bits. The executable bit is
set in order to allow the program to run if Data Execution
Prevention is enabled, and the writable bit is set to allow
the decryptor to write directly to the image.

The virus alters the host entry point to point to the last
section, and saves the original entry point RVA in the
virus body. This allows the virus to support both Address
Space Layout Randomization and the proper infection of
DLLs.

Once the infection is complete, the virus calculates a new
fi le checksum, if one existed previously, before continuing
to search for more fi les. Once the fi le searching has
fi nished, the virus will allow the host code to execute by
forcing an exception to occur, which transfers control to
the handler that the virus registered. This technique appears
a number of times in the virus code and is an elegant
way to reduce the code size, in addition to functioning as
an effective anti-debugging method. Since the virus has
protected itself against errors by installing a Structured
Exception Handler, the simulation of an error condition
results in the execution of a common block of code to
exit a routine. This avoids the need for separate handlers
for successful and unsuccessful code completion. The
handler unregisters itself, converts the original entry
point from an RVA to a VA by adding the value from the
ImageBaseAddress fi eld in the Process Environment Block,
and then transfers control to it.

CONCLUSION

The use of the GPU presents unimaginable challenges for
anti-malware emulators, especially given that there are two
major execution environments which have quite different
behaviours, and there is no easy way to determine which
one is intended to be used. Fortunately, the requirement for
shaders to be stored in plain text in order to be compiled
means that they can be extracted by anti-malware engines
and treated like scripts. When combined with the data
that uses the shader, an acceptable detection becomes
reasonably straightforward, even in the absence of a
complete decryption.

VIRUS BULLETIN www.virusbtn.com

8 APRIL 2013

A DEEPER LOOK INTO THE
ZEROACCESS CLICKBOT
Wayne Low
F-Secure, Finland

Automated systems for clicking on advertisements that are
displayed online for monetary gain – essentially, click fraud
– has been one of the biggest concerns for online advertisers
for many years. The major advertising networks, such as
Google’s AdWords/AdSense, put signifi cant effort into
developing pattern recognition and detection mechanisms
to identify the click patterns typically used by spammers
and/or botnets engaging in click fraud.

To avoid being detected by such mechanisms, the
methodology for click fraud used by botnets such as
ZeroAccess (also known as clickbots) has been evolving
steadily. While there are plenty of comprehensive analyses
of ZeroAccess (e.g. [1]), there has been no detailed
elaboration of how the ZeroAccess clickbot works
internally – looking at its actions on the client machine and
how it performs the click fraud operation.

The purpose of this article is to dissect the internal workings
of ZeroAccess’s click fraud module and to highlight the
following details of the botnet’s click fraud implementation:

• How it uses a ‘traditional’ method to initialize socket
functions for overlapped I/O operations, which allows
simultaneous connections that can
also serve as an anti-debugging
feature.

• How it only targets specifi c
countries, most likely because it is
targeting country- or region-specifi c
advertising networks.

• How it includes functionality to
randomize the clicks performed,
preventing an unnaturally regular
pattern that could alert suspicion
from advertisers or the advertising
networks.

• How it uses a wi ndow-less browser
to mimic legitimate clicks, making
it appear as though the fraudulent
clicks came from real users.

Note: The analysis that follows uses a
click fraud sample (sha1: 223b257f1e
810bf106819c0ec33387712a56e175)
that was downloaded from the botnet in
January 2013 and differs from samples
examined in previous ZeroAccess-related

papers. As such, some details mentioned here, such as the
TCP port, will vary from previous reports.

CLICKBOT LOADER ROUTINE
The ZeroAccess malware can arrive on a client machine
via many different routes, but it does so most commonly
through a dropper that includes the malware as part of its
payload. Once the dropper has successfully infected the
machine, it downloads additional plug-in fi les – including
the click fraud module, which has the fi le extension ‘@’.

This module acts as a loader for the click fraud binary,
which is embedded immediately before the memcpy
function. The binary is compressed as a Microsoft Cabinet
fi le and encoded using a simple rotate left XOR algorithm
with the key 0x12345678:

key = 0x12345678u;

do{

 (DWORD)szClickfraudCode ^= key;

 key = key << 1;

 szClickfraudCode = (char *)szClickfraudCode + 4;

 --dwClickFraudCodeSize;

}while (dwClickFraudCodeSize);

After the decoding operation, the binary will be
decompressed using Cabinet API functions. The result of
the decompression consists of a single binary fi le named
noreloc.cod.

Figure 1: Decompressed embedded DLL module with shellcode.

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

9APRIL 2013

Noreloc.cod consists of a shellcode and an embedded DLL
fi le (see Figure 1). This binary fi le will be injected into the
svchost.exe process job created by the plug-in module.

In older ZeroAccess variants, the shellcode was only
found in the malware dropper. In more recent variants,
similar shellcode can also be found in the click fraud
module. Whatever the location, in general, it serves two
purposes:

• Deploying an anti-debugging feature

• Loading an embedded MZ PE executable fi le.

The shellcode will register a vectored exception handler
(VEH) using RtlAddVectoredExceptionHandler. An
exception must be triggered to invoke this exception
handler. In order to achieve this, the shellcode sets a
hardware breakpoint at debug register Dr3 through a

context structure. This context is then set to the thread using
ZwSetContextThread.

The purpose of VEH is to intercept ZwMapViewOfSection
in order to impersonate a legitimate process running
malicious code (see Listing 1).

LdrLoadDll has a function prototype as follows:

NTSTATUS NTAPI LdrLoadDll(

 IN PWSTR DllPath OPTIONAL,

 IN PULONG DllCharacteristics OPTIONAL,

 IN PUNICODE_STRING DllName,

 OUT PVOID *DllHandle

);

When the shellcode executes the function LdrLoadDll with
‘smss.exe’ (Session Manager Subsystem) as the DllName,
the hardware breakpoint on ZwMapViewOfSection will

.text:0100392F /*

.text:0100392F Set DEBUG_REGISTER (Dr3) to ZwMapViewOfSection function addr

.text:0100392F */

.text:0100392F xor eax, eax

.text:01003931 lea edi, [ebp+Context]

.text:01003937 mov ecx, 0B3h

.text:0100393C rep stosd

.text:0100393E mov [ebp+Context.ContextFlags], CONTEXT_DEBUG_REGISTERS

.text:01003948 mov [ebp+Context.Dr7], 40h ; L3 bit set => local breakpoint (dr3) enabled

.text:01003952 call GetZwMapViewOfSectionString

.text:01003957 push eax ; eax = “ZwMapViewOfSection”

.text:01003958 call _GetFunctionAddrByName

.text:0100395D mov [ebp+Context.Dr3], eax ; eax = Function address of ZwMapViewOfSection

.text:01003963 lea eax, [ebp+Context]

.text:01003969 push eax

.text:0100396A push 0FFFFFFFEh

.text:0100396C call _CallZwSetContextThread

.text:01003971 pop ecx

.text:01003972 pop ecx

.text:01003973 call _GetSmssExeString

.text:01003978 push 10h

.text:0100397A mov esi, eax

.text:0100397C pop eax

.text:0100397D call _StackspaceAlloc_0

.text:01003982 lea eax, [ebp+usSmss]

.text:01003985 push esi

.text:01003986 push eax

.text:01003987 call _CallRtlInitUnicodeString

.text:0100398C lea eax, [ebp+SmssAddrSpace]

.text:0100398F push eax

.text:01003990 lea eax, [ebp+usSmss]

.text:01003993 push eax

.text:01003994 xor esi, esi

.text:01003996 push esi

.text:01003997 push esi

.text:01003998 call _CallLdrLoadDll

.text:0100399D mov edi, eax

.text:0100399F lea eax, [ebp+Context]

Listing 1: Code that intercepts ZwMapViewOfSection.

VIRUS BULLETIN www.virusbtn.com

10 APRIL 2013

be hit. The reason the breakpoint is hit can be seen in the
following call stack:

0007cc08 7c91c3da 0000006c ffffffff 0007cce0
ntdll!ZwMapViewOfSection

0007ccfc 7c916071 00000000 0007cd88 00000000
ntdll!LdrpMapDll+0x330

0007cfbc 7c9162da 00000000 00000000 00000000
ntdll!LdrpLoadDll+0x1e9

0007d264 00090314 00000000 00000000 0007d618
ntdll!LdrLoadDll+0x230

WARNING: Frame IP not in any known module. Following
frames may be wrong.

0007d650 0009046f 00090688 0007ffa4 7c900000 0x90314

0007ffc0 7c816fd7 00000000 00000000 00000000 0x9046f

0007fff0 00000000 00090000 00000000 78746341 kernel32
!BaseProcessStart+0x23

If there is a debugger present and it handles the exception,
no VEH will be triggered – ZwMapViewOfSection will
continue execution and eventually, LdrLoadDll will return
the original value of smss.exe in DllHandle. If a debugger
is present, VEH will take over ZwMapViewOfSection’s
execution fl ow and return the attacker’s desired DllHandle
value to shellcode. This value holds the click fraud code and
will be executed at the end of the shellcode.

After the shellcode has accomplished its task, it will load
and pass execution control to smss.exe, as shown in a
process environment block (PEB) of svchost.exe (Listing 2).

The PEB result shows that the malware has successfully
disguised the Session Manager Subsystem running the click
fraud code; indeed the PEB output raises the following
questions:

• Why is a process address space allowed to contain two
executable images?

• Shouldn’t only one instance of smss.exe be running as
an independent process?

On the other hand, these occurrences could be used as
indicators that the machine has been infected.

YET ANOTHER HARDWARE BREAKPOINT
ANTI-DEBUGGING ROUTINE
Once the click fraud routine has gained execution control,
we immediately see another anti-debugging routine similar
to the previous one; this routine, however, is slightly more
straightforward. Again, it sets a hardware breakpoint at
debug register Dr3, pointing to the WSPStartup function
address (see Listing 3).

Upon calling WSASocketW, a breakpoint exception will be
triggered due to the previously set hardware breakpoint. If
there is no debugger attached, the malware has the chance
to handle the exception and execute its assigned code.

Otherwise, the debugger will stop the program execution at
the WSPStartup function, as shown in Figure 2. (Figure 2
also shows the call stack for WSASocketW.)

Figure 2: Call stack for WSASocket.

The intention of the exception handler is to initialize
Windows socket callback functions. These callback
functions are responsible for pre-processing the network
data (for example, the data sent to the C&C server) and
post-processing the data received from the server.

WHAT IS ‘Z00CLICKER3’?

ZeroAccess’s clickbot is a multi-threaded DLL module
that performs monetizing clicks. The main thread holds the
major codes that generate huge numbers of clicks at regular
intervals. It includes the following functionalities:

• Determines whether the clients originate from specifi c
geographic locations

• Retrieves click fraud URLs from the C&C server

• Executes click fraud based on the URLs retrieved from
the C&C server

• Sends click results to another remote server.

In order to carry out its click fraud routine effectively,
the module registers a class named ‘z00clicker3’, which
acts as a core function in the whole click fraud operation.
The main thread interacts closely with z00clicker by
sending messages to it. For instance, when the main thread
successfully receives ad URLs from the C&C server, it
sends a message to tell z00clicker to carry out the click
fraud routine. The main thread is run in a loop that will be
terminated under certain conditions.

Blocking client access by regions

One of the routines found in the main thread indicates that
z00clicker only targets certain countries and is capable of

VIRUS BULLETIN www.virusbtn.com

11APRIL 2013

kd> !peb

PEB at 7ffde000

 InheritedAddressSpace: No

 ReadImageFileExecOptions: No

 BeingDebugged: No

 ImageBaseAddress: 01000000

 Ldr 001a1e90

 Ldr.Initialized: Yes

 Ldr.InInitializationOrderModuleList: 001a1f28 . 001a35e0

 Ldr.InLoadOrderModuleList: 001a1ec0 . 001a35d0

 Ldr.InMemoryOrderModuleList: 001a1ec8 . 001a35d8

 Base TimeStamp Module

 1000000 41107ed6 Aug 04 14:14:46 2004 C:\WINDOWS\system32\svchost.exe

 7c900000 411096b4 Aug 04 15:56:36 2004 C:\WINDOWS\system32\ntdll.dll

 7c800000 46239bd5 Apr 16 23:52:53 2007 C:\WINDOWS\system32\kernel32.dll

 77dd0000 411096a7 Aug 04 15:56:23 2004 C:\WINDOWS\system32\ADVAPI32.dll

 77e70000 46923520 Jul 09 21:16:16 2007 C:\WINDOWS\system32\RPCRT4.dll

 5cb70000 411096ba Aug 04 15:56:42 2004 C:\WINDOWS\system32\ShimEng.dll

 6f880000 4110968e Aug 04 15:55:58 2004 C:\WINDOWS\AppPatch\AcGenral.DLL

 7e410000 45f02d7c Mar 08 23:36:28 2007 C:\WINDOWS\system32\USER32.dll

 77f10000 47bbcdd9 Feb 20 14:51:05 2008 C:\WINDOWS\system32\GDI32.dll

 76b40000 411096d6 Aug 04 15:57:10 2004 C:\WINDOWS\system32\WINMM.dll

 774e0000 42e5be93 Jul 26 12:39:47 2005 C:\WINDOWS\system32\ole32.dll

 77c10000 41109752 Aug 04 15:59:14 2004 C:\WINDOWS\system32\msvcrt.dll

 77120000 47559e94 Dec 05 02:38:12 2007 C:\WINDOWS\system32\OLEAUT32.dll

 77be0000 411096cf Aug 04 15:57:03 2004 C:\WINDOWS\system32\MSACM32.dll

 77c00000 411096b7 Aug 04 15:56:39 2004 C:\WINDOWS\system32\VERSION.dll

 7c9c0000 47216027 Oct 26 11:33:59 2007 C:\WINDOWS\system32\SHELL32.dll

 77f60000 45091361 Sep 14 16:31:29 2006 C:\WINDOWS\system32\SHLWAPI.dll

 769c0000 411096b9 Aug 04 15:56:41 2004 C:\WINDOWS\system32\USERENV.dll

 5ad70000 411096bb Aug 04 15:56:43 2004 C:\WINDOWS\system32\UxTheme.dll

 76390000 411096ae Aug 04 15:56:30 2004 C:\WINDOWS\system32\IMM32.DLL

 629c0000 411096aa Aug 04 15:56:26 2004 C:\WINDOWS\system32\LPK.DLL

 74d90000 411096ba Aug 04 15:56:42 2004 C:\WINDOWS\system32\USP10.dll

 773d0000 44ef1b33 Aug 25 23:45:55 2006 C:\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-Controls_
6595b64144ccf1df_6.0.2600.2982_x-ww_ac3f9c03\comctl32.dll

 5d090000 44ef1b36 Aug 25 23:45:58 2006 C:\WINDOWS\system32\comctl32.dll

 6b0000 505ebd88 Sep 23 15:43:04 2012 C:\WINDOWS\system32\smss.exe

 71ab0000 411096f2 Aug 04 15:57:38 2004 C:\WINDOWS\system32\WS2_32.dll

 71aa0000 411096f3 Aug 04 15:57:39 2004 C:\WINDOWS\system32\WS2HELP.dll

 78130000 480eb81c Apr 23 12:16:28 2008 C:\WINDOWS\system32\urlmon.dll

 78000000 480eb822 Apr 23 12:16:34 2008 C:\WINDOWS\system32\iertutil.dll

 72d20000 411096c6 Aug 04 15:56:54 2004 C:\WINDOWS\system32\wdmaud.drv

 71a50000 41109758 Aug 04 15:59:20 2004 C:\WINDOWS\system32\mswsock.dll

 ffd0000 40eb5d28 Jul 07 10:17:12 2004 C:\WINDOWS\system32\rsaenh.dll

 435d0000 480eb81d Apr 23 12:16:29 2008 C:\WINDOWS\system32\mshtml.dll

 746c0000 45516526 Nov 08 13:03:34 2006 C:\WINDOWS\system32\msls31.dll

 76bf0000 411096ca Aug 04 15:56:58 2004 C:\WINDOWS\system32\PSAPI.DLL

 662b0000 411096a0 Aug 04 15:56:16 2004 C:\WINDOWS\system32\hnetcfg.dll

 71a90000 411096fd Aug 04 15:57:49 2004 C:\WINDOWS\System32\wshtcpip.dll

 SubSystemData: 00000000

 ProcessHeap: 000a0000

 ProcessParameters: 00020000

 CurrentDirectory: ‘C:\WINDOWS\system32\’

 WindowTitle: ‘C:\WINDOWS\system32\svchost.exe’

 ImageFile: ‘C:\WINDOWS\system32\svchost.exe’

 CommandLine: ‘\\.\globalroot\systemroot\Installer\{5e0dd525-1703-4a82-4e5e-73ea03452de4}\U’

Listing 2: Smss.exe loaded in svchost.exe by shellcode.

VIRUS BULLETIN www.virusbtn.com

12 APRIL 2013

locating a victim’s geographic location. The initial country
code and time stamp of the malware’s installation date
are stored by another plug-in DLL, 80000000.@, in the
Extended Attribute (EA) of z00clicker’s root directory:

\\.\globalroot\systemroot\Installer\{5e0dd525-1703-4a82-
4e5e-73ea03452de4}\U

The country code is retrieved from a third-party GeoIP
location service provider every time the thread is executed.

.text:10002F8F push offset aWspstartup ; “WSPStartup”

.text:10002F94 push offset aSystem32Mswsoc ; “system32\\mswsock.dll”

.text:10002F99 call ds:LoadLibraryW

.text:10002F9F push eax ; hModule

.text:10002FA0 call ds:GetProcAddress

.text:10002FA6 mov edi, eax

.text:10002FA8 test edi, edi

.text:10002FAA jz loc_1000303B

.text:10002FB0 push offset _VEHExecWSPSendRecvFunc

.text:10002FB5 push 1

.text:10002FB7 call ds:RtlAddVectoredExceptionHandler

.text:10002FBD mov ebx, eax

.text:10002FBF test ebx, ebx

.text:10002FC1 jz short loc_1000303B

.text:10002FC3 push 2CCh ; Size

.text:10002FC8 lea eax, [ebp+Context]

.text:10002FCE push 0 ; Val

.text:10002FD0 push eax ; Dst

.text:10002FD1 call memset

.text:10002FD6 add esp, 0Ch

.text:10002FD9 lea eax, [ebp+Context]

.text:10002FDF /*

.text:10002FDF Set DEBUG_REGISTER (Dr3) to WSPStartup function addr

.text:10002FDF */

.text:10002FDF push eax ; Context

.text:10002FE0 push 0FFFFFFFEh ; ThreadHandle

.text:10002FE2 mov [ebp+Context.ContextFlags], CONTEXT_DEBUG_REGISTERS

.text:10002FEC mov [ebp+Context.Dr7], 40h ; L3 bit set => local breakpoint (dr3) enabled

.text:10002FF6 mov [ebp+Context.Dr3], edi ; edi = WSPStartup

.text:10002FFC call ds:ZwSetContextThread

.text:10003002 lea eax, [ebp+WSAData]

.text:10003008 push eax ; lpWSAData

.text:10003009 push 202h ; wVersionRequested

.text:1000300E call ds:WSAStartup

.text:10003014 test eax, eax

.text:10003016 jnz short loc_10003034

.text:10003018 push WSA_FLAG_OVERLAPPED ; dwFlags

.text:1000301A push eax ; g

.text:1000301B push eax ; lpProtocolInfo

.text:1000301C push IPPROTO_TCP ; protocol

.text:1000301E push SOCK_STREAM ; type

.text:10003020 push AF_INET ; af

.text:10003022 call ds:WSASocketW ; Triggered hardware breakpoint here

.text:10003028 cmp eax, 0FFFFFFFFh

.text:1000302B jz short loc_10003034

.text:1000302D push eax ; s

.text:1000302E call ds:closesocket

Listing 3: Code that sets up second anti-debugging hook.

If the installation date is older than one day, the country
code will be renewed. The renewal country code and current
date will be saved to the EA of the U directory again.

After the country code is determined, it
is compared against the predefi ned string
‘USGBAUCADEINESFRITSGMYNLSE’, which appears
to be a list of country codes. The click fraud operations
appear to be targeting online advertising networks that are
highly specifi c to these countries.

VIRUS BULLETIN www.virusbtn.com

13APRIL 2013

Country code Country name

US United States

GB Great Britain

AU Australia

CA Canada

DE Germany

IN India

ES Spain

FR France

IT Italy

SG Singapore

MY Malaysia

NL Netherlands

SE Sweden

Table 1: Country codes.

The predefi ned string also indicates that IP addresses from
those countries are permitted to contact the C&C server. If
it is determined that the victim’s system resides in a country
outside of this list, the main thread will be aborted and no
click fraud operation will be carried out.

In fact, it appears that even if researchers manage to
forge the country code by using proxy servers, the main
thread will not perform its click fraud operation as the
C&C server refuses to respond to any queries sent from
the client. Clearly, the remote server has another layer
of integrity checking to ensure that only actual infected
clients in the targeted countries can perform the click
fraud operation.

COMMUNICATING WITH THE C&C SERVER

Assuming the request from the victim machine is accepted,
the response from the C&C server consists of URLs needed
to perform the click fraud. An overview of how the clickbot
performs this is shown in Figure 3.

Before any of this can happen, however, the click
fraud module on the infected machine has to fi nd and
communicate with one of the C&C servers.

C&C server IP addresses

The C&C server’s IP addresses are encoded and stored
in the third IMAGE_RESOURCE_DATA_ENTRY in
the resource section of the 00000001.@ plug-in DLL fi le
saved in the U directory (Figure 4). These IP addresses
are decoded using a simple XOR algorithm with the key
0x2CB7F6D5.

Figure 3: The click fraud operation.

Figure 4: Encoded C&C server IP addresses.

Figure 5: Encoded (top) and decoded (bottom) TCP response.

VIRUS BULLETIN www.virusbtn.com

14 APRIL 2013

An IP address is chosen randomly from the pool of
addresses and stored in a global variable that will be used
later in the click fraud operation.

First contact with the C&C server

The fi rst step of the click fraud operation is to send the
victim system’s information, retrieved from the Windows
native API ZwQuerySystemInformation, to a C&C server
on TCP port 12757. Each C&C IP address obtained from
the resource section is attempted until a TCP response is
received from the server (see Figure 5).

After that, the data will be obfuscated using a XOR
algorithm with key 0x72 before sending it to the randomly
selected remote server that was previously stored in the
global variable.

To avoid network latency, the main thread is suspended
for a predetermined length of time specifi ed in
ZwDelayExecution. The suspended thread is resumed
either when the time interval expires or when an alert is
received from the ZwAlertThread API if the TCP data has
been received and decoded successfully (see Listings 5
and 6).

Z00CLICKER’S
FRAUDULENT CLICK
METHOD
The TCP response on port 12757 is
merely a raw data set that needs to be
pre-processed before the actual click
fraud happens.

Sorting the raw TCP data

The data consists of a set of
‘referrer’ URLs, each with at least
one accompanying ad URL, for
example: [referrer URL A][ad
URL A.1][ad URL A.2], [referrer
URL B][ad URL B.1] [ad URL
B.2]. After all the URL sets have
been parsed, a new array of data
structure is populated in which
every referrer string is associated
with an ad URL.

This data structure is then sorted
in descending order based on the
aggregate click counter of an ad URL
(at offset 0x04) (see Figure 6), which
is itself the result of the multiplier
value (at offset 0x08) multiplied
by the click counter at offset

0x0c+strlen(Referrer string) (see Listing 7).

The fi rst pair of referrer and ad URLs (on memory
addresses 0x963694 and 0x96370d, respectively) is selected
from the sorted data structure for use in the click fraud
operation. This is considered a preliminary step to reduce
the chances of having the clicks distributed too heavily on a
particular URL – an unnatural pattern that may lead to the
clicks being detected.

The referrer and ad URLs

It has been observed that the referrer URL always contains
the strings ‘afdt’ and ‘search’ in its parameters. Based on
our observation, the referrer appears to be the domain names
owned by the botnet operator, although we have not been
able to verify this as the registrant information has been
protected. These domains do, however, have one thing in
common: they are parked domains [2] that use very similar
structures and page designs, even down to the colours used.

The ad URL contains common strings such as ‘click’,
‘click2’, ‘clid’, ‘/feed/go.php’, etc., and is a redirection
URL hosted on ad redirection servers. The redirection
URL starts off a chain of HTTP redirections, and usually

00960054 8a 00 05 01 fb 01 00 00-4d 59 6f 00 ff 00 4d 6f MYo...Mo

00960064 7a 69 6c 6c 61 25 32 46-34 2e 30 2b 28 63 6f 6d zilla%2F4.0+(com

00960074 70 61 74 69 62 6c 65 25-33 42 2b 4d 53 49 45 2b patible%3B+MSIE+

00960084 37 2e 30 25 33 42 2b 57-69 6e 64 6f 77 73 2b 4e 7.0%3B+Windows+N

00960094 54 2b 35 2e 31 25 33 42-2b 2e 4e 45 54 2b 43 4c T+5.1%3B+.NET+CL

009600a4 52 2b 32 2e 30 2e 35 30-37 32 37 25 33 42 2b 2e R+2.0.50727%3B+.

009600b4 4e 45 54 2b 43 4c 52 2b-31 2e 31 2e 34 33 32 32 NET+CLR+1.1.4322

009600c4 25 33 42 2b 2e 4e 45 54-34 2e 30 43 25 33 42 2b %3B+.NET4.0C%3B+

Offset Description

0x00 Length of TCP data to be sent

0x02 Fixed value

0x03 Number of processor

0x04 Unknown value set by 80000000.@ plug-in DLL

0x08 Country code name

0x0a Available physical page size

0x0c Total physical page size

0x0e User agent string obtained via ObtainUserAgentString

Listing 4: System information that will be sent to the C&C server and explanation of its
data structure.

VIRUS BULLETIN www.virusbtn.com

15APRIL 2013

.text:10003F14 mov eax, edi

.text:10003F16 call _SendSystemInfoDataToCnC

.text:10003F1B push offset Interval ; Interval

.text:10003F20 push 1 ; Alertable

.text:10003F22 call ds:ZwDelayExecution

.text:10003F28 cmp eax, STATUS_ALERTED ; The thread will return here until
Interval is timed out or ZwAlertThread(TRUE) is called
.text:10003F2D jnz short loc_10003F35
.text:10003F2F push edi
.text:10003F30 call _ParseDecodedResponseFromCnCServer

Listing 5: Send the fi rst TCP connection to the C&C server and wait for response by suspending thread.

.text:10003AD8 cmp ecx, 54h ; Minimum response length

.text:10003ADB jbe short @@not_valid_response

.text:10003ADD add eax, 0Ch ; HTTP response content

.text:10003AE0

.text:10003AE0 @@loop_decode: ; CODE XREF: _DecodeCnCResponse+24j

.text:10003AE0 xor byte ptr [eax], 72h

.text:10003AE3 inc eax

.text:10003AE4 dec ecx

.text:10003AE5 jnz short @@loop_decode

.text:10003AE7 mov eax, [esi+78h]

.text:10003AEA push dword ptr [eax+0Ch] ; ThreadHandle

.text:10003AED call ds:ZwAlertThread

.text:10003AF3 @@not_valid_response: ; CODE XREF: _DecodeCnCResponse+Fj

.text:10003AF3 pop esi

.text:10003AF4 retn 4

Listing 6: Alert suspended thread after TCP response has been received and decoded.

009600a8 0000009d 0000000b 00000046 6f637469 F...itco
009600b8 69727970 2e746867 2f6d6f63 6466613f pyright.com/?afd
009600c8 39783d74 7a6f6662 37767669 39727930 t=x9bfozivv70yr9
009600d8 776e766f 78307a72 32663979 306d6c64 ovnwrz0xy9f2dlm0
009600e8 38637537 39727877 6d393668 7826676f 7uc8wxr9h69mog&x
009600f8 2633323d 26303d79 72616573 623d6863 =23&y=0&search=b
00960108 682b726b 746f7079 6b656568 0000d200 kr+hypotheek....
00960118 74746800 2f2f3a70 322e3539 312e3131 .http://95.211.1
00960128 312e3339 633f2f36 3d64696c 31613868 93.16/?clid=h8a1
00960138 34327370 307a7168 00000000 ps24hqz0....

Offset Description
0x00 Offset to next URL set
0x04 URL set identifi er
0x08 Multiplier to click counter
0x0c Referer string
0x0c+strlen(Referer string) Click counter
0x0c+strlen(Referer string)+4 Array of ads URL ended with fi ve null bytes

Listing 7: Raw data received from the C&C server and its data structure.

there are three HTTP redirections before the ad server – the
search engine platform operated by the advertising network
– is reached.

Click fraud with a window-less browser

A ‘traditional’ fraudulent click can be implemented in many
ways. The most common ones used are:

i. Intercepting Windows network APIs such as send,
recv, WSPSend, WSPrecv, HTTPSendRequest,
InternetReadFile, etc.

ii. Installing malicious browser add-ons to hijack
search results.

TDL, Redyms and Bamital are examples of malware
families that perform Windows network API interception.
Medfos and Simda are examples of malware that will install

VIRUS BULLETIN www.virusbtn.com

16 APRIL 2013

Figure 6: Parsed URL set data structure before (left) and after (right) sorting.

Example of referrer Example of ads redirection URL

http://folkartstore.com/?afdt=tccchozb2v52nxvwlheuh8wd3ir
3uovlp5c890kusagv&x=7&y=10&search=dentist+in+orange

http://95.211.216.156/?clid=gt71pprqpqz0

http://romantictouch.com/?afdt=4gn7s65pl6xrq256y98ze2z6r
q6jk4gxvrvwww5a5mbs&x=6&y=10&search=toner+skrivare

http://95.211.193.16/?clid=15p31pr02h3z0

http://fi llpositions.com/?afdt=lh03hi7eoj9tsh6lmub2vvxvxzid
gr1b0709e0yy1mco&x=18&y=18&search=industrial+hearin
g+loss

http://46.229.160.175/click2.php?c=3dknGLO5eGQYDPtHR
YWg434m%2FNfNnlFtyXhzoNlCY

http://itcopyright.com/?afdt=ix9ixvgg5a5hf6qonw5iq2nvjy3ti
7tazpx1e8gw30rl&x=6&y=11&search=power+juicing

http://216.172.54.*/feed/go.php?id=[random_GUI_
ID]&sid=[32_random_hexadecimal]&n=n-[random_
number]&tid=[random_number]&s=3548

Table 2: Example referrers and ad redirection URLs.

.text:10003C9A push ebx ; lParam = Parsed URL set data structure after sorting

.text:10003C9B push 1 ; wParam = Only 1 set of ads URL and referer to be sent

.text:10003C9D push 406h ; Msg = Send “click fraud action” message

.text:10003CA2 push dword ptr [eax+8] ; hWnd = z00clicker3 window

.text:10003CA5 call ds:SendMessageW

Listing 8: The main thread sends a ‘click fraud action’ message.

VIRUS BULLETIN www.virusbtn.com

17APRIL 2013

malicious browser extensions. However, ZeroAccess uses
neither of these methods.

ZeroAccess’s click operation is carried out by the
‘z00clicker3’ callback function when it receives a message
sent by the main thread (see Listing 8).

Upon receiving the message, z00clicker initiates an HTTP
GET request using a random fake host name (which
always contains the ‘.cm’ TLD, which was retrieved
from the fi rst TCP connection). The GET query is a
Base64-encoded string generated by fi rst running the
ad redirection URL through a XOR algorithm (without
the HTTP protocol prefi x, with key 0x69) and then
encoding the result using the algorithm. The GET request
is sent through the Windows socket API, together with
a fake host name, to the C&C server address instead of
sending the request to the non-existent host name. The
C&C server replies with an HTTP 303 [3] response that
contains the same ad redirection URL in the Location
HTTP header fi eld.

Figure 7: HTTP response 303.

The URL in the HTTP Location header fi eld indicates the
botnet’s ad redirection server address. A separate GET
request needs to be sent by the clickbot, which results in a
series of HTTP 301/302 redirections that will reach the ad
server.

An interesting thing found in z00clicker is its ability to
mimic the way users interact with the ad server. It is able
to do so without using Internet web browsers, which makes
it unusual among clickbots. This is implemented with the
following steps:

1. A COM object instance of IHTMLDocument2 is
created using CoCreateInstance.

2. A URL moniker is created from the ad URL using
CreateURLMonikerEx.

3. A bind context object named ‘__DWNBINDINFO’
is registered using ole32!CBindCtx::
RegisterObjectParam. An important parameter in this
function is a pointer to a data structure with various
defi ned fi elds, most crucially the callback functions

pointer. These callback functions ensure the attacker’s
desired referrer string is set in the HTTP header
before the ad redirection URL is loaded. Once the
click has completed, it reports the result of which ad
redirection URL has been clicked to another server on
UDP port 123.

Figure 8: Click fraud HTTP redirection chain.

Ad server

Ad control server

Ad redirection server

Clickbot client

VIRUS BULLETIN www.virusbtn.com

18 APRIL 2013

4. The ad redirection URL is loaded via the
IPersistMoniker::Load() function. Using this
COM method, the clickbot is able to emulate user
interaction with the websites by using a combination
of three or four HTTP redirections.

5. After the ad redirection URL is loaded, the ad
redirection server will be contacted, followed by
multiple HTTP redirections to reach the ad control
server. The ad control server determines which
destination ad server the traffi c will be forwarded to.
The random search query specifi ed in the referrer
string will be processed from the ad server.

A simplifi ed overview of the redirections and servers
involved in this process can be seen in Figure 8.

CONCLUSION

ZeroAccess has undoubtedly introduced a lot of innovative
ways of achieving its goals, so a dissection of the click
fraud module provides an interesting insight into how it
differs from other ‘traditional’ clickbots. Highlights of
the analysis include the country-specifi c targeting of the
ZeroAccess click fraud, and the methods it uses to perform
its fraudulent clicks without triggering the detection
mechanisms used by search engines and online advertisers.

One of the remaining challenges in analysing the click
fraud module involves circumventing the regional check
implemented by the clickbot on both the client and the
server’s side. Without more in-depth knowledge of how the
client interacts with the server, researchers – and the online
advertising networks – are hampered in recognizing and
developing detection algorithms to identify the click fraud
generated by ZeroAccess.

REFERENCES

[1] Wyke, J. The ZeroAccess Botnet – Mining and Fraud
for Massive Financial Gain. http://www.sophos.com/
en-us/medialibrary/PDFs/technical%20papers/
Sophos_ZeroAccess_Botnet.pdf.

[2] Wikipedia. Domain parking. http://en.wikipedia.org/
w/index.php?title=Domain_parking&oldid=540558
973.

[3] Wikipedia. HTTP 303. http://en.wikipedia.org/w/
index.php?title=HTTP_303&oldid=544821406.

[4] Microsoft Developer Network (MSDN).
IpersisMoniker::Load method.
http://msdn.microsoft.com/en-us/library/
ms775044(v=vs.85).aspx.

PUSHDO’S NEW SECOND
GENERATION
Neo Tan, He Xu & Kyle Yang
Fortinet, Canada

Pushdo is a persistent botnet, having been active in the
wild since January 2007. To date, there have been three
main generations. The fi rst generation of Pushdo used a
clear text (with many different parameters) HTTP request
to communicate with its C&C servers. This was encrypted
(using RC4) in the second generation. The second
generation of Pushdo also generated lots of fake SSL traffi c
to legitimate websites, trying to hide its communication
data amongst it. The third generation of Pushdo changed
dramatically: a binary data structure was introduced, along
with many custom encryption algorithms to secure the
communication with C&C servers. In this article, we will
mainly focus on three different variants of a new, more
advanced version of Pushdo’s second generation.

PUSHDO MAIN DOWNLOADER

Installation process

When the Pushdo bot is running on a compromised
machine, it will fi rst create the following registry entries and
randomly generate 0x10 bytes as key data in binary format:

HKCU\Software\Microsoft\Windows\CurrentVersion“App
Management” = [0x10 random bytes]

HKCU\Software\Microsoft\Windows\CurrentVersion“xoz
nacaxmejazap” = [0x10 random bytes]

‘Xoznacaxmeja’ and ‘zap’ are both hard-coded strings.
The ‘xoznacaxmeja’ string will be used as this instance’s
mutex name and new fi le name. After creating the infected
fl ag registry entries, it will copy itself to %userprofi le%\
xoznacaxmeja.exe and then create the following autorun
registry entry:

HKCU\Software\Microsoft\Windows\CurrentVersion\Run
“xoznacaxmeja” = “[%userprofi le%\xoznacaxmeja.exe]”

Then, it will load additional modules and try to
communicate with its C&C servers.

Extract and deploy the ad clicker module

The bot starts to decrypt data in a specifi c location of
the binary into a binary template of the clicker module
without the domain names, and decrypts another location
of the binary into a list of domains; in both cases the data

MALWARE ANALYSIS 3

http://www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/Sophos_ZeroAccess_Botnet.pdf
http://en.wikipedia.org/w/index.php?title=Domain_parking&oldid=540558973
http://en.wikipedia.org/w/index.php?title=HTTP_303&oldid=544821406
http://msdn.microsoft.com/en-us/library/ms775044(v=vs.85).aspx

VIRUS BULLETIN www.virusbtn.com

19APRIL 2013

is decrypted using XORs with changing
modifi ers. The decrypted domains will be
copied to the clicker’s binary template at a
specifi c location; in this case, it is marked
using the string ‘XNG7’. This tag is later
used by a function in Pushdo and the clicker
module to update the domain list. After the
binary template has been fi lled with the
domain names, it is loaded into memory and
executed as a child thread of the bot.

Legacy communication routine

The bot decrypts the data – which contains
not only the C&C server domain names,
but also the names of many other legitimate
domains. Obviously, the author is trying to hide the C&C
server domain amongst the many other legitimate domain
names to make it hard to pick out during static analysis.
It also tries to hide its communication data amongst other
legitimate website traffi c when undergoing dynamic analysis.

Next, it randomly chooses one domain from the list,
appends ‘https://’ to create an Internet connection
and sends an ‘Accept: */*’ request to it. If there
is no response, or if the response size is less than
0x400 bytes, it will pick another domain randomly
from the list and try that one, or else it will try to
parse the response. It looks for a fake HTML tag
pattern that is base64-encoded in the Pushdo binary:
‘PGltZyBzcmM9ImRhdGE6aW1hZ2UvanBlZztiYXNlNjQs’.
After base64 decoding, it becomes the following:
<imgsrc=”data:image/jpeg;base64,

If it fi nds a match for this pattern in the response data, it
will decrypt the data that comes after the comma and then
inject it into a newly created svchost.exe process. This
is probably one way of providing a PPI (Pay Per Install)
service, since we didn’t see its own module or update binary
going through this. But, in certain conditions, there is a
possibility for it to get a binary update or new module in
this way. However, we believe that this routine belongs to
the older version of Pushdo, where it was used as the main
communication protocol. In the next part, we’ll dissect the
communication protocol and encryption algorithm for the
three more recent variants of the Pushdo bot.

Communication protocol and encryption
algorithm

Find real C&C server domain

Previously in Pushdo’s second generation, before the fi nal
contact with the server there was a routine involving another

list of domains hiding another C&C server among them.
However, this has gone from the latest version (found in
December 2012). This time, contact with the server is
persistent, as the bot wants to keep exchanging information
with or downloading updates from it. The C&C server is
once again hidden in a second decrypted domain list. The
bot calculates each domain’s hash and compares them to a
pre-stored hashing value: 9D0B0400h (Figure 1). The one
that matches is the C&C server.

Form sending data

After gathering information from the victim’s PC, the
bot prepares a message for sending. The structure of the
plaintext message evolved between October and December
2012. There are three different data structures.

struct _PlainTextMessageV1andV2 {

 DWORD staticDword1; //static 01

 DWORD staticDword2; //may change in
 //variants

 DWORD staticDword3; //static 01

 DWORD staticDword4; //static 00

 DWORD staticDword5; //static 00

 DWORD staticDword6; //may change in
 //variants

 BYTE[0x10] randGenData; //random generated
 //data

 BYTE[0x10] localGenData; //generated data
 //using volume info
 //and adapter info

 DWORD installFlags; //bit fl ags

 SendBlockV1 dataBlock;

}

Struct _SendBlockV1 {

 DWORD size;

 BYTE domainHash[size];

}

The fi rst variant contains some static data with the hash
value of the C&C domain at the end. The size of the

Figure 1: Domain arlexdar.com matches the hashing value.

VIRUS BULLETIN www.virusbtn.com

20 APRIL 2013

dataBlock is always 4 because the calculated hash value of
the C&C domain is a DWORD. The second variant contains
a little more information than the fi rst in the data block – the
bot’s binary hash value and the server domain string are also
included:

Struct _SendBlockV2 {

 DWORD size;

 DWORD domainHash;

 DWORD botBinHash;

 BYTE serverDomain[size-8];

}

The latest variant has undergone several changes and
contains even more data:

struct _PlainTextMessageV3 {

 DWORD staticDword1;

 DWORD staticDword2;

 DWORD staticDword3;

 DWORD staticDword4;

 DWORD installFlags; //bit fl ags

 QWORD reserved;

 DWORD staticDword5;

 DWORD botBinHash; //hash of the bot binary

 BYTE serverDomain[0x28];

 SendBlockV1 mutexName;

 SendBlockV1 parentName; //parent process

 SendBlockV1 botPath; //current fi le path

 SendBlockV1 clsid; //CLSID generated using
 //local system info

 BYTE garbage[0 to 0x50];

}

The trend is to include an increasing amount of local
environment information so that the server is able to decide
how to deal with the bot. For example, in Figure 2, if the
server checks the parent process, which is ‘fl yODBG.eXe’
(the ‘legitimate’ parent process is svchost.exe), it can easily
deduce that the bot sending this message is being debugged.

The message shown in Figure 2 contains a lot of garbage
data, some of which is hard coded in the bot binary – such
as the fi rst four DWORDs and the eighth DWORD – and
some of which is generated randomly, such as the 10 bytes
at the end (highlighted in grey). The random garbage

data can be any size between 0 and 0x50 bytes. The fi rst
meaningful part starts at the 5th DWORD at location +0x10
of this structure: 0x1D, which describes the installation log.
It is in bit fl ags format and has not changed much between
the variants. Starting from the lowest to the fi fth bit, they are
described as shown in Figure 3.

Thus, 0x1D in our example tells the C&C server that the
autorun registry entry is set, the mutex ‘xoznacaxmeja’
has been created, the AppManagement and the
xoznacaxmejazap registry entries are set, that this system
can access urlmon GZIP decompress APIs, and that the
CRC32 hash of the current bot executable is calculated.
The DWORD 0xED4e4133 at location +0x20 is the hash
– this can be used to identify if the executable has been
tampered with. It can also be used to check if the current
bot needs an update. Starting at +0x24 is the container for
the C&C server domain name, the (fi xed) size of which is
0x28 bytes. Starting at +0x4C are the strings/value, with
the fi rst byte describing the length of each. In order, they
are: the mutex name (0xC bytes), the current bot’s parent
process (0x1C bytes), the full path of the bot (0x1A bytes),
a hard-coded value (0xC bytes) and the CLSID generated
using the victim’s system volume information and adapter
information (0x24 bytes).

Encryption routine

The encryption routine is the thing that differs the most
between the variants. In the fi rst and second variants, the
encryption uses RC4 and is defi ned as follows:

Figure 3: Installation bit fl ags.

Figure 2: An example of the prepared message to send to
the server in the latest (third) variant.

VIRUS BULLETIN www.virusbtn.com

21APRIL 2013

struct _MessageToSend V1and2{

 DWORD magic;

 DWORD key;

 DWORD hash;

 BYTE encryptedMessage[totalContentSize - 0x8];

}

The fi rst DWORD is generated using a random generating
algorithm such that the remainder of dividing 0x1ECB will
always be 1. The second DWORD is the RC4 key, and the
third is the hash value of the message body.

Figure 4: Encrypted message in fi rst and second variants.

However, it gets complicated in the third variant. The
encryption process involves two steps. At fi rst, it makes
use of the Microsoft Cryptography functions from the
ADVAPI32 library. After calling CryptAcquireContext
with pszContainer = ‘Microsoft Enhanced Cryptographic
Provider v1.0’ to acquire the new key container, it calls
CryptGenKey to generate the RC4 session key. Then it
calls CryptExportKey to export the RC4 session key to a
PLAINTEXTKEYBLOB struct. The structures are defi ned
as follows:

struct_PLAINTEXTKEYBLOB {

 BLOBHEADER hdr;

 DWORD dwKeySize;

 BYTE rgbKeyData[];

}

struct_BLOBHEADER {

 BYTE bType;

 BYTE bVersion;

 WORD reserverd;

 ALG_ID algid;

}

Figure 5 shows an example of the exported
PLAINTEXTKEYBLOB. The yellow highlighted area is
the BLOBHEADER, describing the format and algorithm
of the key (0x6801 means CALG_RC4), and the green
highlighted area is the RC4 session key.

Next, it calls CryptImportKey to import a 0x94 bytes
keyblob that is hard coded in the binary. This is the C&C
server’s public key. Again, it calls CryptExportKey to export
the RC4 session key, but this time it is exported into the

SIMPLEBLOB data structure and using the imported server
public key to encrypt the exporting key. The SIMPLEBLOB
data structure is defi ned as follows:

struct _SIMPLEBLOB {

 BLOBHEADER hdr;

 ALG_ID algid;

 BYTE encryptedKey[0x80];

}

Figure 6 shows an example of the exported SIMPLEBLOB.
The DWORD 0xA400 (highlighted in orange) describes
that this exported key is encrypted using RSA public
key encryption. The encrypted session key’s algorithm is
CALG_RC4 and highlighted in green.

Figure 6: Exported SIMPLEBLOB.

Thus, the RC4 session key has been exported twice, and on
the second occasion it is encrypted by the server’s public
key so that it can be used for communication. It calls
CryptAcquireContext again to create a new key container,
imports the plaintext RC4 key and uses it to encrypt the
message. In fact, the plaintext key exporting and importing
is not necessary since it can just re-use the previously
created key handle that is pointing to the session key
generated by CryptGenKey. Although the exported key
is encrypted using the server’s public key with RSA, it
seems the author still wanted to ‘double-tap’ it to make
sure the key is secure. It appends four DWORDs to the
beginning of the exported SIMPLEBLOB, as shown in
Figure 7. They are, in order: magic word, key to encrypt
the keyblob, reserved DWORD for hashing the value of
the following data, and keyblob size. The magic DWORD

Figure 5: Exported PLAINTEXTKEYBLOB.

VIRUS BULLETIN www.virusbtn.com

22 APRIL 2013

value is generated randomly but using an algorithm that
means the remainder of dividing 0x1ECB will always
be 2.

Figure 7: Structure that will encrypt the keyblob.

Next, it encrypts the keyblob with its size using the
algorithm described in the following pseudo code, XOR
with modifi ed key:

i = 0;

 j = 0;

if (data &&dataSize&& key)

 {

sKey = 0x19660D * key + 0x3C6EF35F;

totalCount = dataSize / 4;

if (dataSize / 4 > 0)

 {

 j = 4 * totalCount;

do

 {

data[4 * i] ^= sKey;

sKey = 0x19660D * sKey + 0x3C6EF35F;

 ++i;

 }

while (i<totalCount);

 }

remain = dataSize % 4;

if (dataSize % 4) //if the data size can’t be
 //divided exactly by 4

 {

temp = 0;

remainStart = (data + 4 * i);

memcopy(&temp, (data + 4 * i), remain);

temp ^= sKey;

memcopy(remainStart, &temp, remain);

 j += remain;

 }

 }

Finally, it appends the encrypted message to the end of
the encrypted keyblob and calculates the hash value of the
block. The calculated hash value is stored in the reserved
place at +0x8 of this structure. The packet it is going to send
to the C&C server can be defi ned as follows:

struct _MessageToSendV3{

 DWORD magic;

 DWORD key;

 DWORD hash;

 DWORD sessionKeyLenEncrypted;

 BYTE encryptedSessionKey[sessionKeyLen];

 BYTE encryptedMessage[totalContentSize-0x10-
sessionKeyLen];

}

Figure 8: Entire packet after encryption.

Searching and parsing response data

The response from the C&C server tries to disguise
the commands in an HTML page. The commands are
surrounded by HTML comment tags and a special tag string
that looks like this:
<!--<imgsrc=”data:image/jpeg;base64,[C&C server
commands] “/>-->

The server commands are encoded into base64 so they can
be transported properly in the HTML page. Then the same
decryption routine as used by the older version of Pushdo
is called. After base64 decoding, the commands block
contains a fake JPEG header, of size 0x14 bytes. After
removing the fake header, the data structure is exactly the
same as the encrypted sending packet.

In the fi rst and second variants it is the same as
struct _MessageToSend V1and2: the magic DWORD, RC4
key, hash value of the message and the message body. After
being decrypted using the RC4 key, the plaintext response
message structure is defi ned as:

struct _ReceivedCommandsV1andV2 {

 DWORD staticDword1;

 DWORD staticDword2;

 DWORD staticDword3;

 DWORD staticDword4; //they are the same as
 //the sending message

 DWORD cmdType;

 DWORD reserved1;

VIRUS BULLETIN www.virusbtn.com

23APRIL 2013

 DWORD reserved2;

 DWORD dataSize;

 BYTE data[dataSize]; //the downloaded fi le
 //may be compressed

}

The fi rst 0x10 bytes are the same as the sending message.
The cmdType is also in bit fl ags format, and indicates what
to do with the data fi le (which we will explain in detail in
the third variant since it doesn’t change much).

In the third variant, the encrypted responding message
contains the magic DWORD, key to encrypt the keyblob,
hash of the following data, encrypted session key and
encrypted message.

Decrypting response data

The decryption procedure is the reverse of the encryption
we described above:

1. Check the magic word and the hash value.

2. Use the XOR algorithm to decrypt the DWORD
that contains the length of the session key.

3. Use the same algorithm to decrypt the session key.

4. Calculate the size of the rest of the data using the
total content size minus 0x10 and the size of the
session key, and import the session key to decrypt
the commands.

The decrypted message structures are described as follows:

struct _ReceivedCommandsV3 {

 DWORD cmdCount;

 _Command command[cmdCount];

}

struct _Command {

 DWORD cmdSize;

 DWORD cmdType;

 DWORD isUpdate;

 DWORD cmdFlags; //bit fl ags

 BYTE data[cmdSize-0x10]; //the downloaded
 //fi le may be
 //compressed

}

The ‘cmdType’ can be either 1 or 2. 1 means this data is a
download module. If it is 2, this means the following data

is an update, then if ‘isUpdate’ is 1, it will write the data
to a temporary fi le and execute it. It will also uninstall the
current Pushdo completely, including the registry entries.
The ‘cmdFlags’ are defi ned as shown in Figure 9.

If the ‘Do Injection’ fl ag is not set, it will create a thread
to load the data fi le into memory then call its entry point.
If the ‘Is not active’ fl ag is set, the command will not be
processed. If the ‘Re-extract Clicker’ fl ag is set, it will
re-extract the clicker from the current binary, including the
domain lists. This is useful when the data fi le can access
and update the current bot’s domain list (located after
the tag ‘XNG7’) and the clicker. If the ‘Inject if parent
terminated’ fl ag is set, it will create a thread to monitor the
current process. If it is terminated for any reason, the thread
will create and inject svchost.exe with the data fi le. If the
‘Is GZIP-compressed’ fl ag is set, this means the data fi le is
compressed.

For example, in Figure 10, the cmdFlags = 0x1D (which is
00011101 in binary). It will decompress the data, inject it to
svchost.exe, create a monitor thread to monitor the current
process, and re-extract/deploy the clicker.

Figure 10: Beginning of the decrypted received commands.

SPAM ENGINE – CUTWAIL

Cutwail is the spam module that Pushdo usually downloads.
It can either be injected into a process or spawned as a child
thread of Pushdo, depending on the cmdFlags. It creates an
autorun registry entry:

HKEY_CURRENT_USER\Software\Microsoft\Windows\
CurrentVersion\Run\Regedit32 = %Windows%\system32\
regedit.exe

Figure 9: cmdFlags.

VIRUS BULLETIN www.virusbtn.com

24 APRIL 2013

and will drop itself to that location so it can run
independently.

Load pre-confi guration

All of the confi guration except for the spam template is
hard coded, and most of the crucial/sensitive strings are
encrypted in the binary. When Cutwail fi rst loads the
settings, it calls a routine with the index of the setting
as the parameter to get the decrypted string value. For
example, 0xDA is the index of the C&C server of this
spam module, so getValue(0xDA, *p_out) outputs a
pointer to string ‘46.4.98.52’ top_out. This routine is
also used to decrypt strings such as SMTP commands,
library names and system process paths. The decryption
algorithm is byte-XOR with a 0x22 bytes string:
‘rwivhuo3xAKDmVJm7NVCSEkT9MpqVypKd’
for the fi rst 0 to 0x1CF4 byes (index 0 to 0xD9)
and byte-XOR with another 0x46 bytes string:
‘91GzKGXXQ6kXFHrgKKJkTIuP1AQjbrxs8l0vW2xoXK
43HahzP8JCT4FzVE0cFTm4xYGsQ’ for the rest (index
0xDA to the end). The key strings vary across different
variants. Figure 11 shows part of the decrypted string
records. The highlighted area is the record at index 0. Each
record is 0x22 bytes long for the records from index 0 to
0xD9 and 0x46 bytes long for the records from index 0xDA
to the last. After decryption, the string ends with a null byte
indicator, ‘00’, and the rest of the 0x22/0x46 records are
junk bytes.

Figure 11: Decrypted strings.

The pre-confi guration includes addr, port, knockdelay,
checksmtpdelay, maxconn, udpsockcount, constconnect,

udprecvtimeout, maxudptry, and the confi gid is set to 1.

It spawns some threads checking connections to legitimate
SMTP servers such as mxs.mail.ru and gmail-smtp-
in.l.google.com, monitoring max UDP connections,
checking DNS responses from root name server querying
.com, .org and .de. After spawning a thread checking if
there is a spam template available to spam, it connects its
C&C server to get commands.

Communicates with Cutwail C&C servers

The C&C server is hard coded in the binary. The structure
of the message being sent is defi ned as follows, size 0x1C
bytes:

struct _SendData {

 DWORD currInstallVer;

 DWORD localIP;

 DWORD altPort;

 DWORD confi gVer;

 DWORD emaillistID;

 DWORD localOSVer;

 WORD settingFlags;

 WORD respSMTPcount;

}

The currInstallVer is the Cutwail version installed in the
current system. It is initially zero and will be updated by the
C&C response with cmdType 5, then written to the registry
key:

HKEY_CURRENT_USER\SOFTWARE\Microsoft\
OSVersion

The localIP is the local machine’s IP, which can be a LAN
IP. The altPort is the alternated port this module uses, which
is hard-coded to 0x1AC. The confi gVer is the confi guration
version. This will be updated if the response from the C&C
server contains confi guration settings (cmdType = 7). The
emaillistID is the email list ID, which will be updated if
the response from the C&C server contains a new email list
(cmdType = 8). The localOSVer is the return value of the
API call: GetVersion. The respSMTPcount is the count of
active responses from the legitimate SMTP servers in the
check SMTP thread. The settingFlags is defi ned as shown in
Figure 12; only four bits are used.

Figure 12: settingFlags.

VIRUS BULLETIN www.virusbtn.com

25APRIL 2013

The ‘Is Preset Loaded’ bit is set if the pre-confi guration is
loaded successfully. The ‘Restart’ bit is set if the machine
is restarted. The ‘ReverseDNSSuc’ bit is set if the local
machine’s external IP can be reverse-DNSed to get the
domain name – if not, the ‘ReversedDNSFail’ bit is set.
These two bits are not set if the C&C server cannot obtain
the local machine’s external IP. The receiving data structure
is defi ned as follows:

struct _RecvData {

 DWORD cmdType;

 BYTE data[];

}

The responding comdTypes are
always in the order: 7, 5, 8, 6 and 1.
After receiving the response from
the server, it will append or modify
the sending message to indicate that.
Missing any one of them from the
server will result in the bot falling
back to send the previous request.

1. If cmdType is 7, the data
contains the new confi guration.
Figure 13 shows an example of
the response.

 The new confi guration is
saved in the memory with
the new ‘confi gver’. This
confi guration update can also
update the C&C server IP and
port. Ports 25 (SMTP) and 443
(SSL) are preferred so that the
communication blends into
other traffi c.

2. If the cmdType is 5, the data[] will be 0x10 bytes
long. The fi rst DWORD in data[] is the current
installed version, which will update the value
under the registry HKEY_CURRENT_USER\
SOFTWARE\Microsoft\OSVersion. It will also
update the currInstallVer fi eld of the next message
sent to the C&C server. The second DWORD is the
current machine’s external IP. This is resolved from
the C&C server so it is not the LAN IP if the local
machine is behind a router. It will run a reverse DNS
look-up against this IP to get the current machine’s
domain name. This affects the lowest two bits of the
settingFlags of the next sending message. The domain
name is then stored and may be used in spam later.
The third DWORD of the data[] is a timestamp of this
message; the last DWORD is always 0.

3. If the cmdType is 8, the data[] contains the list of
email addresses which will be used by the spam
bot as senders. These email addresses appear to be
dummies. The fi rst DWORD of the data[] is probably
the id of this list, so that the lists can be stored and
indentifi ed in memory. It updates the emaillistID fi eld
of the next sending message. The count of the email
addresses in each list is a fi xed number: 5,022. Each
email record starts with a 00 byte and ends with 00
00FF FFFFFF.

Figure 13: cmdType 7 contains confi guration.

Figure 14: Decrypted spam template.

VIRUS BULLETIN www.virusbtn.com

26 APRIL 2013

4. If the cmdType is 6, the data[] contains the vendor ID
and the template. The ID is the fi rst DWORD of the
data[].

 The example shown in Figure 14 is a template of
some kind of scam (probably pyramid selling) in
Russian, the email body is in the Koi8-r character
set. The template variables are enclosed in brackets.
For example, {Sem_tel7} is the topic and a
telephone number and {799_d} is the date. The bot
appends the vendor ID to the end of the next sending
message to indicate that the template has been
received.

5. If the cmdType is 1, the data[] contains the email
addresses that will be used as spam receivers. The
fi rst DWORD of the data[] is the same vendor ID,
followed by the size of the email address entries in
bytes.

Figure 15 shows an example of the beginning of cmdType
1, the domain name begins with FF FFFFFF 00 000000,
and the user name begins with the symbol ‘|’. These email
addresses are the victim email accounts. After receiving this
command, the bot appends the domains to which the spam
emails have been sent, and keeps receiving more victim
email addresses.

Figure 15: Receiver emails (the domain is altered to protect
the victim).

Encryption & decryption algorithms

Both the encryption and decryption of the sending and
receiving data use the same algorithm as described by the
following pseudo code. When it is sending, it uses the key
string ‘turyqioikleraotsorpnehcoote’ backwards and appends
a DWORD 0 in front of the encrypted message to make
it a total size of 0x20 bytes. When it is receiving, the fi rst
DWORD is the total message size.

total = 0;

keyLength = 0x1D;

sKey[keyLength] = “etoochenprostoarelkioiqyrut”;//
when receiving it uses “turyqioikleraotsorpnehcoote”

j = 0;

while (dataSize != 0)

{

if (dataSize<= keyLength)

 {

 data[total] = ~ data[total];//not operation

 total++;

 dataSize--;

 }

else

 {

 j = 0;

 k = total;

 //xor key string backwards

 for (j = 0; j <keyLength; j++)

 {

 temp[j] = sKey[keyLength-1-j]^data[total];

 total ++;

 }

total = k;

 //reverse result

for (j = 1; j <= keyLength; j++)

 {

 data[total] = temp[keyLength - j];

total ++;

 }

if((k&1) != 0)//total is odd

 {

total = k;

for (j = 0; j <keyLength; j++)

 {

data[total] = ~ data [total];//not operation

total++;

 }

 }

dataSize -= keyLength;

 }

}

OTHER DOWNLOADED MODULES
During December 2012, Pushdo downloaded only one
module other than Cutwail – a DDoS module which had its
own self-updating function.

CONCLUSION
The author(s) of Pushdo are not likely to stop the
development of their bot. In the future, we will probably
see more modules being downloaded by new versions of
Pushdo.

VIRUS BULLETIN www.virusbtn.com

27APRIL 2013

SHELLCODING ARM: PART 3
Aleksander P. Czarnowski
AVET Information and Network Security, Poland

In the previous parts of this series we discussed the
background information needed to understand the principles
of ARM shellcoding [1] and dissected some previously
crafted shellcode [2]. In this follow-up piece we will look at
some more advanced topics such as polymorphic shellcode
and methods for its analysis.

ANALYSING POLYMORPHIC ARM
SHELLCODE

All of what we’ve done so far has been in preparation for
the more challenging task of analysing polymorphic ARM
shellcode with IDA Pro. Before we go any further, let’s start
with a bit of theory.

Polymorphic shellcode is clearly possible on ARM, and the
principles are almost the same as in the case of
x86/x64 architectures. For the decryption loop, simple
operations such as subtraction, addition and exclusive-or are
used. The latter is the most commonly exploited due to its
nature (the encryption loop becomes a decryption loop on
the next run).

The basic polymorphic shellcode layout is the same on
ARM as on x86 – see Figure 1.

Figure 1: Generic ARM polymorphic shellcode layout.

It is worth mentioning that the decryption loop can be
attached to any other basic shellcode – this means that
encrypted shellcode can repeat the GetPC operation and
switch back and forth between ARM and Thumb mode,
ignoring any actions taken earlier by the decryption loop
(also called a decryptor). There are two issues each time
self-modifying code emerges: cache and memory protection
– but both, for various reasons, are beyond the scope of this
tutorial.

Obviously, to fully analyse polymorphic shellcode you have
to decrypt the encrypted sections. This can be done using
one of four different approaches:

1. Try to execute the decryption loop in order to decrypt
the rest of the code.

2. Try to emulate the decryption loop in order to decrypt
the rest of the code.

TUTORIAL
3. Try to rewrite the decryption algorithm and

re-implement it with IDC or IDAPython.

4. Try to brute force the decryption loop and check
for reasonable disassembly output (for example, in
userland ARM shellcode for Linux, you can expect
there to be an SVC call).

In many cases the fourth method may not be feasible. On
the other hand, executing code on real hardware can be
tricky. Rewriting the decryption loop can be done quickly
in the case of simple algorithms and a single decryption

Figure 2: Loading dump of the shellcode into IDA (note the
‘Processor type’ setting).

Figure 3: Create ROM section to load the shellcode dump.

VIRUS BULLETIN www.virusbtn.com

28 APRIL 2013

layer, but with an increase in algorithm complexity and/
or number of encryption layers, this could become time
consuming and prone to error. The emulation approach
seems promising, but unfortunately the ida-x86emu plug-in
[3] does not support ARM platforms. However, IDA Pro
provides another emulation option for ARM architectures:
the qemu plug-in. Qemu comes with a gdb stub which can
be controlled remotely from IDA Pro. We will be using
this option from this point on, but fi rst we need to fi nd a
reasonable target. As a comparison to our previous target
we will use different, polymorphic execve() ARM Linux
shellcode [4]. At 78 bytes it is not too long for our exercise:

1. Compile the shellcode wrapper and dump the
shellcode to fi le with the IDAPython script provided.
Alternatively, you can extract the shellcode bytes
directly from the source fi le (which will be quicker).

2. Start a new IDA Pro session and open your
polymorphic shellcode dump.

3. When loading the binary fi le, set the processor to
ARM, as shown in Figure 2 – IDA will prompt for
this setting automatically.

4. After selecting the processor family IDA will ask
for the memory layout, as shown in Figure 3. Create
a ROM section and place it at an even address that
will be easy to calculate (remember all ARM CPU
instructions are either two or four bytes long – this
is quite different from x86/AMD64 architecture).
0x1000 seems to be a good choice since ARM should
not be keeping any structures in this address space.
Do not use 0x00 or a very high address since you can
locate your code at the interrupt vector table. Also
set the ‘Load address’ fi eld in the ‘Input fi le’ frame
accordingly. Note that IDA will use the fi le size to
calculate the ‘ROM size’ and ‘Loading size’ fi elds.
Unless you have a nop slide that you don’t want to
analyse, set the ‘File offset’ form fi eld to 0x0. This
will load the whole dump at the starting address.

5. IDA will warn you of its inability to detect an entry
point (see Figure 4). Accept this, since we assume
that 0x1000 is our entry point.

6. When the fi le fi nishes loading, convert the shellcode
dump into code (‘C’ key from disassembly view).

7. Now select GDB from the ‘Debugger’ menu, as
shown in Figure 5 (note that if you were to load an
ARM ELF fi le you would get a third option: Remote
ARM Linux/Android debugger).

8. Next, select ‘Debugger’->‘Debugger options…
’->‘Set specifi c options’ and in the ‘GDB
confi guration’ window (see Figure 6) tick the ‘Run
the program before debugging starts’ check box.

This will enable the ‘Choose a confi guration’ button.
Click it. This will cause the next window to appear,
as shown in Figure 7: ‘Choose the device name’.

9. Select the ‘QEMU:ARM Versatile/PB’ option and
click ‘OK’.

10. The command line and initial SP fi elds in the
‘GDB confi guration’ window should now be fi lled
automatically. Click the ‘OK’ button. Make sure that
you have the correct localhost and ports settings, as
shown in Figure 8.

Figure 4: IDA can’t automatically identify the entry point in
our binary fi le.

Figure 5: Choosing GDB as debugger.

Figure 6: Confi guring gdb/qemu plug-in: step 1.

VIRUS BULLETIN www.virusbtn.com

29APRIL 2013

11. Start the debugger by pressing F9 – you will see a
couple of warnings regarding the dangers of running
untrusted code etc. Accept those and wait for a
message informing you that the debugger has been
connected successfully (Figure 9).

12. The PC register should be pointing at the
0x1000 address and parts of the code should be
disassembled, as shown in Figure 10.

13. Now enable ‘Instruction tracing’ from the
‘Debugger’->‘Tracing’ menu – later this will allow us
to analyse how the shellcode decrypted the rest of its
sections. We are now ready to analyse the shellcode.

One of the nice features of recent versions of IDA is the
‘proximity view’ [5]. We can use it to visualize the execution
fl ow of the shellcode, as shown in Figure 11. Note that
without additional manual help, IDA will not be able to
recognize the shellcode entry point as a function and therefore
the graph view will not be available. However, we can use the
graphs feature when we enter the decryption loop starting at
0x1008 (sub_1008). Take a look at the graph in Figure 12.

What is missing from the graph is a loop exit using the BXHI
LR instruction based on the R4 register value comparison.
Nevertheless, IDA does a great job of graphing out of the
box. This is another thing we could fi x either manually or
through a plug-in, but in this case there is no point.

Now we can start debugging using the ‘Single-Step’ option
(F7 key). First, the GetPC trampoline construction must

Figure 7: Confi guring gdb/qemu plug-in: step 2.

Figure 8: Confi guring gdb/qemu plug-in: step 3.

Figure 9: Connection to debugger has succeeded.

Figure 10: Entry for the decryption loop of polymorphic shellcode.

VIRUS BULLETIN www.virusbtn.com

30 APRIL 2013

be executed. Figure 13 shows the instruction trace log
(thanks to the ‘Instruction tracing’ option which we enabled
immediately after running the debugger).

Figure 13: ARM GetPC type trampoline code.

The fi rst R6 register is loaded with a pointer to the second
jump. Since the instruction occupies four bytes we are
in ARM mode. Next, the BX branch instruction is used
to transfer execution fl ow to the 0x102C address where
another branch (with link) instruction (BL) jumps back to
0x1008. Since the BL instruction stores the return address
in the LR register, LR will now point to the encrypted data
section of the shellcode.

Next is the decryption loop, as shown in Figure 12, and
a quick analysis, even without debugging, reveals that it
is based on an exclusive-or operation with a key value of
0x58. The following instruction:

0x1018 LDRB R5, [LR,R4]

uses the LR register as a base pointer to the shellcode data
section, and this instruction:

0x1020 STRB R5, [LR,R4]

writes back data after XOR’ing with 0x58. The LR register
is used again as a base pointer. The R4 register is used as a
counter and, together with the LR register, forms the fi nal
pointer for the decryption process. This is why the previous
BX->BL trampoline construction was used.

Single stepping through the encryption loop will not provide
us with any more details, so we can use the fi rst loop
iteration to set a breakpoint at the fi rst decrypted instruction.
Using the LR register value we know that the correct address
is 0x1030. Place a breakpoint at this address and run a
decryption loop (F9 key). The fi rst decrypted instruction is:

0x1030 ADR R3, 0x1039

Move the cursor down and convert the rest of the
unencrypted shellcode to code (‘C’ key). The next
instruction is a well known BX:

0x1034 BX R3 ; loc_1038

This time BX is not really used as a branch instruction
but just to switch from ARM to Thumb mode again. This
is because the BXHI instruction switched from Thumb
to ARM when exiting the decryption loop. Starting from
0x1038 (the fi rst instruction following the BX branch),
another well known construction is used to load registers
with proper values to prepare for the system call (the SVC 1
instruction). The data section containing the string for the
system call is located after the SVC instruction starting
from 0x1046. Since the R7 register in the Linux calling
convention contains function number (0x0B), in this case
we already know this is execve().

If you continue single stepping and try to execute the SVC
instruction, the PC register will point to the 0x000C address
(Figure 14).

This address contains the ANDEQ R0, R0, R0 instruction,
which is encoded as four zeros. In a true system, however,
this location is part of the ARM exception vector table.
An example of how this table should be set up is shown in
Figure 15. Obviously this table can be used by malware
to hook critical system operations as well. The table is set
up by fi rmware during the power-on cycle, however our
system is just a simple emulation based on qemu with no
kernel image or bootloaders/fi rmware image loaded. For
more advanced analysis tasks you can either set up your

Figure 11: Using the ‘proximity view’ option to show
trampoline code at the beginning of the shellcode.

Figure 12: Decryption loop graph.

VIRUS BULLETIN www.virusbtn.com

31APRIL 2013

Figure 14: Empty exceptions vector table.

Figure 15: Example of a properly set up exception vector table.

Figure 16: List of segments created for qemu debugging session.

VIRUS BULLETIN www.virusbtn.com

32 APRIL 2013

own table or load true fi rmware and kernel images into the
appropriate address space. Also note that the exception
vector table can start either from the beginning or from the
top of system memory – the location on system start-up
is a confi gurable option for ARM and can differ from one
ARM-based System on Chip (SoC) to another.

When we reach the end of the shellcode we should save our
work. In order to synchronize the IDA disassembly database
with the debugger and import the decryption loop results we
need to edit segments by opening the ‘Segments’ sub-view
(Shift+F7) and pressing Ctr+E after selecting the ‘ROM’
segment, as shown in Figure 16.

In the ‘Change segment attributes’ window (Figure 17)
tick ‘Loader segment’ and make sure that the ‘Debugger
segment’ checkbox is disabled, since debugger segments
are discarded automatically when leaving the IDA debugger.
Now we are ready to take a memory snapshot. When you
choose the ‘Take memory snapshot’ option, a message
(Figure 18) will be displayed: select ‘Loader Segments’ in
order to save proper code areas into the database. Note that
if you skip the segment edition this option would not be
available unless some segments were marked earlier for one
reason or another. Your work is done.

Figure 18: Saving the debugging results.

ALPHANUMERIC SHELLCODE
You might be wondering whether alphanumeric shellcode
is possible on ARM architecture. The answer is yes, and
there are a few good publications that discuss it [6–8]. [8]
shows how to analyse the shellcode presented in [6] using
IDA Pro. The analysis process does not differ from what has
been discussed so far and all techniques described apply to
alphanumeric shellcode as well.

SUMMARY
ARM can be a strange platform both for newcomers and
for diehard x86 assembly language programmers. Once
you get a grasp of a few differences and tricks it becomes
nice, easy and predictable. Sooner or later you will come
to love the constant length of instructions. Compared with
x86 there is quite a limited set of options for writing reliable
shellcode for particular operating platforms. This may be
disappointing if you are looking for a long-term challenge
because after a certain number of shellcodes the next
thousand will look similar if not exactly the same – but isn’t
that the case with other types of malware as well?

REFERENCES
[1] Czarnowski, A. Shellcoding ARM. Virus Bulletin,

January 2013, p.9. http://www.virusbtn.com/pdf/
magazine/2013/201301.pdf.

[2] Czarnowski, A. Shellcoding ARM: part 2.
Virus Bulletin, March 2013, p.14.
http://www.virusbtn.com/pdf/
magazine/2013/201303.pdf.

[3] ida-x86emu plug-in. http://www.idabook.com/.

[4] Linux/ARM - Polymorphic execve(“/ bin/sh”,
[“/bin/sh”], NULL); - XOR 88 encoded - 78 bytes.
http://www.exploit-db.com/exploits/14190/.

[5] Proximity Viewer. IDA Pro online help.
https://www.hex-rays.com/products/ida/support/
idadoc/1626.shtml.

[6] Younan, Y.; Philippaerts, P. Alphanumeric RISC
ARM Shellcode. Phrack #66.
http://www.phrack.org/issues.html?issue=66&id=12.

[7] Skochinsky, I. Debugging ARM code snippets in
IDA Pro 5.6 using QEMU emulator.
http://www.hexblog.com/?p=111.

[8] Younan, Y.; Philippaerts, P.; Piessens, F.; Joosen,
W.; Lachmund, S.; Walter, T. Filter-resistant Code
Injection on ARM. http://dl.acm.org/citation.cfm?
id=1653665.

Figure 17: Editing shellcode segments in order to bring
debugger results into IDA disassembly database.

http://www.virusbtn.com/pdf/magazine/2013/201301.pdf
http://www.virusbtn.com/pdf/magazine/2013/201303.pdf
http://www.idabook.com/
http://www.exploit-db.com/exploits/14190/
https://www.hex-rays.com/products/ida/support/idadoc/1626.shtml
http://www.phrack.org/issues.html?issue=66&id=12
http://www.hexblog.com/?p=111
http://dl.acm.org/citation.cfm?id=1653665

VIRUS BULLETIN www.virusbtn.com

33APRIL 2013

PHISHING AND FRAUD: THE
MAKE-BELIEVE INDUSTRY
Bianca Dima & Alin Damian
Bitdefender, Romania

The digitization of shopping and banking, the increasing
use of social media, and the popularity of the Internet have
made users more vulnerable to phishing, identity theft
and other forms of online fraud. In 2012, phishing caused
losses of $1.5 billion globally, according to security fi rm
RSA [1], and the number of attacks launched under this
umbrella last year was 59% higher than in the previous
year.

Cybercriminals’ earnings are likely to be a lot higher, as
these fi gures were determined based only on registered
incidents. Statistics from the Internet Crime Complaint
Center [2] reveal that the most common complaints refer
to police impersonation scams, identity theft and advance
fee fraud.

The majority of e-threats are commercially driven, but
differences exist between the targets and methods used
to trick unwary users. Phishing, for instance, may have
immediate, direct monetization objectives, but the initial
goal of other fraudulent schemes, such as employment
scams, may be identity theft or the recruitment of money
mules.

This paper aims to outline some subtle differences between
two of the fastest growing online traps, phishing and fraud,
and to shed light on the mechanisms that fool people into
placing their sensitive data and money into the hands of the
attackers.

1. PHISHING

1.1 Defi nition

Phishing is a money-making social engineering scam
whereby users have their personal details stolen through
fake websites that mimic the websites of real organizations.
Hundreds of fake websites are created and thousands of
users are tricked every day.

Credit card details, social security numbers, usernames
and passwords are among the many details mined through
phishing attacks. Relying on fi nely tuned persuasive
techniques and heavily exploiting the psychological
triggers of online behaviour, phishing has been around for
over 16 years, and is likely to remain a top threat for the
foreseeable future.

1.2 How do they do it?
Scammers create a sense of urgency by warning users that
they will have their accounts suspended or lose their money
or personal data, or by making an incredible-sounding offer
that is set to expire within a short period (e.g. 24 hours).

The sense of urgency encourages victims to respond to
the bait, in doing so delivering their sensitive details to the
criminals’ databases.

According to McGrath and Gupta’s study on the
modi operandi of phishing [3], a phishing domain is live
on average for three days, 31 minutes and eight seconds.
Though phishing attack numbers continue to climb,
the median attack duration (uptime) decreased in 2012
from 15.3 hours per attack to 11.72 hours per attack
[4]. The RSA H1 2012 report [5] concluded that ‘Had
attack medians remained the same, the monetary losses
to phishing in H1 2012 would have exceeded US$897
million.’

1.3 Industries at gunpoint
Financial institutions, payment and retail services are the
industries that are most commonly targeted by phishers.
According to Bitdefender, some of the most well known
brands used for phishing purposes include PayPal,
Visa, Citibank, Bank of America, AOL, Wells Fargo and
MasterCard – but cybercriminals also keep popular social
networks and gaming platforms at gunpoint. The list of
affected companies grows continuously, taking in countless
brands and industries.

Most phishing web pages are placed under hacked URLs
and are spread rapidly through spam, social media scams
and poisoned web searches. In addition, highly targeted
attacks such as spear phishing or whaling are directed at
specifi c organizations and individuals.

More than half of the respondents of a Proofpoint survey
[6] in June 2012 believed that, in the past year, their
organization had been targeted by a spear phishing attack
designed specifi cally to trick its employees.

The US is still the country that hosts the greatest number of
phishing URLs, which can be explained by the fact that it
hosts most of the world’s websites and domains. According
to the Bitdefender GeoIP analysis, the UK, Brazil, Canada
and Germany are also the source of a signifi cant number of
phishing sites.

1.4 Phishing arsenal
Cybercriminals employ an extensive range of techniques to
acquire sensitive information. In addition to typosquatting

FEATURE

VIRUS BULLETIN www.virusbtn.com

34 APRIL 2013

and manipulating subdomains, phishers also use link
descriptions that suggest a trustworthy destination: in
more complex attacks, the descriptive text is displayed
when users hover the cursor over a link in the browser.
An alternative trick uses JavaScript commands, which
enable phishers to place an image of a genuine URL over
the address bar, thus obscuring the phishing URL, or to
open a new address bar containing a legitimate URL, once
again obscuring the real phishing address.

Another tactic exploits vulnerable servers that host several
websites. By adding a phishing page to each of the domains
on the server, hundreds of phishing URLs can be created
at different online locations and the scam will spread more
effi ciently.

Users may also be brought to phony websites
through ‘tabnabbing’, a computer exploit and phishing
technique which silently redirects them to the phishing
location after manipulating multiple browser tabs.

2. FRAUD
In the past couple of years, an increasing number of
fraudulent websites have appeared impersonating hotels,
banks, law fi rms, shops, online casinos, rental and escrow
fi rms. Categories of scams include advance fee fraud,
employment scams, conference fraud, money loan, pay per
click, piracy, lottery and pet scams.

These types of fraud tend to be more targeted than (classic)
phishing and the attackers make their money from small,
gradual attacks. The average term for the registration of a
fraudulent domain is one year.

2.1 Fake banks
Fake banks reign supreme in the online fraud category.
Many of the websites are made to look very realistic,
with logos and banners that are identical to those of their
genuine counterparts, as well as very similar names and
URLs.

Some of the recent fake bank URLs we have seen include
capitalfi nancebank.com, bancogulfbank.net,
emspostonline.com and bancosantanderempresas.com.

While carefully orchestrated bank phishing requires the
exact design of a genuine website to be copied, fake bank
sites tend to focus on copying logos and banners, giving a
twist to the look and feel of authentic sites. Fake banks may
be used to bolster the claims of a scammer who is usually
engaged in other fraud such as a standard advance fee fraud.
The fi nancial brands that fake websites are currently most
commonly based around are HSBC, Santander, Wells Fargo
and Sun Trust.

2.2 Fake law fi rms
Some scammers register websites for fake legal fi rms
– claiming to specialize in particular areas of practice such
as petroleum and gas, banking, fi nance or taxation. They
then attract users with links spread through targeted attacks.
Commonly, fake law fi rms contact victims with demands
for payment of fi nes, debt collection, cease-and-desist
notices and so on.

2.3 Fake hotels
Fraudsters also set up fake hotel websites. One of the most
common ways in which these are used is in job scams

Figure 1: A fake bank site.

Figure 2: Fake law fi rm claiming its ‘sole mission is the
total satisfaction of [its] clients’.

VIRUS BULLETIN www.virusbtn.com

35APRIL 2013

– through the ‘careers’ section of the site, innocent users
are tempted with the prospect of job vacancies. Fake hotel
sites are often used to recruit money mules via this method:
victims unwittingly transfer illegally gained money on
behalf of the scammers to make it untraceable, or become
accomplices for a percentage of the revenues.

Other ways in which fake hotel sites are used to generate
income for the scammers include asking victims to make an
advance payment for the booking of a (non-existent) room.

Many fake websites are even better crafted than some
legitimate ones, but an attentive eye will catch clues as to their
lack of authenticity. For instance, one fake hotel site listed a
phone number that was located in the US, while the address
took users to a park in Montréal, Canada (see Figure 3).

2.4 Lottery scams
Lottery scams are among the most common scams on the
Internet, targeting users who are apparently unaware that
they fi rst have to play the lottery in order to win it.

Fraudsters inform victims that they have won a lottery or
sweepstake, but in order to receive the lump sum payout,
they must fi rst pay some taxes and processing fees. Lottery
scams tend to be more effective when promoted through
fake websites rather than widespread spam campaigns.

2.5 Russian oil scams
This fraud targets people looking for investment
opportunities. Some Russian oil scams use fake banks to

issue bogus cheques and facilitate advance fee payments
which the scammers claim are customary in Russia.
Criminals may also set up fake law fi rms, shipping
companies and even government websites to give the
process a more legitimate feel. The purpose is to fool the
victim into paying advance fees for (non-existent) oil or
other commodities.

2.6 Rental scams
Fake property rental sites are used by scammers to lure
users searching for accommodation. Fake listings are
posted to various property search sites, which link to fake
sites that are made to look genuine by including property
descriptions, photographs and addresses. The scammers
make their money by insisting that the prospective tenants
make a payment (often via money transfer) and/or submit
their personal details, either as a reservation fee for the
property or as an upfront payment of housing expenses.

2.7 Fake shops
As sales fi gures for online shopping continue to rise, users
should be aware of an increasing number of fake stores.
Fraudsters attract victims by offering low prices, incredible
offers that will expire within a short time frame, or claiming
to have goods in stock that are in short supply elsewhere.

2.8 Escrow scams
Internet escrow services are used as an intermediary
between buyers and sellers when they don’t know (or trust)

Figure 3: Fake hotel site: the address given for the hotel
was in Montréal, Canada, the map shows Central Park in

New York, and the phone number is a US number.

Figure 4: Rental fraud site.

VIRUS BULLETIN www.virusbtn.com

36 APRIL 2013

each other. With the growing popularity of these services,
scammers are setting up an increasing number of fake
escrow websites to deliver ‘secure’ transactions.

The scammer poses as the recipient of money/seller of
goods and then requests the use of an escrow service to
complete the transaction – which is, in fact, the scammer’s
own service. The victim sends money to the escrow service,
at which point the scammer closes the site down, pocketing
the money.

Genuine escrow sites are specifi cally set up to handle
users’ money, so the involvement of third parties such as
MoneyGram or Western Union should be a warning sign.

Figure 5: Fake escrow service.

Another sign to look out for is a secure server connection
(SSL) – legitimate escrow websites will use secure
connections to protect their customers, so it is wise to
check for https:// in the browser address bar. (However,
fraudulent websites have been known to ‘borrow’ the logo
of SSL verifi cation services such as VeriSign, so users
should always check that the site is listed by the relevant
authentication company.)

2.9 Advance fee fraud

Advance fee fraud (also known as ‘foreign money transfer
scams’ or ‘419 fraud’) is a method used by scammers to
make quick money and sometimes to steal users’ identities.
It involves the victim paying an initial sum of money
(sometimes in several instalments), on the understanding
that not only will it be refunded, but that they will receive a
share of a much larger sum once the initial transfer (usually
to a foreign country) has been made. Western Union and
MoneyGram are the two most popular money transfer
services used by scammers wanting to obscure their trail.

Victims may be duped into parting with their money after
receiving a ‘business proposal’, usually describing some

urgent need to transfer a large sum of money out of the
country, and requesting assistance in doing so.

2.10 Pet scams
Buying or adopting pets online has become a risky business,
as scammers have infi ltrated legitimate services. They
advertise animals (often particularly popular breeds, at very
competitive prices) via various online services and usually
claim that the animal has to be shipped to the recipient,
requiring various fees to be paid up front. Of course, in
reality the animals do not exist.

2.11 Loan scams
Loan scammers trick victims with the lure of very low
interest rates. They entice them to fake websites, then
request advance fees for setting the loan up, citing reasons
such as insurance, deposits, certifi cates or registration.

2.12 Employment scams
In employment scams, scammers posing as recruitment
agencies or employers offer attractive job opportunities but
require the applicant (victim) to make advance payments
for things such as work visas, travel expenses, fi nder’s fees
and so on. Names, addresses, banking information and
other personal details obtained throughout the ‘recruitment’
process may also be used for identity theft.

2.13 Warez and piracy
Fake warez and piracy websites usually appear in search
results when users are looking for pirated software or
‘original’ software for a lower price than is available on
the legitimate market. The sites usually take the users
through several loops to reach a download link – which is
fake. Either the promised software doesn’t exist, or it has
malicious components. Users risk having their money and
credit card details stolen, and may end up with malware on
their devices as well.

2.14 Pay-per-click fraud
In pay-per-click advertising, publishers display clickable
links in exchange for a fee for each time someone clicks
on the link, taking them through to the advertiser’s
website.

Fake pay-per-click companies target advertisers seeking to
increase the volume of visitors to their website. Victims are
asked to pay a fee and hand over their details in advance.

VIRUS BULLETIN www.virusbtn.com

37APRIL 2013

Fake hits are then created either manually or by automated
means.

2.15 Conference scams
Fake conference websites are set up to collect fees and
personal details from potential conference participants.

Targeted emails are sent inviting the recipient to the
fi ctitious conference and including a link to the fake
conference website. Typically, participants are asked to
provide their personal details and to make an upfront
payment, either as a conference registration fee, for
the reservation of hotel accommodation, or even for
assistance with visa application processing and travel
booking.

The scammers go to considerable lengths to make the fake
websites look authentic, and target their scams carefully
– examples of conferences scams seen recently include
conferences on climate change, human rights issues and
biochemistry, NGO workshops and many more.

3. PHISHING AND FRAUD: DIFFERENCES
Phishing and fraud may be driven by the same
money-making goals, but subtle differences between their
mechanisms justify separate classifi cation and blacklisting
processes.

3.1 Uptime
One important distinction focuses on the median attack
duration (uptime). The average length of time that a
phishing attack is online is shorter than the uptime of a
targeted fraud or fake website created from scratch.

This may be due to the fact that organizations and hosting
companies have become better at detecting phished URLs
that damage their brand and reputation. In registering and
creating a website from scratch for a completely fi ctitious
organization, fraudsters rarely affect renowned brands. With
fake banks, the potential for damage is greater, as fraudsters
often try to pose as the local offi ces of legitimate fi nancial
institutions.

Individual users rarely have the know-how or power to
fi ght targeted fraud, and even fi nancial institutions do
not always put up their best weapons in the battle against
fraud. Europol’s 2012 payment card fraud report stated:
‘Acceptable levels of fraud and expected net profi t for
banks are more important than the real prevention of fraud
that would lead to depriving criminals of the huge amounts
of money they are stealing using EU payment cards.’
[7, 8].

Different promotion strategies also allow fraudulent
websites to have a longer uptime, while phished websites
are taken down more rapidly. Depending on how heavily
they are promoted, some fraudulent URLs persist for longer
than others.

3.2 Domain and URL management
Phishing web pages aim to replicate the exact content of
websites owned by real organizations – most commonly
a bank or a payment service – usually on a hacked or
compromised domain. Cases of fraud, however, often have
bogus entities created from scratch, using domains bought
anonymously and registered for a longer period.

Another contrast between phishing and fraud is the
manipulation of addresses. For instance, the URL of a
legitimate hotel’s website, ‘http://realandnicehotel.com’,
might be used as the basis for a fake website,
‘http://real-and-nicehotel.com’.

When creating URLs, cybercriminals sometimes aim to
create the impression that the fake site is affi liated to a
legitimate company. Meanwhile, (most) phishing URLs are
less well crafted, as they are usually placed on compromised
legitimate domains.

To make the scams more believable, more than 90% of fake
banks and fi nancial institutions are registered on the top
level domain ‘.com’. The second choice for fraudsters is
‘.net’ (almost 4%), followed by ‘.biz’, ‘.org’ and ‘.uk’, each
with 2% of the overall fake banks registered.

Many fraudulent websites (over 90%) are registered for
just a year, which is something to check using the WHOIS
tools available on the Internet. In most cases, a one-year
registration combined with a webmail address for the
registrant (e.g. Yahoo!, Gmail or Hotmail) is a strong
indication of a scam.

3.3 Promotion techniques
Phished pages are promoted intensively through spam and
social media, while fraudulent sites rely on more targeted
techniques which attract less attention, as attackers want

Differences Phishing Fraud

1 Uptime Short period of
time

Longer period of
time

2 Domain Hijacked Specially designed

3 Promotion Spam widespread
campaigns

Social media
targeted campaigns

Table 1: Differences between phishing and fraud.

VIRUS BULLETIN www.virusbtn.com

38 APRIL 2013

to avoid having their websites taken down by hosting
companies.

4. GUIDELINES
The following are some tips to help users stay away from
fraud and phishing attacks:

• Before making any payment online, booking a
hotel room or hiring a law fi rm, check the WHOIS
information for the website, which will give you clues
about the website’s domain registration, hosting and
online activity. Remember that more than 90% of
fake websites are registered for just one year. Also,
fraudsters tend to use registrant emails that offer
anonymity, such as ‘contact@privacyprotect.org’ or
‘contact@myprivateregistration.com’, as well as free
webmail addresses from providers such as Yahoo!,
Hotmail, and Gmail. A legitimate organization is
unlikely to do this. According to Bitdefender, 19.09%
of all fake banks are registered to the email address
contact@privacyprotect.org, while almost 6% are
registered to support@namecheap.com.

• Always be on guard when making an online payment,
and don’t use your credentials unless you are 100%
sure it’s a genuine website.

• An unclear web address, spelling errors and poor
grammar might be clues that point to a phishing attack.
Typing the legitimate URL directly into the browser
rather than clicking a link in an email may also help
you stay away from scams.

• Check the list of unauthorized banks [9] in your
country when dealing with a fi nancial organization you
haven’t heard of before.

• Double check a banker’s or seller’s identity when he
calls or sends you a targeted email. Remember that
scammers may go as far as creating a fake website to
trick a single user, making money out of small, but
successful attacks.

• Be on your guard when using social networks. Select
online ‘friends’ carefully and consider the information
you share, and the way you interact with applications.

• ‘UK global redirecting’ numbers that start with +4470
are a major warning of a scam. Though the country
code ‘+44’ may look like a British number, the ‘70’
prefi x means the phone call will be redirecting to a
number which may be in any country but the UK.

CONCLUSIONS
With minimal investment in technology and time, phishing
and fraudulent websites provide endless income for

cybercriminals. Though many organizations strive to create
a safer online environment, victims are still sending their
fi nancial information and money to unknown destinations
all over the world.

Use of an anti-virus solution will help protect users not
only from malware, but also from phishing, identity theft
and targeted fraud attacks. User education and raising
awareness of phishing and targeted fraud may also help
contribute to a safer online environment and a drop in
cybercrime revenues.

REFERENCES

[1] Kessem L.S. Laser Precision Phishing – Are You
on the Bouncer’s List Today? Speaking of Security
The Offi cial RSA Blog and Podcast.
http://blogs.rsa.com/laser-precision-phishing-are-
you-on-the-bouncers-list-today/.

[2] Internet Crime Complaint Center. 2011 Internet
Crime Report. http://www.ic3.gov/media/
annualreport/2011_IC3Report.pdf.

[3] McGrath, D.K.; Gupta, M. Behind Phishing: An
Examination of Phisher Modi Operandi.
http://static.usenix.org/event/leet08/tech/full_
papers/mcgrath/mcgrath_html/.

[4] Anti-Phishing Working Group.
http://www.antiphishing.org/.

[5] Phishing in Season: A Look at Online Fraud in
2012. Speaking of Security The Offi cial RSA Blog
and Podcast. http://blogs.rsa.com/phishing-in-
season-a-look-at-online-fraud-in-2012/.

[6] Proofpoint Reports Findings from Email and
Information Security Trends Survey Conducted at
Microsoft TechEd Conference.
http://www.proofpoint.com/about-us/press-
releases/07182012.php.

[7] Payment Card Fraud in the European Union.
Perspective of Law Enforcement Agencies.
https://www.europol.europa.eu/sites/default/fi les/
publications/1public_full_20_sept.pdf.

[8] Payment Card Fraudsters Earn 1.5 Billion Euros a
Year, Europol Says. Bitdefender Resource Center.
http://www.bitdefender.co.uk/security/payment-
card-fraudsters-earn-1-5-billion-euros-a-year-
europol-says.html.

[9] Unauthorised internet banks. Financial Services
Authority. http://www.fsa.gov.uk/pages/doing/
regulated/law/alerts/internet.shtml.

http://blogs.rsa.com/laser-precision-phishing-are-you-on-the-bouncers-list-today/
http://www.ic3.gov/media/annualreport/2011_IC3Report.pdf
http://static.usenix.org/event/leet08/tech/full_papers/mcgrath/mcgrath_html/
http://www.antiphishing.org/
http://blogs.rsa.com/phishing-in-season-a-look-at-online-fraud-in-2012/
http://www.proofpoint.com/about-us/press-releases/07182012.php
https://www.europol.europa.eu/sites/default/files/publications/1public_full_20_sept.pdf
http://www.bitdefender.co.uk/security/payment-card-fraudsters-earn-1-5-billion-euros-a-year-europol-says.html
http://www.fsa.gov.uk/pages/doing/regulated/law/alerts/internet.shtml

VIRUS BULLETIN www.virusbtn.com

39APRIL 2013

EBCG’s 3rd Annual Cyber Security Summit will take place 11–12
April 2013 in Prague, Czech Republic. See http://www.ebcg.biz/
ebcg-business-events/15/international-cyber-security-master-class/.

SOURCE Boston takes place 16–18 April 2013 in Boston, MA,
USA. For details see http://www.sourceconference.com/boston/.

Digital Shield Summit 2013 takes place 21–22 April 2013 in Abu
Dhabi, UAE. For details see http://www.digitalshieldme.com/.

The Commonwealth Cybersecurity Forum will be held 22–26 April
2013 in Yaoundé, Cameroon. For details see
http://www.cto.int/events/upcoming-events/commonwealth-
cybersecurity-forum/.

Infosecurity Europe will be held 23–25 April 2013 in London, UK.
For details see http://www.infosec.co.uk/.

Counter Terror Expo 2013 takes place 24–25 April 2013 in London,
UK. For details see http://www.counterterrorexpo.com/.

2nd Annual Cyber Security Summit UAE 2013 will be held 13–14
May 2013 in Dubai, UAE. For more information see
http://www.cybersecurityuae.com/.

The 7th International CARO Workshop will be held 16–17 May
2013 in Bratislava, Slovakia. See http://2013.caro.org/.

AusCERT2013 takes place 20–24 May 2013 in Gold Coast, Australia.
For full details see http://conference.auscert.org.au/.

2nd Annual Cyber Security for the Chemical Industry Europe
takes place 29–30 May 2013 in Frankfurt, Germany. For details see
http://www.cybersecuritychemicals.com/.

The 22nd Annual EICAR Conference will be held 10–11 June 2013
in Cologne, Germany. For details see http://www.eicar.org/.

Digital Enterprise Europe will be held 11–12 June 2013 in
Amsterdam, The Netherlands. For information about the event see
http://www.revolution1.plus.com/Digital_Enterprise_Europe_Website/.

CISO Roundtable and Summit will be held 12–14 June 2013 in
Amsterdam, The Netherlands. For more information see
http://www.ciso-summit.com/europe/.

NISC13 will be held 12–14 June 2013. For more information see
http://www.nisc.org.uk/.

The 25th annual FIRST Conference takes place 16–21 June 2013 in
Bangkok, Thailand. For details see http://conference.fi rst.org/.

Hack in Paris takes place 17–21 June 2013 in Paris, France. For
information see https://www.hackinparis.com/.

DIMVA 2013 takes place 18–19 July 2013 in Berlin, Germany. For
details see http://dimva.sec.t-labs.tu-berlin.de/.

Black Hat USA will take place 27 July to 1 August 2013 in Las
Vegas, NV, USA. For more information see http://www.blackhat.com/.

The 22nd USENIX Security Symposium will be held 14–16 August
2013 in Washington, DC, USA. For more information see
http://usenix.org/events/.

VB2013 takes place 2–4 October 2013 in Berlin, Germany.
The conference programme will be announced shortly. Full details
including registration can be found at http://www.virusbtn.com/
conference/vb2013/.

VB2014 will take place 24–26 September 2014 in Seattle, WA, USA.
More information will be available in due course at
http://www.virusbtn.com/conference/vb2014/. For details of
sponsorship opportunities and any other queries please contact
conference@virusbtn.com.

END NOTES & NEWS
ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2013 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2013/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

http://www.ebcg.biz/ebcg-business-events/15/international-cyber-security-master-class/
http://www.sourceconference.com/boston/
http://www.digitalshieldme.com/
http://www.cto.int/events/upcoming-events/commonwealth-cybersecurity-forum/
http://www.infosec.co.uk/
http://www.counterterrorexpo.com/
http://www.cybersecurityuae.com/
http://2013.caro.org/
http://conference.auscert.org.au/
http://www.cybersecuritychemicals.com/
http://www.eicar.org/
http://www.revolution1.plus.com/Digital_Enterprise_Europe_Website/
http://www.ciso-summit.com/europe/
http://www.nisc.org.uk/
http://conference.first.org/
https://www.hackinparis.com/
http://dimva.sec.t-labs.tu-berlin.de/
http://www.blackhat.com/
http://usenix.org/events/
http://www.virusbtn.com/conference/vb2013
http://www.virusbtn.com/conference/vb2014
mailto:conference@virusbtn.com
mailto:editorial@virusbtn.com
http://www.virusbtn.com/
http://www.virusbtn.com/virusbulletin/subscriptions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

