
AUGUST 2013

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Covering the global threat landscape

NEW VERSION ON THE BLOCK
A new version of the Andromeda bot was recently
spotted in the wild with strengthened self-defence
mechanisms and novel methods for keeping its
process hidden and running persistently. Moreover,
its communication data structure and encryption
scheme have changed, rendering previous
Andromeda IPS/IDS signatures useless. Suweera
De Souza and Neo Tan take a detailed look at
Andromeda 2.7.
page 4

MONEY SPINNER
ZeroAccess has evolved steadily in recent years,
taking control of millions of compromised
computers around the world. Chao Chen and Kyle
Yang take a look at three of the ways in which it
generates income: browser redirection, click-fraud
and Bitcoin mining.
page 10

CLEAN LOGIC
Can the principles of logic be applied to the daily
task of fi le analysis? Mircea Ciubotariu gives it a
go.
page 19

2 COMMENT

 The dying art of computer viruses

3 NEWS

 VB2013: Call for last-minute papers

 Tax breaks for beefi ng up security?

 UK losing war against cybercrime

3 MALWARE PREVALENCE TABLE

 MALWARE ANALYSES

4 Andromeda 2.7 features

10 The ZeroAccess money-generating campaign

 FEATURES

19 The clean theory

21 BadNews reveals ongoing challenges in the
 Android marketplace

23 SPOTLIGHT

 Greetz from academe: masters of their own
 domains

24 END NOTES & NEWS

2 AUGUST 2013

COMMENT

Editor: Helen Martin

Technical Editor: Dr Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Perl Developer: Tom Gracey

Consulting Editors:
Nick FitzGerald, AVG, NZ
Ian Whalley, Google, USA
Dr Richard Ford, Florida Institute of Technology, USA

THE DYING ART OF COMPUTER
VIRUSES
The fi rst time I heard someone mention computer viruses
was in 1988. I was studying computing in the leafy home
counties of England, when I played a joke on a friend: I
showed him that every time I typed the letter ‘s’ on my
keyboard it would come up on the screen as ‘sh’, and
every now and then a loud ‘-HIC!-’ would be injected
into the text.

‘You must have a virus!’ my classmate exclaimed, his
eyes opening widely. The truth was that he had just
encountered a joke TSR program I had written called
‘Drunk Simulation’. It hid in the background and messed
around with whatever you typed. But for the fi rst time,
I had seen how strange behaviour on a computer could
raise the pulse of onlookers.

It wasn’t until December 1991, when I went for an
interview to become a programmer at Dr Solomon’s, that
I encountered some real computer viruses.

In those days, it was often hard not to be aware that you
had a virus. The New Zealand virus declared ‘Your PC is
now Stoned!’, the Italian virus bounced a ping-pong ball
across your screen, and the Maltese Casino virus played
Russian Roulette with your fi le allocation table.

Sure, all of these viruses were irritating – they spread
without your consent, and ate up system resources – but
only some of them were deliberately destructive. In many
ways, a lot of the malware could justly be compared to
an electronic form of graffi ti – the Green Caterpillar, for

instance, which crawled across your screen, eating up
letters and pooping them out in a shade of brown.

Even as malware turned nastier and more destructive,
there was still some art to be seen. Virus-writing gangs
like Phalcon/SKISM used colourful ANSI-style art to
declare that they had infected your computer. Viruses like
Phantom, with its use of 256-colour palette cycling and
displaying a large skull, and Spanska, with its simulated
fl ight across the Mars landscape, probably demonstrated a
high point for art in viruses.

Even though I knew malware was wrong, and not to be
encouraged, I had a sneaking regard for the graphical
payloads some of the virus writers were building into
their creations. I recognized that this was a form of art.

And there was art in the malware code as well. Virus
writers would often spend months tweaking their code,
using innovative new techniques in an attempt to make
it undetectable by anti-virus products. I didn’t agree
with what they were doing, but had to admire the coding
skill deployed by some of them. Like much modern art,
you didn’t necessarily have to like it to acknowledge the
skills used to produce it.

But then things started to change. Malware got
commercial. The reasons for writing a virus or
(increasingly) a trojan became more about stealing data,
or recruiting a PC into a botnet, than about displaying a
silly message or gory graphics.

The new malware creators didn’t care about getting
attention through visual payloads, and they didn’t care
much about the quality of their mass-produced programs
either. They were churning out new trojans, unbothered
by the fact that some anti-virus products spotted them
generically, so long as there might be some people who
would get infected – besides, if their latest trojan wasn’t
any good, there’d be three more along in a minute.

Today, anti-virus researchers are dealing with hundreds
of thousands of silent, stealthy pieces of malicious
code every day, which have no intention of drawing
unnecessary attention to themselves, and most of which
are from families of malware that have been seen
hundreds of times before.

The art has gone from malware. The commercial
cybercriminals rule the roost, and the hobbyists who
incorporated dramatic visual payloads and cared about
the quality of their code (the artists, if you like) have
largely disappeared, frightened off by stiff punishments
and prison sentences.

Are we better off because of it? I don’t think so. I hanker
for the old days, when viruses did something visual to
entertain you, as you reached for your back-up.

‘I had a sneaking regard
for the graphical payloads
some of the virus writers
were building into their
creations.’
Graham Cluley
Independent commentator, UK

3AUGUST 2013

VIRUS BULLETIN www.virusbtn.com

VB2013: CALL FOR LAST-MINUTE PAPERS

Virus Bulletin is seeking
submissions from those
wishing to present
last-minute technical papers
at VB2013.

The last-minute presentations will be selected by a
committee consisting of a number of industry members
including members of the VB advisory board. The
committee will be looking for presentations dealing with
up-to-the-minute specialist topics, with the emphasis on
current and emerging (‘hot’) topics.

Those selected for the last-minute presentations will be
notifi ed 18 days prior to the conference start, and will be
required to give a 30-minute presentation on Thursday 3
October at the Maritim Hotel Berlin in Berlin, Germany.

Those selected for the last-minute presentations will receive
a 50% discount on the conference registration fee.

The deadline for submissions is 5 September 2013.

The full call for papers, including details of how to submit
a proposal, can be found at http://www.virusbtn.com/
conference/vb2013/call/.

TAX BREAKS FOR BEEFING UP SECURITY?
The US government is apparently considering offering
tax breaks and other incentives to businesses that make
signifi cant improvements to their digital defences.

Political news site Politico describes a government
presentation it got its hands on from May this year in
which tax breaks, insurance perks and other legal benefi ts
were put forward as potential incentives for businesses to
get their cyber defences in order and adopt the voluntary
cybersecurity standards currently being drafted.

No offi cial announcements have yet been made about the
possible fi nancial or legal benefi ts (and such incentives
could require action by Congress in any case – which failed
to approve any cybersecurity legislation last year). An
update is expected later in the summer.

UK LOSING WAR AGAINST CYBERCRIME
A committee of MPs has declared that the UK is losing the
war against Internet crime, with the committee chair, Keith
Vaz saying that the threat of a cyber attack against the UK
is so serious it is marked as a higher threat than a nuclear
attack. The group of MPs called for stronger sentencing
for Internet-related crimes and greater resources for police
forces to deal with the challenges of digital crime.

2013
BERLIN
2 - 4 October 2013

NEWS

Prevalence Table – June 2013 [1]

Malware Type %

Adware-misc Adware 12.86%

Java-Exploit Exploit 7.15%

Autorun Worm 6.18%

Heuristic/generic Trojan 4.31%

BHO/Toolbar-misc Adware 4.17%

Crypt/Kryptik Trojan 3.71%

Dorkbot Worm 3.59%

Confi cker/Downadup Worm 3.28%

Potentially Unwanted-misc PU 3.28%

Heuristic/generic Virus/worm 3.26%

Iframe-Exploit Exploit 2.65%

Agent Trojan 2.35%

Sirefef Trojan 2.13%

Sality Virus 2.12%

Bundpil Worm 1.93%

Downloader-misc Trojan 1.86%

Crack/Keygen PU 1.75%

LNK-Exploit Exploit 1.50%

Exploit-misc Exploit 1.27%

Gamarue Worm 1.24%

Ramnit Trojan 1.14%

Virut Virus 1.10%

bProtector Adware 0.99%

Brontok/Rontokbro Worm 0.98%

Zbot Trojan 0.97%

Yontoo Adware 0.96%

Encrypted/Obfuscated Misc 0.95%

Fareit Trojan 0.94%

Wintrim Trojan 0.93%

Injector Trojan 0.86%

Somoto Adware 0.77%

Dropper-misc Trojan 0.74%

Others [2] 18.10%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://www.virusbtn.com/conference/vb2013/call
http://www.virusbtn.com/Prevalence

VIRUS BULLETIN www.virusbtn.com

4 AUGUST 2013

ANDROMEDA 2.7 FEATURES
Suweera De Souza, Neo Tan
Fortinet, Canada

Recently, we found a new version of the Andromeda bot
in the wild. This version has strengthened its self-defence
mechanisms by utilizing more anti-debug/anti-VM
tricks than its predecessors. It also employs some novel
methods for trying to keep its process hidden and running
persistently. Moreover, its communication data structure
and encryption scheme have changed, rendering the old
Andromeda IPS/IDS signatures useless.

In this article, we will look at the following:

• Its unpacking routine

• Its anti-debug/anti-VM tricks

• Its malicious code injection routine

• The interaction between its twin injected malicious
processes

• Its communication protocol, encryption algorithm and
command control.

OVERVIEW OF UNPACKING ROUTINE

The sample we analysed is fi rstly packed with UPX.
However, once unpacked, the code inside is another custom
packer. This custom packer creates dynamic memory and
decrypts code into this memory (Figure 1). It jumps to a
lot of addresses by pushing the offset onto the stack and
then returning to it. The code in memory calls VirtualAlloc
three times. The fi rst allocated memory is used for storing
bytes copied from the original fi le. Those bytes are then
copied over to the third allocated memory where they are
rearranged by swapping bytes (using the algorithm shown
in Figure 2). Finally, the partially decrypted bytes are
copied to the second allocated memory, where the data is
decompressed using the aPLib decompression library. The
result is a PE fi le which is then written over the original fi le
image, and the anti-debugging tricks are carried out from
here. Figure 1 gives an overview of the unpacking routine.

THE WAY TO THE REAL ROUTINE
This version of Andromeda employs many anti-debug/
anti-VM tricks, which result in the bot switching to a pre-set
fake routine in order to prevent it from running in the VM
environment, being debugged or monitored. The purpose is
obvious: to prevent analysts from being able to access the
real malicious routine. In the following sections, we’ll take
a detailed look at these defence mechanisms.

Anti-API hook

The sample allocates another section of memory for its
anti-API hooking technique. The technique consists of
storing the fi rst instruction of the API to memory, followed
by a jump to its second instruction in the DLL.

For example, in Figure 3, memory location 0x7FF9045E
stores the location of memory 0x7FF80060, which is where
the fi rst instruction of the API ntdll.RtlAllocateHeap is
stored, followed by a jump to the second instruction in the
DLL.

Customized exception handler

A pointer to a handler function is passed to the
SetUnhandledExceptionFilter API. The handler is called
when an access violation error is intentionally created by
the sample when it tries to write into the fi le’s PE header.
The code in the handler is only executed if the process is
not being debugged.

Figure 1: The unpacking process.

divisor = 0x134239 + (0x75BCD15 * size) //the decimal of 0x75BCD15 is 123456789
//0x134239 is a fixed constant passed
//to the algorithm

while (size != 0){

divisor -= 0x75BCD15;
remainder = divisor % size;
--size;
swap_value_1 = data[size]; //the byte swapped starts from the end

//of the data
swap_value_2 = data[remainder];
data[size] = swap_value_2;
data[remainder] = swap_value_1;

}

Figure 2: Algorithm showing how the bytes were swapped.

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5AUGUST 2013

This function (Figure 4) gets the
pExceptionPointers->ContextRecord (the second DWORD
of arg_0) in order to set the location of the real payload
(sub_401EA5) to the EIP (ebx+0B8h) upon return. It also
gets the ESP (ebx+0C4h) and then sets the two arguments
which will be passed to the payload function: arg0 to
dword_402058 and arg1 to sub_401AA2. Dword_402058
points to the encrypted code and sub_401AA2 points to
another decryption routine which will be injected by the
code decrypted from dword_402058.

Anti-VM and anti-forensics

The GetVolumeInformationA API is called on drive C:\
to get the name of the drive. Then the bot calculates the
CRC32 hash value of the name (Figure 5). If the hash value
of the drive name matches 0x20C7DD84, it will bypass
all the anti-debugging and anti-VM checks and invoke the
exception directly. When the CRC32 hash is reversed, one
possible result is ‘BVabi’. This could be the name of the

Figure 3: Anti-API hooking.

Figure 4: UnhandledExceptionFilter function.

author’s C drive, so that he/she could skip all the trouble
when debugging his/her own program.

Figure 5: Checking if the drive name’s CRC32 value is
0x20C7DD84.

If the hash value of the drive name doesn’t match, the
following anti-debug/anti-VM tricks are employed:

1. Iterating through process names and computing their
CRC32 hash values: if a hash value matches any of
those on a list of hash values of VM processes (Figure
6) and forensics tools (regmon.exe, fi lemon.exe, etc.),
this indicates that the debugging process is inside a
sandbox environment and being monitored.

Figure 6: Matching the process with CRC32 hash values.

2. Trying to load the libraries guard32.dll and
sbiedll.dll, which belong to Comodo and Sandboxie
respectively. If the libraries can be loaded
successfully, this indicates that the debugging process
is inside a sandbox environment.

3. Querying for a value in the system\currentcontrolset\
services\disk\enum registry to search for the presence
of any virtual machine (Figure 7).

Figure 7: Querying for virtual machines.

4. Calling the opcode rdtsc, which returns the processor
time stamp. When fi rst called, it saves it in edx, and
the second time it saves it in eax. The registers are
subtracted and if the result of the tickcount is more
than 0x200h, this indicates that the process is being
debugged.

If the bot does detect the presence of either a debugger or
a virtual machine, it decrypts the dummy code. This code

VIRUS BULLETIN www.virusbtn.com

6 AUGUST 2013

copies itself under %alluserprofi les% as svchost.exe
with hidden system fi le attributes. It then writes itself
in the registry HKLM\Software\Microsoft\Windows\
CurrentVersion\Run as SunJavaUpdateSched. A socket is
then created to listen actively, but no connection has been
made previously.

Data structure of encrypted routine

As mentioned, the bot will decrypt the code as the next
routine, whether dummy code or a useful routine. The
encrypted code of the fi le is contained within a specifi c
structure that the fi le uses when carrying out its decryption
routine. In this sample, there are three sets of encrypted
code which represent three different routines. One routine
contains dummy code that is decrypted only when the
sample is being debugged or run in a virtual machine. The
second routine contains code that injects itself into another
process, whereon the third routine is decrypted in that
process. The data structure is shown in Figure 8.

typedef struct _DATA_STRUCTURE{

DWORD Key[4]; //0x00 Key used in RC4
DWORD Code_Length; //0x10 length of encrypted code
DWORD Hash; //0x14 c r c 32 hash of encrypted code
DWORD Memory_Size; //0x18 size of memory to allocate
DWORD Start_Offset; //0x1C start of code in memory
DWORD Lib_Offset; //0x20 location of DLL and API

//hash values
DWORD Memory_API_Hook; //0x24 size of memory for

//anti-API hooking
}

Figure 8: Data structure used by the bot.

The encrypted data, which is located at 0x28h after the
structure, is decrypted using RC4. The key used is a fi xed
length of 0x10h and is located at the beginning of the
structure. The decrypted code is further decompressed into
allocated memory using the aPLib decompression library.

TWIN MALICIOUS INJECTED PROCESSES
The bot will inject its core code into two processes after
successfully bypassing all the anti-debug/anti-VM tricks.
First, let’s see how the malicious code is injected into
processes before we shed light on how the two injected
processes interact with each other.

Code injection routine

The bot calls the GetVolumeInformation API on C:\, to
get the VolumeSerialNumber. It then checks whether the
environment variable ‘svch’1 has already been created.

1 All the environment variables used in this version of Andromeda are
encrypted using xor on the VolumeSerialNumber, which the fi le acquires
by calling GetVolumeInformationA on drive C:\. The bot employs this
technique as a way of specifying its status in the machine. ‘svch’ is a fl ag
if the process is injected into svchost.exe; ‘src’ stores the location of the
fi le; ‘ppid’ stores the fi rst process ID;‘gpid’ stores the second process ID.

If it has, then it will inject itself into svchost.exe. If
the environment variable is not present, it will set the
environment variable ‘src’ to point to its own fi le path and
then inject into msiexec.exe. This suggests that the bot
injects its code into two different processes at different
instances. We shall see why in the next section.

It then gets the Windows directory. Before injection, the
bot needs to fi nd the location of these fi les (svchost.exe,
msiexec.exe) in the Windows directory. Thus, it calls
ZwQueryInformationProcess and accordingly concatenates
the process name with \System32 for 32-bit and
\SysWOW64 for 64-bit systems.

The injection process involves several steps:

1. As with the previous versions, the malware
calls CreateFile to get the handle of the fi le it
wants to inject. It then gets its section handle
by calling ZwCreateSection, which is used by
ZwMapViewOfSection to get the image of the fi le in
memory. From this image, it extracts the size of image
and the address of the entry point from the PE header.

2. A memory address with the same size as that of the
image of the fi le it wants to inject is created with
page_execute_readwrite access. Then the image of
the fi le is copied over to this memory address.

3. Another memory address is created with the same
size as that of the image of the original bot fi le, also
with page_execute_readwrite access. The original fi le
is then copied over to this new memory address.

4. A suspended process of the fi le to be injected is
created. The memory address containing the original
fi le is unmapped. ZwMapViewOfSection is called
with the bot’s fi le handle and the process handle
(acquired from creating the suspended fi le process).
So now the injected fi le’s process handle has a map
view of the botnet fi le. Before it calls ResumeThread
to resume the process, it changes the entry point
of the injected fi le to point to its code, which it has
modifi ed as follows:
push <address of botnet code to jump to>

ret

Twin process interaction

The code that is injected into the process decrypts
more code into memory using the methods described
in the previous section. This fi nal decrypted code is the
commencement of the botnet’s payload. In this version,
Andromeda displays some new techniques in its execution.

First, it modifi es the registry entry HKLM\system\
currentcontrolset\services\sharedaccess\parameters\
fi rewallpolicy\standardprofi le\authorizedapplications\list to

VIRUS BULLETIN www.virusbtn.com

7AUGUST 2013

the value of %s:*:Generic Host Process, which points to the
path of the current process. This is done to allow the process
to bypass the fi rewall.

Next, it tries to determine whether the environment variable
‘svch’ has been set. If it has, it means that another instance
of the fi le has been run. If it has not been set, then the
malware has yet to inject itself into the other process.

The creation of two processes is important for the bot.
One process is used to make sure that the copy of the bot
which will be created in %alluserprofi le% is always present
and that the registry entries have not been modifi ed. The
second process is used for connecting to the C&C server
and executing instructions based on the messages received.
Additionally, the two processes communicate with each
other through an instance of creating a pipe connection. It
is this connection that enables either process to check that
both instances of the bot are always running or to terminate
the processes in the event of an update or installation. The
analysis of this part has been divided into Process 1 and
Process 2, so as to better understand the communication
between the two processes (Figure 9).

Process 1 (installation routine and watchdogs)

This part of code is executed when the environment variable
‘svch’ has not been found. The bot tries to connect to the pipe
name, which is ‘kill’ xor’ed by the VolumeSerialNumber. If
it can connect, then the bot terminates the other process. This
thread is created as a check to terminate the other bot process
in the event of an installation.

It then tries to get the environment variable ‘src’, which was
created before injection. The value contains the path from
which the original fi le was run. It uses this path to create a

copy of the original fi le before deleting it, and saves it in
%alluserprofi le% with a random fi lename.

Next, the bot wants to enable the fi le to autorun, so it saves
the path of the fi le in %alluserprofi le% in the registry.
At fi rst, it tries to access the subkey \software\microsoft\
windows\currentversion\Policies\Explorer\Run in registry
HKLM. If it is unsuccessful, it accesses the subkey
\software\microsoft\windows nt\currentversion\windows
in HKCU. The registry that it accesses successfully is
the one that is used throughout for any modifi cations
(explained in pseudo code in Figure 10). Once it has
accessed the registry, it sets the security key of the
registry to KEY_ALL_ACCESS. The security key is
obtained by passing the string ‘D:(A;;KA;;;WD)’ to the
ConvertStringSecurityDescriptorToSecurityDescriptorA
API, which converts it to a security key. Once it has set the
security key, it saves the path of the new fi le to the registry
under the value of VolumeSerialNumber (for HKLM) or
Load (for HKCU). The original fi le in the old path is deleted
and the environment variable ‘src’ is set, pointing to 0.

Figure 10: Pseudo code of registry chosen.

After this, the bot creates two watchdog threads which are
primarily used to keep re-setting the fi le and the registry
entries if they have been modifi ed. The fi rst thread checks
if any modifi cation has been made to the fi lename in
%alluserprofi le%, or if it has been deleted. Then it creates
the fi le again with the same fi lename. It accomplishes this
by fi rst saving the fi le to the buffer by calling ReadFile.
Then it calls the FindFirstChangeNotifi cationW API,

whose handle will retrieve the changes
made to the fi lename. If the handle is
0xFFFFFFFF, then no changes have
been made, and it enters a loop. If a
change has been notifi ed, then it creates
the fi le again with the same fi lename,
and writes the contents of the fi le back
from the buffer created by ReadFile.

The second thread checks if any changes
have been made to a value in the registry.
If a change has been made, then it resets
the registry security key and the value
in the registry. Notifi cation of changes
made to the registry is set by calling
RegNotifyChangeKeyValue.

The bot then creates two environment
variables – ‘ppid’, pointing to its process

W atchdog T hread :
R ese t file if changed

W atchdog T hread :
R ese t reg is try if

changed

P ipe C onnection T hread :
E stab lish p ipe

connection

C onnecting T hread :
C onnect to C & C

server

P rocess 1 P rocess 2

K eep check o f p rocess
te rm ina tion

K eep check o f p rocess
te rm ina tion

R un file in
% alluserp ro file%

if te rm ina ted w ithou t 'k ill'
m essage , e lse te rm ina te se lf.

Figure 9: The fl ow of communication between the two bot processes.

VIRUS BULLETIN www.virusbtn.com

8 AUGUST 2013

ID, and ‘svch’ with the value of 1. It then runs the fi le
that has been created in %alluserprofi le%. After running
the fi le, it tries to connect to the pipe ‘kill’ xor’ed by the
VolumeSerialNumber. Since the value of svch has been set
to 1, the second process will create a thread that creates
the named pipe connection and executes a second thread
to connect to the C&C server. When the fi rst process can
connect successfully to the pipe connection created by the
second process, it resets the environment variables ‘svch’
and ‘ppid’ to 0.

Process 2 (core routine)

When the bot is run in another process, it sets the
environment variable ‘svch’ to 0. A thread is created
that creates a named pipe. If a connection is established,
the thread reads the bytes that are written from the
other process. If the message is ‘kill’ xor’ed by
VolumeSerialNumber, the process terminates. However,
if the message is ‘gpid’, then it sends its current process
ID to the fi rst process. This information is used by the
old process to access information about the new process
when the new process terminates. When the new process
terminates, the old process checks the handle of the process.
If the message is ‘kill’ xor’ed by VolumeSerialNumber, then
the old process terminates. This check is made when the
bot wants to update itself and hence has to make sure that
the watchdog threads have been terminated. Otherwise, the
old process terminates the new process and runs the fi le in
%alluserprofi le% again.

After the new process has created its thread to connect to
the C&C server, it will get the ‘ppid’ environment variable.
This variable contains the process ID of the old process.
Like the old process, it uses this information to access

when the old process terminates. And if the message is
‘kill’ xor’ed by VolumeSerialNumber, then the new process
terminates. This check is performed when an installation
is taking place. Otherwise, the new process runs the fi le in
%alluserprofi le% and terminates itself.

Figure 11 shows how the process IDs are used by the
processes.

The second thread created by the new process carries out
some further code injection. It fi rst resolves winhttp.dll
APIs using the anti-API hooking technique and also inline
hooks three APIs: ws2_32.GetAddrInfoW (Figures 12
and 13), ntdll.ZwMapViewOfSection and
ntdll.ZwUnmapViewOfSection. The control fl ow
of the APIs is redirected by inserting a jump to the
malicious function. Before writing to the API, it calls
VirtualProtect. After the bytes have been written, it calls
FlushInstructionCache so that the changes take effect
immediately.

Figure 12: Before inline hooking GetAddrInfoW.

Figure 13: After inline hooking GetAddrInfoW.

It then calls QueueUserAPC, which creates an
asynchronous procedure call object. This
object points to the code which decrypts
some encrypted strings using RC4
decryption (Figure 14). These encrypted
strings are the domains it intends to connect
to. Before each decrypted string, it inserts
the DWORD 0x6C727501 xor’ed by
VolumeSerialNumber, which is ASCII for
URL. This magic DWORD is used when it
calls the RtlWalkHeap API to retrieve the
domain names from the heap.

Figure 14: The decrypted domain names (now
offl ine).

gp id used by P rocess 1
 (con ta ins P rocess 2

ID)

P rocess 1 P rocess 2

pp id used by P rocess 2
 (con ta ins P rocess 1

ID)

M essage is 'k ill' xo r
Vo lum eS eria lN um ber

M essage is 'k ill' xo r
Vo lum eS eria lN um ber

M essage is no t 'k ill' xo r
Vo lum eS eria lN um ber

M essage is no t 'k ill' xo r
Vo lum eS eria lN um ber

te rm ina te P rocess 1
fo r upda te

te rm ina te P rocess 2
and run file aga in

te rm ina te P rocess 2
fo r ins ta lla tion

te rm ina te P rocess 1
and run file aga in

use p rocess ID s to check
fo r m essage w hen
P rocess te rm ina tes

Figure 11: Process IDs used by the processes.

VIRUS BULLETIN www.virusbtn.com

9AUGUST 2013

COMMUNICATION PROTOCOL,
ENCRYPTION ALGORITHM

Create connections

The hooked GetAddrInfoW API performs a DNS query
for the input host name from Google DNS server 8.8.4.4
(Figure 15) using a randomly generated query identifi er.
It then returns the query result or ‘127.0.0.1’ if the DNS
query fails. The DNS record received is then used for
querying the C&C domain name. It does this to avoid any
application-level DNS server redirection. The hooked
ZwMapViewOfSection and ZwUnmapViewOfSection
APIs will be used later to map/unmap the plug-in image
downloaded from the C&C server.

Figure 15: Hard-coded Google DNS server IP in the
GetAddrInfoW hooked function.

Communication protocol and encryption
algorithm

Before establishing a connection, the bot prepares the
message to be sent to the C&C server. It uses the following
format:
id:%lu|bid:%lu|bv:%lu|os:%lu|la:%lu|rg:%lu

• id is the VolumeSerialNumber, which is used as an RC4
key to decrypt the message received

• bid is a hard-coded DWORD used for the
communication

• bv is the version of the botnet (in this case it is 2.7)

• os is the version of the current operating system

• la is the socket name byte swapped

• rg is set to 1 if the process is in the Administrator
group, otherwise it is 0 (Figure 16).

This string is encrypted using RC4 with a hard-coded
key of length 0x20 and is further encrypted using base64.
The message is then sent to the server. Once a message
is received, the bot calculates the CRC32 hash of the
message without including the fi rst DWORD (Figure
16). If the calculated hash matches the fi rst DWORD, the
message is valid. Later it is decrypted using RC4 with the
VolumeSerialNumber as the key. After the RC4 decryption
the message is in the format gn([base64-encoded string]).
This used to be just the base64-encoded string, but for some
reason the author decided not to make the server backward
compatible with the older bot versions. Then it decodes the
base64 string inside the brackets to get the message in plain
text (Figure 17).

H ash of res t o f the m essage

Figure 16: First DWORD of message received containing
the CRC32 hash value.

D word m ultip lie r C ase ins truc tion tid sent back to server

Figure 17: Message received from the server.

The fi rst DWORD of the message is used as a multiplier
to multiply a value in a fi xed offset. The DWORD in that
offset is used as an interval to delay calling the thread again
to establish another connection. The next byte indicates
what action to carry out – there are seven options:

• Case 1 (download EXE):

 Connect to the domain decrypted from the message
to download an EXE fi le. Save the fi le to the %tmp%
location with a random name and run the process.

• Case 2 (load plug-ins):

 Connect to the domain decrypted from the message,
install and load plug-ins. The plug-ins are decrypted by
RC4 using the same key of length 0x20h.

• Case 3 (update case):

 Connect to the domain to get the update EXE fi le. If
a fi lename of VolumeSerialNumber is present in the

VIRUS BULLETIN www.virusbtn.com

10 AUGUST 2013

registry, then save the PE fi le to the %tmp% location
with a random name; else save it to the current location
with the name of the fi le as VolumeSerialNumber.
The fi le in %tmp% is run, while the current process
terminates. It also sends the message ‘kill’ xor’ed by
VolumeSerialNumber to terminate the older process.

• Case 4 (download DLL):

 Connect to the domain and save the DLL fi le to the
%alluserprofi le% location. The fi le is saved as a .dat
fi le with a random name and loaded from a specifi ed
export function. The registry is modifi ed so it can be
auto-loaded by the bot.

• Case 5 (delete DLLs):

 Delete and uninstall all the DLLs loaded and installed
in Case 4.

• Case 6 (delete plug-ins):

 Uninstall all the plug-ins loaded in Case 3.

• Case 7 (uninstall bot):

 Suspend all threads and uninstall the bot.

After executing the action based on which instruction it
received, another message is sent to the server to notify it
that the action has been completed:
id:%lu|tid:%lu|res:%lu

• id is the VolumeSerialNumber

• tid is the next byte (task id) after the byte displaying the
case number in the message received

• res is the result of whether or not the task was carried
out successfully.

Once the message has been sent, the thread exits and waits
for the delay interval period to pass before it reconnects to
the server to receive additional instructions.

CONCLUSION

This new version of the Andromeda bot has demonstrated
its tenacity by executing code that ensures every instance
of its process is kept running and by employing more
anti-debug/anti-VM tricks than its previous version.
However, it is still possible to bypass all those tricks once
we have complete knowledge of its executing procedures.
Moreover, we could easily block its communication data
after addressing the decryption performance issue.

REFERENCES

[1] Tan, N. Andromeda Botnet. Virus Bulletin, June
2012, pp.5–11.

THE ZEROACCESS
MONEY-GENERATING CAMPAIGN
Chao Chen & Kyle Yang
Fortinet, China & Canada

ZeroAccess has evolved steadily in recent years, and
today it is one of the top threats to the security of
individuals and corporations. With innovative methods of
injection and effective protection provided by its rootkit,
ZeroAccess has taken control of millions of compromised
computers around the world. Based on its large
peer-to-peer infrastructure and a complicated mechanism
consisting of servers for bot control and browser
redirection, ZeroAccess has launched a campaign for
gaining money through browser redirection, click-fraud
and Bitcoin mining [1]. In this article, we will focus on
a module that plays the combined role of redirecting
and clicking, as well as starting a Bitcoin miner on the
infected machine.

INSTALL AND LOAD

The ZeroAccess installer carries an encrypted list of IP
addresses in the P2P network running on port 16471 [2].
The installer injects a dynamic-link library which serves
as a loader for downloading and loading modules into
the explorer.exe or services.exe process. All of the loaded
modules are dynamic-link libraries – in this article we will
focus on the one named ‘80000032.@’.

Figure 1: Loaded modules.

This module implements three methods for gaining money.
The fi rst is to hijack web browser processes, intercepting
keywords the user has searched for on major search engines,
and eventually redirecting to various malicious websites. In
return for bringing traffi c and potential clients/victims, the
owners of these malicious sites will pay referral fees to the
ZeroAccess botnet herder.

MALWARE ANALYSIS 2

http://www.virusbtn.com/virusbulletin/archive/2012/06/vb201206-Andromeda

VIRUS BULLETIN www.virusbtn.com

11AUGUST 2013

The second method is to conduct click-fraud on advertising
services through invisible browsers created on the
compromised computers. A click-bot will simulate the
behaviour of an ordinary user, opening web pages and
clicking on them. By forging the referrer fi eld of each
HTTP GET command, ZeroAccess can obtain a share of the
profi t of the advertising service.

The third method is to run a Bitcoin miner which will make
the compromised machine work hard to accumulate wealth
for the botnet herder.

REDIRECTION WORKING MECHANISM

In this section we will discuss the architecture and
implementation of the redirect-bot. Besides downloading
plug-ins, the loader replaces the system library
mswsock.dll with a dropped dynamic-link library named
Desktop.ini, from which the WSPStartup API is hooked.
The fake API will load the redirect-bot into the residing
process and invoke the exported function with ordinal 1
– a unique ordinal number that other plug-in modules do
not possess. This means that the redirect-bot can remain
in all processes of running web browsers and act as a
man-in-the-middle in an interactive game of redirection
with the compromised user. The loading procedure of the
redirect-bot is shown in Figure 2.

Figure 2: Loading the redirect-bot.

Components for redirection

Several components are deployed by the redirect-bot in order
to redirect a user who is searching on search engines such
as Google, Bing, Yahoo!, Ask, AOL or ICQ. The relationship
among these components is illustrated in Figure 3.

A pair of redirectors
When the redirect-bot is loaded through its ordinal 1
exported function, it will check the command line of

the residing process. If the residing process is a browser
(Internet Explorer, Firefox, Google Chrome, Opera, Safari,
etc.), it will get the entry of the WSPConnect API passed
in as a parameter and hook it. Hooking WSPConnect
gives the redirect-bot the capability to hijack every socket
connection requested by the browser. For each socket on
port 80 (HTTP) or port 443 (HTTPS), a pair of cooperating
redirectors created by the redirect-bot will act as middlemen
between the browser and the website. Redirector A is
directly connected with the browser for monitoring all
HTTP GET commands, while Redirector B is directly
connected with the website for monitoring all HTTP
responses.

Some essential components of the redirectors are described
as follows:

1. A function table which points to a group of callback
functions executed at a series of important points
within a redirector’s life: the point at which a
connection is established with a browser or a
website, the point at which an HTTP packet is sent
or received, and the point at which fi nalization work
should be done. All of these callback functions
are scheduled by an asynchronous communication
mechanism that has been deployed by ZeroAccess
since its early stages.

2. A socket used to communicate with the browser or
website.

3. A buffer for sending and receiving data.

4. Pointers to each other so that Redirector A can use
Redirector B’s socket to send a packet to the website,
while Redirector B can use Redirector A’s socket to
send a packet to the browser.

Figure 3: ZeroAccess’s components for redirection (marked
in blue).

VIRUS BULLETIN www.virusbtn.com

12 AUGUST 2013

5. Redirector B, which connects directly to the website,
has three buffers which are used to store HTTP packet
header information: the complete URL, referrer and
user-agent. A double-word of Redirector B will record
the CRC32 of the referrer in the header of an HTTP
GET command sent from Redirector A to the website.

Communicator

A kind of object, dubbed a Communicator, is used when
either of the Redirectors need to send data to the C&C server.

When Redirector A receives an HTTP GET command from
the browser that represents a search request from a major
search engine (such requests often contain the string ‘&p=’
or ‘&q=’ in the required URL), it will send information
via a Communicator to tell the C&C server the keyword
and specifi c search engine used in the search request. In
response, the C&C server will send one or more lines
back. Each line contains a redirection URL and a referrer.
These redirection URL/referrer pairs will be stored by the
Communicator in a local customized database table.

Redirector B also uses a Communicator to send information
to the C&C server, which may result in the browser opening
random pages at random times, as described later.

Local database table

As mentioned before, the redirection URL/referrer pairs
received from the C&C server are stored in a local database
table. In fact, besides a redirection URL and a referrer,
each entry in the table has another piece of data, which
is a CRC32. When the compromised user searches for
something on a major search engine other than Google,
the CRC32 is generated by running an algorithm on the
complete URL in the corresponding HTTP GET command.
When the user searches using Google, the CRC32 is
generated on the basis of the keyword.

Local keyword record fi le

This fi le stores 10 keywords recently searched by the user.

Redirection servers

The redirection URLs received from the C&C server
reveal the redirection servers of ZeroAccess. In most cases,
several servers are involved in the process of redirecting to
a malicious site. These servers enhance the fl exibility of the
redirection infrastructure and also make it more diffi cult to
be traced or taken down.

Case study and analysis

Some examples of referrers and redirection URLs are
shown in Table 1.

Referrer Redirection URL

http://phrasesearch.net/websearch.
php?search=money&BtnS=Search

http://217.23.3.223/AKy4XvnD7U3M4mo7b173f23d8811260c022f402cf1447c0a06k

http://searchbusinesslistings.net/
websearch.php?search=bitcoin+mining
&BtnS=Search

http://195.3.145.109/ivl3nTiX7T4XjRc92aef0e712082736871dce2472a23dbde36A

http://searchbusinesslisting.com/
websearch.php?search=Mining&BtnS
=Search

http://83.133.127.85/Lvn0w36x776xavS9cde097c02309e1b9edd50e71e6d776bf28c

http://businesslistingsearch.biz/
websearch.php?search=money

http://217.23.3.223/5zV3fwXL5c4M1ZS516dd0a8f88396c40926c142fcd40907d26A

Table 1: Example referrers and redirection URLs.

Figure 4: Similar appearance of the referrer sites.

VIRUS BULLETIN www.virusbtn.com

13AUGUST 2013

Most of the referrer sites have a similar appearance
(Figure 4). Some of the links placed on the home page of
these sites are fake and will not lead anywhere, while others
will lead to a fake search engine which returns nothing on a
search request.

During our observation, most redirection URLs eventually
led to malicious websites containing malware or to
pornographic sites. In the event that the redirection servers
fail to fi nd a malicious or pornographic site to direct to, the
browser is redirected to www.google.com/webhp.

In the latest version of this module, the data received
from the C&C server is RC4 encrypted. The encryption/
decryption key is a string which is the length of received
data. For example, if the length of data received is 123
bytes, the decryption key will be the string ‘123’.

Redirection with given referrer

Case 1: Redirecting for search engines other
than Google

When a user searches using a major search engine
other than Google, an HTTP GET command is sent to
Redirector A from the browser, and Redirector A will report
the keyword and search engine name to the C&C server
through a Communicator. The redirection URL and referrer
returned by the C&C server will be stored in the local
database table, along with the CRC32 of the complete URL
in the HTTP GET command header.

After a while, the user clicks a hyperlink from the search
result page and a second GET command is sent through a
new socket for which another pair of redirectors is ready
to work. When Redirector B receives the HTTP response
packet from the website associated with the link clicked by
the user, instead of passing the packet to browser, it will
check whether an entry with the CRC32 of the second GET
command’s referrer exists in the database table. Of course
it will succeed because the CRC32 has been stored with a
redirection URL/referrer pair when processing the fi rst GET
command. It is time for redirection now, and the procedure
is as follows:

• Step 1: Redirector B forges an HTTP response, causing
the browser to navigate to the URL http://{host}/_
ylt=3648C868A1DB;{base64_encoded_referrer}-
{base64_encoded_url}. Here, {host} is the domain
name of the redirection URL, ‘/_ylt=3648C868A1DB;’
is a special mark, followed by the base64-encoded
referrer and redirection URL separated by a ‘-’
character.

• Step 2: When the browser sends a GET command for
visiting the forged URL, Redirector A will recognize

the special mark and send back to the browser another
forged HTTP response containing HTML script:

<script>location.replace(‘http://{referrer}’);
</script>

 Here, {referrer} is the referrer obtained from the C&C
server.

• Step 3: When the browser sends another GET
command for visiting http://{referrer}, Redirector A
will recognize the special mark in the referrer of the
GET command and forge yet another HTTP response
containing HTML script:

<script>location.replace(‘http://{url}’);</script>

 Here, {url} is the redirection URL obtained from the
C&C server.

The browser will now send the crucial HTTP GET
command whose URL and referrer are set as those given by
the C&C server. A page that is not genuinely wanted by the
user will be displayed in the browser.

Case 2: Redirecting Google Ad links

When a compromised user searches on Google, new
entries will be added into the local database table. A minor
difference is that the CRC32 in an entry is generated on
the basis of the keyword searched, rather than the URL.
When a Google Ads link is clicked on, Redirector A
will query the database table for the keyword contained
in the link. If a matching entry is found, Redirector A
will forge an HTTP response navigating the browser to
http://{host}/_ylt=3648C868A1DB;{base64_encoded_
referrer}-{base64_encoded_url} and follow the same steps
as described above.

Open random pages at random times

When a browser is navigating from one site to another,
Redirector B will send information via a Communicator
to the C&C server. The information includes the URL
and referrer in the HTTP GET command Redirector
A received from the browser and the 10 most recently
searched keywords stored in the local keyword record
fi le. The response from the C&C server, if any, should
contain some redirection URL/referrer pairs. For each
pair, the Communicator makes a redirection by forging a
special URL: http://{host}/_ylt=3648C868A1DB;{base64_
encoded_referrer}-{base64_encoded_url} and asking
the browser to open it. The length of time between two
redirections is set as a random value.

Injecting JavaScript into pages
Besides the annoying redirection discussed above, the
redirect-bot will also inject web pages with a piece of

VIRUS BULLETIN www.virusbtn.com

14 AUGUST 2013

JavaScript, as shown in Figure 5. In the earlier versions of
this module, the script was encrypted and hard-coded in
the module. By comparison, new versions will retrieve the
script from the C&C server.

Figure 5: Injected JavaScript.

This script will download several JavaScript fi les which
were originally deployed by the advertising and content
delivery services owned by companies such as Admedia,
Akamai and CpcHero. When the downloaded scripts are
executed, random advertisements will appear on each page
and several words will be highlighted with green double
underlines that link to a site called ‘sonicsearchonline.biz’,
which is a search site with very limited function. The
INCL_checkinternals() function in the injected JavaScript
specifi es some ‘internal’ sites where the injected
JavaScript will do nothing. Ironically, when comparing
sonicsearchonline.biz with two internal sites, search.
runclips.com and search.searchnowdirect.com, we
fi nd that they are all mapped to the same IP address
(174.137.155.137). The crude and simple home page is
shown in Figure 6.

Obviously the three search sites are owned by the
gang behind ZeroAccess. When a user redirected to
sonicsearchonline.biz searches for something on it, a
results page will be displayed – however, only a few
entries are shown and there is not even a ‘next page’
button. It seems that only the most commonly viewed
entries retrieved when searching on a major search
engine are shown here. If the user clicks on a link from
the disguised search result page and navigates to a page
owned by an advertiser, the advertiser pays a referral fee to
sonicsearchonline.biz.

CLICK-FRAUD WORKING MECHANISM

In this section, we will look at how the module acts
as a ‘click-bot’ [3] to conduct click-fraud using
invisible home-made browsers. When a module has
been downloaded on a compromised computer, the
loader will invoke the module’s exported function with
ordinal 2. When the exported function with ordinal 2
is called by the loader, the click-bot will inject a copy
of itself into an svchost.exe process with the parameter
‘-k LocalServiceDns’ in the command line and call the
injected module’s exported function with ordinal 1. The
render mode of IE8 is set for svchost.exe by setting
register value ‘HKEY_CURRENT_USER\Software\
Microsoft\Internet Explorer\Main\FeatureControl\
FEATURE_BROWSER_EMULATION\svchost.exe’ as
8000. In addition, a copy of Adobe Flash Player will
be downloaded from fpdownload.macromedia.com and

Figure 6: A crude search site working for ZeroAccess.

Figure 7: Start-up of the click-bot.

VIRUS BULLETIN www.virusbtn.com

15AUGUST 2013

installed if the existing version of Flash Player on the
compromised machine is too old.

Targeting advertising services

In the injected svchost.exe process, the click-bot will get
ad redirection URLs and referrers from the C&C server to
conduct click-fraud. The ad redirection URLs will lead to
publisher sites belonging to various advertising services.
The fake sites used as referrers are owned by the gang
behind ZeroAccess. The click-bot will visit the publisher
sites with forged referrers and click on pages automatically,
navigating to the landing pages where the advertisers will
pay a fee according to a pay-per-click business model. As
the referrers that have led users to the publisher sites, the
fake sites owned by the cybercriminals will gain a share of
the advertising service profi t.

Case study and analysis

Some examples of referrers and ad redirection URLs are
shown in Table 2:

Referrer Ad redirection URL

http://excellent-information.
info/search

http://195.138.241.94/td?aid
=6uwa7a4w&said=302904

http://myownfi nd.info/
search

http://76.73.80.106/td?aid=
6uwa7a4w&said=305006

http://trustsearchsite.info/
search

http://31.171.128.73/td?aid
=6uwa7a4w&said=302904

http://myown-search.info/
search

http://195.138.241.94/td?aid
=6uwa7a4w&said=305006

Table 2: Example referrers and ad redirection URLs.

Almost every fake website used by the click-bot as a
referrer disguises itself as a search engine. But when
you try to search for something, it will not redirect you
to a result page. Clearly, these fake search sites are
created only for serving as the referrers in the business of
click-fraud.

Open ad redirection URL with given referrer

Now let us have a closer look at how the click-bot loads
an ad redirection URL with a given referrer in an invisible
browser. Figure 9 shows the procedure.

Step 1: Send 406h message

In the injected svchost.exe process, the click-bot will
register a Manager Window which will keep running in

a loop, handling messages sent by the main thread of the
click-bot. The main thread will also create a Communicator
object which will communicate with the C&C server to
get several ad redirection URL/referrer pairs. For each ad
redirection URL and referrer pair, the Communicator will
send a 406h message to the Manager Window, with the ad
redirection URL and referrer as parameters.

Step 2: Create an invisible browser object

When a 406h message is received by the Manager Window,
an object we call Click Controller is created for the ad
redirection URL and referrer associated with the message.
The Click Controller contains the following essential
elements:

1. Pointers to IWebBrowser2 and IHTMLDocument2 of
an invisible browser.

2. Interfaces used for displaying and controlling
MSHTML documents in the invisible browser:

Figure 8: Fake search sites serving as referrers.

Figure 9: Procedure of loading an ad redirection URL.

VIRUS BULLETIN www.virusbtn.com

16 AUGUST 2013

DWebBrowserEvents2 IServiceProvider

IOleClientSite IOleInPlaceSite

IOleInPlaceFrame IOleInPlaceUIWindow

IOleWindow IDocHostUIHandler

IDocHostShowUI IHostDialogHelper

INewWindowManager HttpSecurity

IInternetSecurityManager IOleCommandTarget

3. The handle of the container window of the invisible
browser.

4. A pointer to a buffer storing the domain name of a
website.

5. Flink and Blink pointers that link together all Click
Controller objects in a double-linked list.

6. The maximum number of clicks that can be made on
a single page.

7. The time point when the object should be released.

8. The time point before which the next click on a
single page should not be made.

9. The maximum number of attempts to fi nd a qualifi ed
element on a page for the next click.

10. Parameters for randomizing the behaviour of the
invisible browser. These parameters defi ne the
possibilities for the browser to take some actions
such as scrolling on a web page, clicking on a child
window of the current page window, clicking on a
link to a website other than the one being viewed,
etc.

A browser object without a visible user interface is
created by calling the CoCreateInstance API, and the
DWebBrowserEvents2 interface is implemented by the
Click Controller by calling the AtlAdvise API.

The IOleObject::SetClientSite method is called, setting the
client site of the browser as an object implemented by the
Click Controller. Through this object, the click-bot can set
the frame and document window of the invisible browser to
be the rectangle representing the monitor screen.

Step 3: Load ad redirection URL with fraud
referrer

A URL moniker is created with the ad redirection URL, then
the IPersistMoniker::Load method is called to load the ad
redirection URL into the invisible browser. Executing this
method enables the browser to be guided by ad redirection
servers and fi nally to arrive at an ad publisher site.

To set the referrer fi eld in an HTTP GET command, the
string key ‘__DWNBINDINFO’ of the bind context used as

Figure 10: Load ad redirection URL.

Figure 11: Set referrer of HTTP GET command.

Figure 12: Loading an ad redirection URL.

VIRUS BULLETIN www.virusbtn.com

17AUGUST 2013

a parameter of IPersistMoniker::Load is associated with an
object that implements the BeginningTransaction method
of the IHttpNegotiate interface. In this method the referrer
given by the C&C server is placed in the header of an HTTP
GET command.

An example of the traffi c generated by executing
IPersistMoniker::Load is shown in Figure 12.

Step 4: Get container window and check
website domain

When a publisher site is eventually arrived at,
a NavigateComplete2 event fi res, invoking the
IOleWindow::GetWindow method where the click-bot
gets the container window of the browser. Some randomly
chosen links and/or child windows in this window will be
clicked later.

Figure 13: Get container window.

Then the Click Controller will check where it has
arrived. If it fi nds that it has arrived at Facebook.com
or Google.com, it will stop performing click-fraud and
release the corresponding browser object along with
owned resources and interfaces.

If the Click Controller fi nds that it has arrived at a website
included in the list below, it will never scroll on the page
before choosing a random element to click:

hollyscoop.com thirdage.com

gourmandia.com videobash.com

egotv.com mevio.com

eyehandy.com dailymotion.com

37millionminutes.com celebrityhearsay.com

clevercoinsonline.com wellhabits.com

brilliantriches.com sciencenewsstories.com

exerciseglobe.com hark.com

clevershares.com mommymixing.com

driverswhoknow.com iamcatwalk.com

wellentertainment.com moneyforgenius.com

modamob.com eatstaydrink.com

stereotube.com onlinejournal.com

fi lmamexarticles.com

Click on page

When the Manager Window is created, it creates a timer.
The timer is set for every second. As response to the
WM_TIMER message, every invisible browser object that
has loaded an ad redirection URL with a given referrer will
choose and click on an element from the page it contains.
The procedure is as follows:

Figure 14: Procedure for clicking an element on the page.

Step 1: Send WM_TIMER

A WM_TIMER message is sent to the Manager Window.

Step 2: Notify invisible browsers

The Manager Window notifi es each invisible browser object
to make a click.

Step 3: Click an element on page

Each invisible browser object will try many times until it
fi nds an effective target to click on. At the beginning of
each attempt, a hyperlink or a child window with the tag
name ‘object’, ‘iframe’ or ‘embed’ is chosen by a randomly
generated coordinate. Three kinds of hyperlinks are
excluded:

1. Any hyperlink containing a string shown in the
following list:

/register /contact

registration /Forgotpassword

/faq /fl agcontent

/tweet mailto:

VIRUS BULLETIN www.virusbtn.com

18 AUGUST 2013

action=embed-fl ash /login

/password /terms

2. Any hyperlink containing the character ‘#’, such
as name, which is a
pointer to another id or name tag on the same page.

3. Any hyperlink pointing to a jpg image.

If a matching element is found, the click-bot will click
on it.

Figure 15: Click an element on the page.

Step 4: Set referrer when opening a pop-up
window

In the INewWindowManager::EvaluateNewWindow
method, the click-bot loads the URL corresponding with
the clicked element in the same way as it loads an ad
redirection URL. This time the referrer is set to the URL of
the current document. Therefore the referrer given by the
C&C server can be spread when the browser navigates from
one site to another through the fraudulent clicks.

Figure 16: Spreading of referrer (marked in yellow).

Handling video and audio

The click-bot’s mechanism for handling the video and audio
on pages is fulfi lled by hooking three APIs: WSPSend,
WSPRecv and WSPCloseSocket. On receipt of an HTTP
packet whose Content-Type is audio, the click-bot will shut
down the socket associated with it. The click-bot will allow
a browser to receive a video whose size is less than a given
threshold. The socket associated with the video will be shut
down once the size of data received has exceeded the given
threshold. It should be noted that the threshold is 512KB in
ordinary cases, but 15MB for videos related to the following
advertising services:

alphabird.com adap.tv

oggifi nogi.com /tv2n/

tidaltv.com innovid.com

rovion.com liverail.com

vastvpaidshim.swf realmedia.com

audiencetv videoegg.com

cvads.cvcdn spotxchange.com

ads/ mixpo.com

preroll gorillanation.com

[IMPORT] aim4media.com

pointroll fwmrm.net

yumenetworks.com edgesuite.com

tremormedia.com youtube.

BITCOIN MINING
Mining Bitcoins involves lots of calculations for generating
SHA256 hashes. In order to perform such a tough task,
ZeroAccess utilizes the infected machines in a mining pool
controlled by its pool server.

Retrieve Bitcoin miner program

To perform the Bitcoin mining, another module named
‘00000008.@’ is needed. This is a PE fi le containing only
resources. The resource with name ‘#1’ and type ‘#10’ is a
modifi ed copy of Ufasoft Bitcoin Miner [4].

Figure 17: Bitcoin miner in resource of 00000008.@.

Inject Bitcoin miner

The bot module will inject the miner into an svchost.exe
process, with the following command line:

“C:\WINDOWS\System32\svchost.exe” -g no -t %u -o
http://ooyohrmebh9qfof.com/ -u %s -p %s

The meaning of the parameters is as follows:

• -g no: do not use GPU for calculating hashes of blocks
used in Bitcoin transactions

• -t %u: number of threads used by the Bitcoin miner

VIRUS BULLETIN www.virusbtn.com

19AUGUST 2013

• -o http://ooyohrmebh9qfof.com/: address of the
pool server which controls the bots joining the same
mining pool

• -u %s -p %s: randomly generated user name and
password of a bot joining the mining pool.

Start mining

The copy of the UPX-packed Ufasoft Bitcoin Miner is
modifi ed by setting the RVA of the entry point to zero in the
PE header. In fact, this RVA is just stolen and placed in an
area adjacent to where it is supposed to be.

Figure 18: RVA of miner’s entry point (marked in red).

The entry point of the Bitcoin miner will be recovered by
the bot module at run time.

CONCLUSION

ZeroAccess has established an extensive underground
service not only for its own use but also for the malicious
sites that pay the gang behind ZeroAccess. While the
browser redirections are annoying for end-users, the
click-fraud causes great economic losses for the advertising
services. By exploiting the infected machines for Bitcoin
mining, the ZeroAccess herder can accumulate enormous
wealth with ease. In light of the fast spread and continuous
evolution of ZeroAccess, we must assume that the battle
against it has only just begun.

REFERENCES

[1] Wyke, J. The ZeroAccess Botnet – Mining and
Fraud for Massive Financial Gain.
http://www.sophos.com/en-us/medialibrary/PDFs/
technical%20papers/Sophos_ZeroAccess_Botnet.
pdf.

[2] Tan, N.; Yang, K. ZAccess detailed analysis.
Virus Bulletin, August 2012, p.4.
http://www.virusbtn.com/virusbulletin/
archive/2012/08/vb201208-ZAccess.

[3] Daswani, N.; Stoppelman, M.; and the Google
Click Quality and Security Teams. The Anatomy
of Click-bot.A. http://static.usenix.org/events/
hotbots07/tech/full_papers/daswani/daswani.pdf.

[4] Ufasoft Bitcoin Miner. http://ufasoft.com/coin/.

THE CLEAN THEORY
Mircea Ciubotariu
Symantec Security Response, USA

Using analogies with the principles of logic, this article
will look at the processes that Security Response Engineers
(SREs) employ on a daily basis to make their decisions
about incoming fi les and anticipate the future shape of the
industry based on it.

OLD RULES

An old proverb goes something like this: when one adds
a pint of clean water to a barrel of sewer water one gets a
barrel of sewer water, and when one adds a pint of sewer
water to a barrel of clean water one gets… a new barrel of
sewer water.

Considering the clean water as a logic true statement and
the sewer water as a logic false statement, the proverb
expresses a long known principle of logic: adding a true
statement (pint of clean water) to several ‘&’ (AND
operator) chained false ones (barrel of sewer water) results
in an overall false statement, just the same as adding a false
statement to several ‘&’ chained true ones also results in an
overall false statement.

One of the main duties of SREs is to determine whether a
given fi le may pose a threat to the environment in which it
would be deployed and to take necessary steps to prevent
such a threat from materializing. To do this, the SRE needs
to look within the fi le for specifi c sequences of code or
commands that may perform unwanted or malicious actions
in the deployment environment.

Such a fi le subjected to analysis may be expressed as a
(long) logical sequence similar to this one:

S = P
1
 & P

2
 & P

3
 & … & P

i
 & … & P

n

where each P
i
 represents a fundamental block in the fi le,

performing one atomic action, or a statement in the logic
parallel. (Note that in reality the above expression may
also contain other logical operators such as ‘IF/THEN’;
nonetheless in order to evaluate the whole fi le one must
evaluate each individual P

i
.)

We refer here to fi le blocks in a general manner. In fact, the
blocks have different representations for different fi le types
– for example, a block in a script fi le is an atomic command
executed by the script interpreter in one step, while for a
native executable the block may be regarded as a basic code
block, which means a block of instructions that has either
more than one entry or more than one exit.

FEATURE 1

http://www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/Sophos_ZeroAccess_Botnet.pdf
http://www.virusbtn.com/virusbulletin/archive/2012/08/vb201208-ZAccess
http://static.usenix.org/events/hotbots07/tech/full_papers/daswani/daswani.pdf
http://ufasoft.com/coin/

VIRUS BULLETIN www.virusbtn.com

20 AUGUST 2013

Since it only takes one false statement in the list to reach
an overall false statement, as soon as one of the blocks is
deemed to pose a threat, for the purpose of protection the
analysis can stop and the fi le can be considered a threat
– with a detection signature required.

To give a sense of the magnitude of the task, let’s consider
a simple application such as Notepad, which has roughly
1,500 blocks. If an attacker were to insert a few additional
malicious blocks at a random location, it would be very
diffi cult to spot them among the 1,500 clean blocks – it’s
very much like looking for a needle in a hay stack.

In many cases where the whole fi le has been created with
malicious intent (such as most trojans), the threat can be
spotted more easily, since elements of the threat can be
found all over the place – for example, obfuscation and
polymorphism are good indicators that there is something
undesirable about the fi le. Currently, roughly three in four
fi les that Symantec receives for analysis end up being
assigned a signature for detection.

When detailed information is needed for documenting the
actions of a threat, deep analysis must be performed on
the whole fi le, which means having to go through almost
all of its blocks, regardless of whether they are good or
malicious, in order to fi ll in all the pieces of the puzzle.
For example, in the case of Stuxnet – one of the most
complex threats seen to date – it took a team of three
senior engineers more than four months to go through its
roughly 12,000 blocks of code.

Add to that obfuscation or polymorphism, which make
analysis more diffi cult by making the blocks look different
every time, and you get a picture of the amount of work
needed for an SRE to make a determination.

There are several automation tools that can be used to
accelerate the processing of information, such as those that
identify library code, which is reused in many binaries and
already considered clean, or which fi nd the original clean
fi le and compare the new fi le against it. But in the end, a
large number of the blocks need to be inspected manually.
The rule says that in making a determination one puts in
an amount of time and effort that is directly proportional
to the amount of information contained in the fi le, which
in turn is usually directly related to its size.

The SRE can also make use of other specialized tools
before diving into deep analysis – such as behaviour
examiners, where a determination is made based on the
actions performed by a fi le when deployed in a given
environment – but that’s another story.

INTENT
Some legitimate tools, such as the system tool cmd.exe

(Command Prompt), have at least one block of code
that deletes multiple fi les, and can do so even without
user interaction. This behaviour on its own is regarded
as malicious and if found by itself in a standalone
application, the application would be classed as malicious.
But cmd.exe and the like are in fact clean fi les, so how
does that work?

The analogy of true/false logic statements with clean/bad
fi les works here too: the destructive code only triggers
when a specifi c parameter is given to cmd.exe and the
interaction is suppressed by another external parameter.
Basically, cmd.exe performs something like this:

If the ‘delete’ command is present in the command line,
then delete specifi ed fi les.

If the ‘silent’ parameter is present, then suppress
prompting.

Each of the two statements can be expressed as:

S = if P then Q

The following applies equally to both statements:

When P is false, then S is true, or clean, just as when the
‘delete’ command is not present in the command line
(P = false), no fi les will be deleted by cmd.exe, which in
turn means a clean run, and if the ‘silent’ parameter is
omitted there will be a prompt for each command, if there
are any.

When P is true, then Q will be evaluated, which is true,
resulting in S being true as well. In the same manner,
when told to delete fi les, cmd.exe acts in a legitimate
fashion as part of a larger scheme, but on its own it is just
a clean tool. It’s similar to a knife that can be used either
to help in the kitchen or for criminal activities.

All this brings us to another important factor in
determining some of the fi les conditioned by external
interaction: what is the purpose of commanding such
fi les to perform the different actions (either legitimate or
malicious), in other words the intent behind using them?

Many modern threats and/or attacks involve several
modules which interact with each other. While most
of the modules are specifi cally created with malicious
intent, making them easier to determine, it may be that
some of the modules are in fact legitimate tools – as
in the case of NetCat, a command-line tool commonly
used by network administrators for advanced network
connections.

Despite the fact that NetCat is a clean tool, due to its
common occurrence in hacking attacks, where it is mostly
used for initiating backdoor connections, it has been
deemed as a security threat and therefore is reported as a

VIRUS BULLETIN www.virusbtn.com

21AUGUST 2013

‘security assessment tool’ (giving the user the option to
ignore its detection).

TRUST

Other factors that play an increasingly important role in
the process are the original source of the fi les, and their
popularity.

In general, legitimate companies produce high-quality
content that fi ts certain patterns of quality control, where
integrity information such as digital signatures and version
information is always present. Such information can be used
to track the fi le to its creator and is often an indication that
the fi le is trustworthy and therefore may be deemed ‘clean’,
(because, unlike threat authors, legitimate companies have a
reputation to maintain).

As history shows, there are cases where big companies have
crossed the line, as in the Sony BMG copy protection rootkit
scandal in 2005, or where legitimate signing certifi cates
have been used in the creation of various threats. When a
certifi cate is found to have been used in signing any threat
it is revoked, and as a result, any other fi les signed with it,
including any legitimate ones, are deemed untrustworthy.

The bottom line is that fi les produced by large, well
known companies may, within certain limits of certitude,
be assumed clean without going through the whole analysis
process, unless there is a good reason to do so (such as an
observed side effect or a suspicious action performed by it).

Trust can also be applied in fl agging a fi le, since most
clean fi les tend to be easy to analyse, while 83% of the
threat fi les observed today use at least one packer. If a fi le
claims to come from a trustworthy source but has signs of
obfuscation, a mismatching digital signature, or appears to
be packed with a custom packer, there is a more than 95%
chance that it will pose a security threat.

SUMMARY

Logic states that a truth can only imply a truth; in a similar
manner, a clean fi le must be ‘clean’ on all levels: it must
come from a known, reputable entity, it must serve a
well-defi ned, ‘good’ purpose and it must be made up only of
clean blocks.

The analysis techniques currently used in fi le determination
are relatively slow, and the number of fi les needing to be
processed daily is increasing rapidly – vendors need to look
into new ways of dealing with threats where less of the
classical per-fi le in-depth analysis is performed, with more
emphasis placed on the trust/intent determination. The game
must move to the next level.

BADNEWS REVEALS ONGOING
CHALLENGES IN THE ANDROID
MARKETPLACE
John Foremost
Independent researcher, USA

BadNews is an Android threat that has been spreading via
the legitimate Google marketplace (Google Play), affecting
30 or more apps, with an estimated two to nine million
devices having downloaded the affected apps.

In 2011, DroidDream [1] rocked the Android marketplace
when over 100 apps were found to contain code created by
rogue developers. This time, BadNews changed the rules of
the game by lying in wait before deploying any noticeable
payload.

Since the advent of DroidDream, Google and others have
taken measures to improve the security of app distribution
and management. In a cat-and-mouse world, fraud
continues to drive new security measures in emergent
markets, including the exploding Android market.

Most consumers realize that if they obtain apps from a
‘crack’ site or download some of the more nefarious types
of apps – related to porn, gambling and the darker side of
life – their risk increases. This is especially true in regions
such as Russia and China where rogue sites and apps are
emerging by the thousands. Recently, for example, there
were multiple websites in Russia supposedly distributing
anti-virus software, the Bad Piggies game, and other
popular apps – which were, in fact, trojans. This type of
risk can be mitigated by consumers not visiting ‘crack’
sites or downloading nefarious apps, as well as by checking
the apps they do download with various freeware security
solutions prior to use.

In the case of BadNews, infected apps were distributed
both through Google Play and via similar app download
sites, such as AppBrain. Analysis of the hostile code reveals
developer certifi cate creation in February and April 2013,
with BadNews emerging in April/May. Popular apps for
wallpaper, greetings and others were amongst the array
distributed with BadNews code. As seen with so many other
apps, consumers simply downloaded and installed them with
little to no regard to the permissions requested. For example,
the Live Wallpaper – Savannah app (MD5 98cfa989d78eb85
b86c497ae5ce8ca19) has the following permissions:

• ACCESS_NETWORK_STATE

• ACCESS_WIFI_STATE

• INSTALL_PACKAGES

• INSTALL_SHORTCUT

FEATURE 2

VIRUS BULLETIN www.virusbtn.com

22 AUGUST 2013

• INTERNET

• READ_PHONE_STATE

• RECEIVE_BOOT_COMPLETED

• RESTART_PACKAGES

• VIBRATE

• WAKE_LOCK

• WRITE_EXTERNAL_STORAGE

These permissions enable the code to run upon boot,
write data to the SD card, read the phone state, and have
networking access and details and C&C communications.
The last part is critical, as BadNews didn’t enable C&C
communications straightaway. Instead of quickly being
detected and removed from Google Play, BadNews lay in
wait, infecting millions of devices before fully revealing
itself. Once enough time had passed for critical mass to be
achieved, C&C operations and payloads were activated.

BadNews used an adware scheme similar to that seen in
several other trojans – a common form of monetization in
Android threats. This is obvious in a wide variety of C&Cs
and source code statements found within hostile classes. For
example, a few URLs found in the code are listed below:

• hxxp://media.admob[.]com/mraid/v1/mraid_app_
banner.js

• hxxp://media.admob[.]com/mraid/v1/mraid_app_
expanded_banner.js

• hxxp://media.admob[.]com/mraid/v1/mraid_app_
interstitial.js

• hxxp://schemas.android[.]com/apk/lib/com.google.ads

• hxxp://e.admob[.]com/imp?ad_loc=@gw_
adlocid@&qdata=@gw_qdata@&ad_network_id=@
gw_adnetid@&js=@gw_sdkver@&session_id=@
gw_sessid@&seq_num=@gw_seqnum@&nr=@gw_
adnetrefresh@&adt=@gw_adt@&aec=@gw_aec@

BadNews stores confi guration and downloaded updates and
payloads on the SD card. It can also send fake messages
and prompt users to install other (malicious) apps or fake
updates for legitimate applications. Details regarding the
phone – such as model, IMEI and build version – are also
sent to a remote C&C server.

Adware and exfi ltration of sensitive data relating to mobile
devices is big business for e-crime operators. When
performed to scale – in the millions – just a penny for each
device infected yields great profi ts. Sensitive information
is an asset that is worth plenty in the criminal underground,
where IMEI and other phone data can be used for many
types of fraud. For example, in 2010, actors in Chennai,
India were found to have used the Spiderman Kit to plant
fake IMEI numbers on mobile devices. IMEI numbers are

heating up as a global privacy issue, where many entities
are now attempting to track and/or manage identities based
upon IMEI and user associations. This type of data can be
used by attackers to track victims, and may also be resold
on the black market.

Google responded very quickly to the BadNews incident once
the threat was realized. Unfortunately, millions of downloads
of affected apps had already taken place before the malware
was discovered. In the wake of BadNews, one has to ask:
how many other rogue developers and apps exist in the
marketplace that have yet to be discovered? The problem is
similar to that encountered by CNET and downloads.com,
where downloads were largely trusted in the early days and
later abused by the creators of Windows malware.

Another interesting twist in the BadNews case is ambiguity
over what really happened regarding the distribution of the
code. Some claim it was through rogue development while
others believe it may have taken place through legitimate
developers being tricked into using compromised code.
Unlike large software houses like Microsoft, that have
authority and control over the development of secure coding,
the open source and offi cial developers’ marketplace have no
such oversight. This greatly complicates the task of managing
apps when thousands of new ones emerge at an amazing rate.

Even attempting to download and manage all the legitimate
apps in the marketplace is a staggering challenge, let
alone carrying out secure code review and monitoring.
Looking for hostile code in the Android marketplace can be
compared with searching for a needle in a global haystack.
New measures are likely to be required to respond to this
challenge. New technologies are required in classifying
and categorizing code and possible threats, correlating
code bases (and modifi cations thereof), and gap analysis
between advertised and actual permissions. Controls around
developers and response to hijacked developer identities and
accounts, rapid dynamic analysis and reputation capabilities
are just a few more of the measures which must be matured
to assist in this complex challenge.

Abuse is almost impossible to stop and security very
often has to be reactive, forcing new creative measures for
managing the risk affordably. Google has made great strides
in protecting its marketplace. Consumers should also be
aware of risks associated with apps and permissions and
should be encouraged to check apps before installing them,
using freeware scanners and similar solutions, as well as
running security apps on their devices.

REFERENCES
[1] http://www.virusbtn.com/virusbulletin/

archive/2012/03/vb201203-DroidDream.

http://www.virusbtn.com/virusbulletin/archive/2012/03/vb201203-DroidDream

VIRUS BULLETIN www.virusbtn.com

23AUGUST 2013

GREETZ FROM ACADEME:
MASTERS OF THEIR OWN
DOMAINS
John Aycock
University of Calgary, Canada

As I write this, we are in the midst of the Calgary Stampede,
an annual event where the city is inundated with modern
cowboy culture: boots, hats, pick-up trucks, and belt buckles
that are Entirely Too Large. (Once, as a joke, I covered a
dinner-sized paper plate in aluminium foil and wore it as a
belt buckle to a Stampede breakfast. No one even noticed.)
I am reminded of last September’s VB conference when we
descended upon another cowboy-themed city, Dallas.

There, Gunter Ollmann presented a paper [1] about malware
using domain generation algorithms (a.k.a. DGA, AGD or
domain fl ux) and how to detect it by using NX responses.
The intuition is that, if malware is spewing out a lot of
requests to the domain name system (DNS) for nonexistent
domain names as it tries to phone home, then looking at the
corresponding ‘NX’ error replies from the DNS provides a
method for detecting that malware. It seems sensible, and
it works. Ollmann’s presentation, if I recall correctly, was
a reprise of work published in USENIX Security shortly
before VB2012; for anyone wanting more technical detail,
it’s all there in [2], complete with maths and funky Greek
symbols for good measure.

I was curious as to how this line of research has progressed
since then, and I found my answer in a paper that appeared
in June 2013 at the Conference on Dependable Systems and
Networks1. Krishnan et al.’s ‘Crossing the Threshold’ [3]
carries on with DGA detection, looking at a way to make
use of NX replies.

It would be a perfectly justifi able reaction to say ‘um,
detection using NX replies has already been done, hasn’t
it?’ – and herein lies a basic dichotomy of academic
research. On the one hand, academics are great at
abstracting away details, sometimes to the point of silliness.
For example, I would be perfectly comfortable making a
mental category of work called ‘malware detection using
DNS anomalies’ into which I would lump the papers
I already mentioned [1–3] – but I wouldn’t stop there.
Invariably, I would also include papers that have nothing
to do with DGA or NX replies – such as the detection of
scanning worms by watching for network traffi c to an IP
address that wasn’t looked up by a previous DNS request
[4]. In the abstract sense, the papers are all about DNS

1 I suspect the papers at a conference on undependable systems and
networks would be far more entertaining.

anomalies, but it’s arguably a pretty broad and meaningless
category.

So on the one hand, we have wanton abstraction; on the other
hand, academics have a painfully fi ne eye for detail, when
it matters. And it matters when distinguishing what you’ve
done from what’s already been done in related work. The
NX-based detection in the ‘Crossing the Threshold’ paper
is totally different from [1, 2] because it ‘do[es] not rely on
domain structure or clustering techniques to identify bots’ [3].

I’m being facetious, of course. The NX-based detection in [3]
is actually very simple and elegant, and well worth a look for
anyone who has a good view of DNS traffi c and a hankering
to fi nd DGA malware. Krishnan et al. fi lter out NX replies,
and fi lter again to get rid of NX replies for known-good
domains, trying to pare their input down suffi ciently for
their method to be scalable. The remaining NX replies are
mined for the domain name that failed and the IP address
of the requesting machine, the idea being to label individual
machines as benign or infected. An interesting point is that
the way they determine this involves determining whether or
not the NX response is for a domain2 that the machine has
seen before. There’s enough detail in the paper to both build
a system like theirs and set the labelling thresholds, along
with copious evaluation. The researchers were able to label
machines with only about three to four NX replies – which is
pretty impressive, even for failed cowboys like me who don’t
know which end of a bull to milk.

REFERENCES
[1] Ollmann, G. The new wave of ‘undetectable’ DGA

threats: examining the state of the art in malware
evasion techniques. Proceedings of the 22nd
Virus Bulletin International Conference, 2012,
pp.270–273.

[2] Antonakakis, M.; Perdisci, R.; Nadji, Y.; Vasiloglou,
N.; Abu-Nimeh, S.; Lee, W.; Dagon, D. From
throw-away traffi c to bots: detecting the rise of
DGA-based malware. Proceedings of the 21st
USENIX Security Symposium, 2012, pp.491–506.

[3] Krishnan, S.; Taylor, T.; Monrose, F.; McHugh,
J. Crossing the threshold: detecting network
malfeasance via sequential hypothesis testing. 43rd
IEEE/IFIP International Conference on Dependable
Systems and Networks, 2013.

[4] Whyte, D.; Kranakis, E.; van Oorschot, P.C.
DNS-based detection of scanning worms in an
enterprise network. 12th Annual Network and
Distributed Systems Security Symposium, 2005.

2 I’m generalizing a bit here. The researchers use what they call ‘zones’
that correspond to second-level domain names.

SPOTLIGHT

AUGUST 2013

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

24

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Jimmy Kuo, Microsoft, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Roel Schouwenberg, Kaspersky Lab, USA

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2013 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2013/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

DEF CON 21 will take place 1–4 August 2013 in Las Vegas, NV,
USA. For more information see https://www.defcon.org/.

The 8th Annual (ISC)² SecureAsia takes place 7–8 August 2013 in
Manila, Philippines. See http://www.informationsecurityasia.com/.

The 22nd USENIX Security Symposium will be held 14–16
August 2013 in Washington, DC, USA. For more information see
http://usenix.org/events/.

ZebraCon 2013 takes place 27–29 August 2013 in Kuala Lumpur,
Malaysia. For details see http://zebra-con.com/home/.

Cyber Intelligence Europe takes place 17–19 September 2013 in
Brussels, Belgium. For details see http://www.intelligence-sec.com/
events/cyber-intelligence-europe.

Hacker Halted USA will take place 19–21 September 2013 in
Atlanta, Georgia, USA. For more information see
https://www.hackerhalted.com/2013/us/.

VB2013 takes place 2–4 October 2013
in Berlin, Germany. The conference
programme and online registration are
now available. See http://www.virusbtn.com/

conference/vb2013/.

SecTor 2013 takes place 7–9 October 2013 in Toronto, Canada.
For details see http://www.sector.ca/.

Hactivity 2013 takes place 11–12 October 2013 in Budapest,
Hungary. For details see https://hacktivity.com/en/.

ISSE 2013 will take place 22–23 October 2013 in Brussels,
Belgium. For more details see http://www.isse.eu.com/.

MALWARE 2013 takes place 22–24 October 2013 in Fajardo,
Puerto Rico, USA. See http://www.malwareconference.org/.

Ruxcon 2013 takes place 26–27 October 2013 in Melbourne,
Australia. See http://www.ruxcon.org.au/.

RSA Conference Europe takes place 29–31 October 2013 in the
Netherlands. For details see http://www.rsaconference.com/
events/2013/europe/index.htm.

The First Workshop on Anti-malware Testing Research (WATeR
2013) takes place on 30 October 2013 in Montreal, Canada. For
full details see http://secsi.polymtl.ca/water2013/.

Oil and Gas Cyber Security will be held 25–26 November 2013,
in London, UK. For details see http://www.smi-online.co.uk/
2013cyber-security5.asp.

AVAR 2013 will take place 4–6 December 2013 in Chennai, India.
For details see http://www.aavar.org/avar2013/.

Botconf 2013, the ‘first botnet fighting conference’, takes
place 5–6 December in Nantes, France. For details see
https://www.botconf.eu/.

VB2014 will take place 24–26 September
2014 in Seattle, WA, USA. More
information will be available in due course at
http://www.virusbtn.com/conference/

vb2014/. For details of sponsorship opportunities and any other
queries please contact conference@virusbtn.com.

2013
BERLIN

SEATTLE
2014

http://www.aavar.org/avar2013/
mailto:editorial@virusbtn.com
http://www.virusbtn.com/
http://www.virusbtn.com/virusbulletin/subscriptions
http://www.defcon.org/
http://www.informationsecurityasia.com/
http://usenix.org/events/
http://zebra-con.com/home/
http://www.intelligence-sec.com/events/cyber-intelligence-europe
https://www.hackerhalted.com/2013/us/
http://www.virusbtn.com/conference/vb2013/
http://www.sector.ca/
https://hacktivity.com/en/
http://www.isse.eu.com/
http://www.malwareconference.org/
http://www.ruxcon.org.au/
http://www.rsaconference.com/events/2013/europe/index.htm
http://secsi.polymtl.ca/water2013/
http://www.smi-online.co.uk/2013cyber-security5.asp
https://www.botconf.eu/
mailto:conference@virusbtn.com
http://www.virusbtn.com/conference/vb2014/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

