
JANUARY 2014

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Covering the global threat landscape

ALL-PURPOSE REDIRECTOR
Medfos is a heavily obfuscated trojan family
which downloads modules capable of redirecting
search engine results in the most popular browsers.
Benjamin Chang and Neo Tan dissect the way
the Medfos downloader deploys its downloaded
modules, and the function of each.
page 4

A GOOD READ
In the latest of his ‘Greetz from Academe’
series, highlighting some of the work going on
in academic circles, John Aycock focuses on
computer science surveys, looking in particular at
one on binary code obfuscations in packer tools.
page 16

SGX: OPPORTUNITIES &
CHALLENGES
A brand new instruction set coming to Intel’s
processors in the near future has tremendous
potential implications both for malware authors and
for defenders. Shaun Davenport and Richard Ford
describe the SGX technology and how people might
use it.
page 18

2 COMMENT

 The AV industry in the post-Snowden era

3 NEWS

 Mariposa writer sentenced

 Warning wording analysed

 Intel to remove McAfee

 Indian government launches spy system

 MALWARE ANALYSES

4 Medfos – an all-purpose redirector

9 Salted algorithm – part 1

13 Inside W32.Xpaj.B’s infection – part 1

16 SPOTLIGHT

 Greetz from academe: Ringing in the new

 FEATURES

18 SGX: the good, the bad, and the downright
 ugly

21 Effusion – a new sophisticated injector for
 Nginx web servers

28 END NOTES & NEWS

2 JANUARY 2014

COMMENT

Editor: Helen Martin

Technical Editor: Dr Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Scott James

Sales Executive: Allison Sketchley

Perl Developer: Tom Gracey

Consulting Editors:
Nick FitzGerald, AVG, NZ
Ian Whalley, Google, USA
Dr Richard Ford, Florida Institute of Technology, USA

THE AV INDUSTRY IN THE
POST-SNOWDEN ERA
Bits of Freedom1, a Dutch digital rights organization that
focuses on privacy and communications freedom, was
among the fi rst organizations worldwide to ask questions
about the detection of malware developed or sponsored
by governments following the Snowden revelations. It
is unlikely to be the last group to seek answers from the
anti-malware industry. Ultimately, though, we are likely
to see state-led efforts to change the situation, which will
impact directly on the IT industry and the anti-malware
sector.

The Brazilian government has abandoned its hitherto
apathetic stance regarding information security matters
in favour of a more aggressive, critical position. In a bid
to halt cyber-espionage, the government’s agenda now
includes laws and decrees that will affect the day-to-day
work of IT companies in the country.

One of the laws soon to be approved in Brazil will force
foreign companies (including anti-malware fi rms) to host
their servers in the country2 if they want to do business
on Brazilian soil. In this way, the government believes
it will have more control over the data of its citizens,
and will be able to prevent abuse by other governments.
Foreign companies will have to weigh up the costs and
benefi ts of implementing data centres in Brazil – which
currently boasts neither competitive prices nor a strong
infrastructure.

1 https://www.bof.nl/home/english-bits-of-freedom/
2 https://www.securityweek.com/brazil-fi rm-demand-domestic-web-
data-storage

Elsewhere, the European Union was already preparing to
reassess issues concerning the data of its citizens prior to
the revelations about the NSA spying regime. In 2009, the
same issue caused serious problems for Google’s European
operations, forcing the company to upgrade its software to
meet local requirements. It seems certain that the anti-
malware industry will face similar challenges. Does your
software have protection features using the cloud?3 Be
prepared to change it at the request of a major customer or
to meet the demands of governments and new legislation.

In 2014, the Brazilian government will no longer buy
new computers or software that cannot be audited by the
government itself – operating systems and other software
will no longer be used if companies make it diffi cult to
audit the source code. Software vendors will be required
to change their terms of use to ensure that nothing
from the government’s information network can be
sent to servers outside the country. These requirements
will cause legal and technical uncertainty for many
companies that operate in Brazil but which still need to
comply with the legal standards of their home countries.
And how many companies will be prepared to share the
source code of their products?

The political sentiment at this time – not only in Brazil
but also in several European countries affected by these
espionage schemes – is one of exacerbated nationalism.
This is refl ected in the decision to rate companies
according to their country of origin, regardless of the
quality of their products. In Brazil, the authorities and
the military are adopting laws which will require them to
give preference to suppliers of Brazilian origin. Where
the authorities cannot fully control these companies, or
lack the technology required, they will aim to develop the
products themselves in the longer term.

We should expect to see governments creating their own
anti-malware products. The Brazilian government has
already invested in DefesaBR, a Brazilian-made AV that
is intended to replace foreign products in the near future.
I expect many other governments to take a similar course
of action.

These are complex and challenging issues: governments
are large purchasers of software and everyone wants their
custom. Now, they are not only seeking protection against
malware developed by other governments, but they also
want to control and shape the anti-malware solutions
according to their internal policies or interests.

The question is whether the anti-malware industry is
prepared to respond to such changes. For now, we can
only wait and see.

3 http://www.usatoday.com/story/cybertruth/2013/11/15/snowden-
fallout-brazil-calls-for-local-data-storage/3588861/

‘We should expect
to see governments
creating their own
anti-malware products’
Fabio Assolini, Kaspersky Lab

https://www.bof.nl/home/english-bits-of-freedom/
https://www.securityweek.com/brazil-firm-demand-domestic-web-data-storage
http://www.usatoday.com/story/cybertruth/2013/11/15/snowden-fallout-brazil-calls-for-local-data-storage/3588861/

3JANUARY 2014

VIRUS BULLETIN www.virusbtn.com

MARIPOSA WRITER SENTENCED
One of the key players behind the Mariposa botnet has
been sentenced to almost fi ve years in prison for writing the
original malicious code that was used to create the botnet.

The Mariposa botnet was discovered in May 2009 by
researchers at Canadian security company Defence
Intelligence and at its peak was believed to have infected
12.7 million computers worldwide. The botnet was taken
down in March 2010 by Spanish authorities thanks to
an investigative effort by the Mariposa Working Group
– involving Defence Intelligence, Panda Security, Georgia
Tech Information Security Center and other security
experts. Three bot herders were arrested at the time of the
takedown.

Slovenian virus writer Matjaž Škorjanc was arrested a
couple of months later and has now been convicted by a
regional Slovenian court of malware creation and money
laundering, receiving a sentence of 58 months in prison as
well as a fi ne of €3,000. Škorjanc’s car and apartment –
which were judged as having been purchased with proceeds
from his crime – were also confi scated by the authorities.

Škorjanc was responsible for creating a malware starter
pack – Rimecud – which he sold to other miscreants via
underground forums, eventually selling the code to a gang
calling themselves the DDP, or Días de Pesadilla, Team
(which translates as ‘Nightmare Days Team’), who became
the operators of the Mariposa botnet.

Prosecutors estimate that the damage caused by Mariposa
ran into tens of millions of euros.

At VB2010, Panda Security’s Pedro Bustamante spoke
about the takedown of the Mariposa botnet and the arrest
of its operators. Slides from the presentation can be viewed
at http://www.virusbtn.com/pdf/conference_slides/2010/
Bustamante-VB2010.pdf.

WARNING WORDING ANALYSED
Researchers from the University of Cambridge have
conducted a study into the psychology of malware
warnings. Their research indicates that people have a
tendency to ignore non-specifi c warning messages such as
‘this web page might harm your computer’, while paying
more attention to warnings that contain specifi c details
– such as that a page might ‘try to infect your computer
with malware designed to steal your bank account and
credit card details in order to defraud you’. They also
found that there was a better response to direct warnings
that appeared to have come from a position of authority
– for example users would avoid a page if a warning stated
that it had been ‘reported and confi rmed by our security

team to contain malware’. The researchers also discovered
that those who turned off browser warnings tended to be
people who ignored warnings anyway – typically men
who distrusted authority and either couldn’t understand
the warnings or considered themselves IT experts. The full
paper, including the research team’s interesting conclusions,
can be downloaded from http://papers.ssrn.com/sol3/papers.
cfm?abstract_id=2374379 (PDF).

INTEL TO REMOVE MCAFEE
Intel has announced its intention to rebrand the McAfee
Security product line – which in future will be known as
Intel Security. The rebranding was announced by Intel CEO
Brian Krzanich speaking at the Consumer Electronics Show
early this month.

The security software has borne the name of the founder
of the fi rm that originally developed it since 1989 – despite
John McAfee having departed from the business almost 20
years ago. In recent years, McAfee has hit news headlines
as a result of his increasingly bizarre antics and escapades,
and last year even released a YouTube video entitled ‘How To
Uninstall McAfee Antivirus’, which culminated in him fi ring
a bullet through a laptop. According to the BBC, his reaction
to the news of the rebranding was emphatic: ‘I am now
everlastingly grateful to Intel for freeing me from this terrible
association with the worst software on the planet. These are
not my words, but the words of millions of irate users.’

The security software itself will remain unchanged and
will still bear the familiar McAfee red shield logo, with
the rebranding process expected to take up to a year to
complete. Krzanich also indicated that the company plans
to make some components of the mobile versions of the
software free to use on iOS and Android devices.

INDIAN GOVERNMENT LAUNCHES SPY
SYSTEM
Move over NSA, the Indian government is launching its
own Internet surveillance system. The ‘Netra’ Internet spy
system was developed by the country’s Centre for Artifi cial
Intelligence and Robotics (CAIR) under the Defence
Research and Development Organization (DRDO) and is
capable of picking up the use of key words (e.g. ‘bomb’,
‘blast’, ‘kill’, ‘attack’ and so on) in emails, blog posts and
social media status updates. The system can also capture
suspicious voice traffi c passing thorough VoIP services such
as Skype and Google Talk. According to The Times of India,
a government offi cial said: ‘When Netra is operationalized,
security agencies will get a big handle on monitoring [the]
activities of dubious people and organisations which use the
Internet to carry out their nefarious designs.’

NEWS

http://www.virusbtn.com/pdf/conference_slides/2010/Bustamante-VB2010.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2374379

VIRUS BULLETIN www.virusbtn.com

4 JANUARY 2014

MEDFOS – AN ALL-PURPOSE
REDIRECTOR
Benjamin Chang & Neo Tan
Fortinet, Canada

Medfos is a heavily obfuscated trojan family which
downloads modules capable of redirecting search engine
results in the most popular browsers, including Chrome,
Firefox and Internet Explorer. Its main module, the
downloader, was found to be distributed via the Sasfi s
botnet. This article dissects the way the Medfos downloader
deploys its downloaded modules, and the function of each.

THE DLL DOWNLOADER
The outermost layer of the Medfos downloader behaves as a
code injector to the msiexec.exe process, where it performs
its main payload. The assembly code is heavily obfuscated.
It uses a combination of encrypted strings, dummy calls,
junk code and opaque predicates to cause IDA functions
to be chopped up inaccurately in the default setting, and
causes the function graph overview window to be too
complex to navigate accurately if the ‘Create functions if
call is present’ option is turned off.

First, Medfos obtains the handle of %system%/msiexec.exe
by calling NtOpenFile. Prior to creating a process using the
newly acquired fi le handle, the ZwCreateSection and
NtMapViewOfSection routines are called to obtain a
mapped view of msiexec.exe where the malware prepares
and inserts decoded chunks of malicious code.
CreateProcessInternalW is then used to create an instance of
the msiexec.exe process in a suspended state. In between

the typical NtGetContextThread and NtResumeThread API
calls, the code injection is performed by two
NtMapViewOfSection calls. The fi rst NtMapViewOfSection
call maps the bulk of the malicious code into the suspended
process, while the second changes the entry point bytes of
the suspended process to a jump into the malicious code.

As the host process resumes the thread of the injected
msiexec.exe, the injected process will perform its function
as a downloader. It resolves some critical APIs and employs
an anti-API hooking technique. As shown in Figure 1, the
fi rst fi ve instructions of InternetOpenURL are copied to an
allocated space at memory location 0x9400A0. When the
trojan calls InternetOpenURL, it calls location 0x9400A0,
which is followed by a jump to the sixth instruction of the
original InternetOpenURL call, 0x771C5A6A. Thus, it
avoids the API hook that hooks the fi rst fi ve instructions of
the original call.

After some preparation, the downloader checks for network
connectivity by attempting to connect to Google. If a
network connection is verifi ed, it issues a DNS query to
cdn169.fi lesnetupload.com, which at the time of writing
this article, returns the IP 78.140.131.159. However, the
malware subsequently connects to the C&C server at
78.131.140.159 and reads a maximum of 0x108FF0 bytes
of data. The IP of the server is a string decrypted at runtime,
and the DNS query is probably a smokescreen intended to
distract users and malware analysts. As shown in Figure 2,
when communicating with the C&C server, the host is set
as www.microsoft.com to further confuse the user. The data
sent to the server is a hard-coded string pretending to be
downloading a fi le from a legitimate site which has nothing
to do with the C&C server.

The response from the C&C server is encrypted with a
simplifi ed version of the Tiny Encryption
Algorithm (TEA), with all four cache
keys hard-coded to be 0x12345678. As
illustrated in Figure 3 and Table 1, the
server response contains two structures,
each with a fi ve-DWORD header and the
body content of a portable executable (PE).

Note that, as shown in Figure 3 and Table1,
the fourth DWORD is the hash of the DLL
export name, which will be called by the
downloader and the run key set up by the
DLL itself. The downloaded DLL may be
different each time as the server always
responds with the newest variant.

The downloaded DLL is loaded and
initialized using ntdll.LdrLoadDll(). While
most parts of the DLLs are encrypted,
initializing the DLLs performs the Figure 1: Anti-API hook.

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5JANUARY 2014

decryption. To start the payload of the downloaded DLLs,
the export defi ned by the fourth DWORD is called. When
called within the host Medfos downloader, a constant is
pushed as the argument to the export function. By matching
the argument with the constant, the downloaded module is
able to determine whether it is being invoked ‘legitimately’.
Called within the downloader, the DLL fi rst drops a copy
of itself into %Application Data% with a name consisting
of six randomly generated alphabet characters. Then it adds
the following key in the registry entry under ‘SOFTWARE\
Microsoft\Windows\CurrentVersion\Run’ to make sure it is
executed at start up:

<DLL name> = rundll32.exe <DLL path and DLL name>,
<ExportName>

Just before returning from the export function, to execute
the DLL, CreateProcessW is called with the same
rundll32.exe command line as the registry key just created.

DLL MODULE – REDIRECTOR
One of the downloaded DLL modules is a search result
redirector for Google Chrome, Mozilla Firefox and Internet
Explorer. Figure 4 shows search result redirection behaviour
under Internet Explorer, while Figure 5 displays the
network traffi c generated during the multi-stage redirection
process. As we have mentioned, loading the DLL module
decrypts the DLL, and the decrypted DLL module is
equipped with a different style of code obfuscation
technique from its downloader. The strings are decrypted
only immediately prior to their use and are erased straight
after use. The APIs are also resolved only at runtime.

CHROME REDIRECT
After the redirector DLL module is executed, it drops
and installs a .crx Google Chrome extension package.

Figure 2: The host is set to www.microsoft.com, but the Get
message is sent to IP 78.140.131.159.

Figure 3: Decoded responses.

DWORD Use Note
1 Reserved Not used

2
A checksum of the PE contained in the current
structure

The checksum is a simple summation of all bytes in the PE

3 Size of the PE in current structure

4 Hash of export name to be called

The checksum pseudo algorithm:

For C = each character in NAME,

 CKM = CKM ror 7

 CKM = CKM ^ C
5 End of this structure Absolute number of bytes from the beginning of buffer
6+ The PE bytes

Table 1: Structure of the decoded response.

VIRUS BULLETIN www.virusbtn.com

6 JANUARY 2014

The extension package is fi rst decoded and dropped into
%Administrator\Local Settings\Application Data% with
a randomly generated name in GUID (globally unique
identifi er) format. Then, to trigger installation of the
Chrome extension, the following registry key is added [1]:

HKLM\Software\Google\Chrome\Extensions\<32
randomly generated lower case characters>

path = <full path of the .crx fi le>

The strings contained in the Chrome extension scripts are

Figure 4: Search result redirection. Notice that the topic of the redirected page is related to the search term.

Figure 5: Result of clicking on a link after searching for the term ‘penny stock’.

VIRUS BULLETIN www.virusbtn.com

7JANUARY 2014

encoded. The pseudo code of the decryption routine is as
follows:
 Key = 0;

 OutString = “”;

 For Byte in Input:

 Byte = Byte ^ (Key&0xFF);

 OutString = OutString + toChar(Byte);

 Key++;

 End For

 Return OutString;

The Appendix [2] contains the de-obfuscated equivalent of
the scripts contained within the .crx package. Once installed,
the extension parses the document.location.href using regular
expression matching. Depending on the situation, one of the
following two actions might be triggered:

1. If Google Instant search is detected, the script injected
is:

 http://disable-instant-search.com/js/disable.js

 This contains the following JavaScript:

try {

 var Links = document.getElementsByTagName(‘a’);

 var f = 0;

 for (var i = 0; f == 0 && i < Links.length; i++) {

 if (Links[i].href.indexOf(‘/setprefs?’) != -1) {

 var t = Links[i].href.search(/sig=([^&]+)/);

 if (t) {

 t = RegExp.$1;

 t = ‘/setprefs?&sig=’ + t + ‘&suggon=2’;

 var req = new XMLHttpRequest();

 req.open(‘GET’, t);

 req.send();

 f = 1;

 }

 }

 }

} catch (err) {}

2. If a link to a search result of one of
the major search engines is identifi ed,
the injected script would be:

ss+”?type=”+k3+”&user-agent=Mozilla%2
F5.0+%28Windows+NT+5.1%29+AppleWebKit
%2F534.30+%28KHTML%2C+like+Gecko%29+C
hrome%2F12.0.742.112+Safari%2F534.30&
ip=”+p+”&ref=”+encodeURIComponent(k2)
+’&’+kladsjnkf

 Where:

 ss = ‘http://chrome-revision.com/feed’

 k3 = ‘search’ if searching in Google,
Yahoo!, Ask, Bing or AOL

 k3 = ‘empty’ if visiting Yahoo!, Bing,
Ask or AOL but not searching

 k2 = the current URL

 p = a randomly generated IP address starting with 84.

The ‘http://chrome-revision.com/feed’ may also return a
gzipped script which redirects the page to
‘http://googleads.i.doublee-click.net’, as shown in the
Appendix [2]. At this point, the server at ‘http://googleads.
i.doublee-click.net’ might decide to further redirect the
browser to another domain. The choice of redirected
target depends on the search term. During the redirecting
procedure, the browsing footprint is referred to a legitimate
advertisement domain to simulate fake ad-clicks to
generate revenue for the author. The network traffi c of such
a process generated by ‘http://googleads.i.doublee-click.net’
is illustrated in Figure 5.

FIREFOX REDIRECT
If Mozilla Firefox is found to be installed, a Firefox
extension performing the same function as the Chrome
extension will also be installed. The script contained within
the extension is essentially Firefox syntax of the same script
as the Chrome extension. As Firefox does not offi cially
advertise a method to install an extension without user
confi rmation, a more stealthy approach is taken here. To
install the Firefox extension, the DLL module loads and
calls the mozsqlite3.dll library to allow direct modifi cation
of the database behind the Firefox browser. To be exact,
it calls sqlite3_open16 to open the Firefox database,
followed by a series of sqlite3_exec SQL statements, as
shown in Figure 6, to set up the installation [3]. The DLL

Figure 6: Sqlite3_exec to include required information for Firefox to load an
extension. GUID is highlighted in red.

Figure 7: Creating/dropping the actual .xpi fi le. GUID is highlighted in red.

VIRUS BULLETIN www.virusbtn.com

8 JANUARY 2014

module drops the fi le %<Firefox
extension folder>%<randomly
generated GUID>.xpi to complete
the installation of the extension.
Note that the GUID entered into the
Firefox sqlite database must match
the fi lename of the .xpi fi le, as
shown in Figures 6 and 7.

INTERNET EXPLORER
REDIRECT
The DLL module also implements a
similar ad-clicking and redirecting
behaviour for Internet Explorer.
However, the implementation
for IE is a little more involved.
First, using CoInitialize and
CoCreateInstance, an instance of
iexplore.exe is created. Note that
this instance of iexplore.exe lurks
in the background without a visible
window. SetWindowsHookExW is
then called with idHook set to
WH_GETMESSAGE and
HOOKPROC pointing to a
harmless container subroutine that
eventually calls CallNextHook.
The hooked function need not be
malicious because the function
of this Windows hook is to load
the DLL module into the lurking
iexplore.exe process and, as an
artefact, into all other active
processes that monitor messages
using either PeekMessage or GetMessage. Once the
injection is in place, UnhookWindowsHookEx is called to
clean up the hook.

In addition to the search result redirection performed through
the server at ‘googleads.doublee-click.net’, as illustrated in
Figures 4 and 5, the lurker iexplore.exe simulates another
ad-clicking action to generate an additional stream of
revenue. Figure 9 shows an instance where the URL for a
Google search result page is referenced to the additional
online advertisement domain.

CONCLUSION
The design of the Medfos trojan provides great modularity
and extensive security for the DLL modules that it
distributes. It is also able to download and deploy an
arbitrary number of DLL modules.

As for the redirector DLL module that we have discussed,
its ad-clicker functionality provides a method to generate
revenue. It is also possible that the author is using the
search engine usage information gathered for some other
purpose. While the Internet Explorer version of the redirect/
ad-clicker functionality causes a major and noticeable
slow down in the browser, the Firefox and Google Chrome
extensions are both simple and reliable.

REFERENCES

[1] http://developer.chrome.com/extensions/external_
extensions.html.

[2] http://www.virusbtn.com/virusbulletin/
archive/2014/01/vb201401-Medfos-appendix.

[3] http://research.zscaler.com/2012/09/how-to-install-
silently-malicious.html.

Figure 8: SetWindowsHookExW sets the set_gAMA_fi xed export function as HOOKPROC
parameter.

Figure 9: Redirection with InternetOpenUrlW while searching for the keyword ‘stock’ in
Google. Notice that there is an IP prepended to the normal Google search URL.

http://developer.chrome.com/extensions/external_extensions.html
http://www.virusbtn.com/virusbulletin/archive/2014/01/vb201401-Medfos-appendix
http://research.zscaler.com/2012/09/how-to-install-silently-malicious.html

VIRUS BULLETIN www.virusbtn.com

9JANUARY 2014

SALTED ALGORITHM – PART 1
Raul Alvarez
Fortinet, Canada

Sality has been around for many years, yet it is still one of
today’s most prevalent pieces of malware.

In this article, we will concentrate on a variant of Sality
that not only infects executables but also has some
trojan-like attributes. Although such a combination
of malicious functions is not uncommon in malware
nowadays, it is important to study them to give us an
insight into why these pieces of malware are so persistent
in our digital world.

There are two parts to this article: the fi rst discusses the
multiple decryption, decoding and other algorithms that
make this malware very evasive. It also discusses the
main thread and the thread that performs some system
manipulation. The second part (which will be published
next month) will discuss the fi rst-layer threads spawned
from the main thread, and some further threads generated
by them.

FIRST STAGE
This variant of Sality has a launcher executable. Before
it infects any fi les, it prepares for the infector codes to be
executed in a different context.

LOOKING FOR ‘M^4’
The malware parses the PEB (Process Environment Block)
to obtain the path name of the module found in the fi rst
InLoadOrderModuleList structure and save it for future use.

It then parses the hex bytes starting at the entry point of the
malware code, looking for the character ‘M’. Every time an
‘M’ is found, it checks whether the next two bytes are the
characters ‘^4’ – it will keep searching for an exact match.

‘M^4’ is a terminating marker used by the malware to
identify the boundary within its code. Immediately after the
marker is the size (0x434) of the encrypted hex bytes for
later processing.

STACK AS VIRTUAL MEMORY
A call to the VirtualAlloc or VirtualAllocEx API is a
common method used by malware to create a space in
virtual memory. The newly created virtual memory space
serves as a memory scratch pad for the malware. It can be
used as a swapping space when the malware is performing
a decryption/encryption routine, moving hex bytes from fi le

to memory or vice versa, and anything else that requires
memory manipulation.

However, Sality does things a little differently: instead of
creating virtual memory using the aforementioned APIs,
it uses the available memory space allocated for the stack.
To make sure that it won’t destroy any data currently being
used in the stack, Sality sets an address pointer away from
the commonly used area. It adds 0xFFFF81DF to the
current base pointer (EBP) and sets it as the initial location
for data manipulation.

Once the initial location has been set, the malware copies
0x434 hex bytes to the stack memory. These hex bytes come
from the malware body starting at the boundary address
discussed earlier. The exact starting location is the boundary
address, which is found after the terminating marker
(‘M^4’), plus 0x14.

TWO-PASS DECRYPTION

After copying 0x434 bytes from the malware’s memory
space to the stack memory, Sality decrypts the code twice.

On the fi rst pass, the malware decrypts the code byte-by-
byte using a simple SUB (subtract) instruction. It reads a
byte from the stack, subtracts 0x1420 (value taken from
the fi fth byte of the terminating marker ‘M^4’), and stores
the resulting byte back on the stack. It will perform the
subtraction for the 0x434 bytes found in the stack.

On the second pass, the process is repeated for the 0x434
bytes, but instead of using subtraction, the malware will use
a simple XOR for each byte. The XOR key is the same key
(0x1420) as is used in the subtraction routine, plus 7. The
instruction will be ‘XOR byte, 0x1427’.

The SUB and XOR instructions use a DWORD every time
they decrypt the malware code, but only the resulting bytes
(i.e. not the whole DWORD) are relevant to the malware.

NEW CODE ON THE BLOCK
After the decryption routine, the malware saves the location
of the base64-encoded block of code found within the
malware body. Then it transfers execution to the start of the
newly decrypted code in the stack.

At the beginning of the newly decrypted code, Sality
parses the PEB again to obtain the path name of the current
module. After removing the drive letter from the path
name, the malware checks if the fi rst letter of the current
executable starts with ‘m’ or if the second letter is ‘y’. If it
is either of these, it will jump straight to the location of the
base64-encoded block. The malware assumes that this block
is already decoded.

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

10 JANUARY 2014

The malware also checks if the 12th character of the path
name is ‘e’, and if it is, then it assumes that the block is
decoded. The malware also assumes that it is one of its own
executables.

NOT SO BASE64-ENCODED
If the above conditions are not met, Sality proceeds
with setting up the characters used for its custom
base64 encoding scheme. The malware uses the same
technique as that used for decoding base64-encoded
text but using a different index character. The sequence
of 64 characters used for this variant of Sality is
‘0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ+/’,
which is slightly different from the standard
base64-encoding characters.

The malware decodes 0x1DD76 text characters to generate
an equivalent of 0x16618 bytes of yet another encrypted
piece of code (see Figure 1).

DECRYPTING THE DECODED
The base64-decoded binaries are decrypted using the
following algorithm:
XOR EDX,EDX

MOV DL,BYTE PTR DS:[EAX+EBX]

MOV ECX,EAX

IMUL ECX,DWORD PTR SS:[EBP+10]

XOR EDX,ECX

MOV BYTE PTR DS:[EAX+EBX],DL

INC EAX

Starting at the initial location of the decoded binary, each
byte is placed at the DL register. The current location is
saved from EAX to ECX, which is multiplied (IMUL) with
a key (0x2210) found at DWORD PTR SS:[EBP+10]. The
key (0x2210) is constant throughout the decryption routine.

Finally, the byte (DL) within the EDX register is XORed
with ECX, the result of the multiplication. Then it is
saved to the current memory location at BYTE PTR
DS:[EAX+EBX].

After the decryption, control is passed to the decrypted
binary codes (see Figure 1).

SELF CODE INJECTION

After the decoding and decryption process, the malware
parses the PEB to get the base of kernel32.dll. Once the
malware knows the location of kernel32.dll, it parses
the export table to look for the GetProcAddress API,
by checking each string in a list of API names found in
the table.

Figure 1: Portion of code starting at offset 0x00406044.

encoded + encrypted
decoded + decrypted

VIRUS BULLETIN www.virusbtn.com

11JANUARY 2014

Using the GetProcAddress API, the malware generates all
the APIs needed for its malicious activities. Afterwards,
it decrypts a block of binaries, producing an image of an
executable fi le. The image contains a complete MZ/PE
header, together with the rest of the code and data.

Sality could easily have dropped the executable fi le and run
it, but instead the malware spawns a new process, using
CreateProcessA in suspended mode. Note that the new
process is a copy of itself with the same module name.

The decrypted image is then injected into the new process
using the WriteProcessMemory API. A series of calls to this
API copies the entire image, thus creating a completely new
process that is different from the original Sality module.

This technique is not new, but it is fairly effective against
heuristic detection that monitors the dropping and executing
of dropped fi les.

Once the set-up is complete, the malware will resume the
suspended process and terminate the original application.
Any break points set on the original process will not be
triggered, thereby avoiding further analysis.

ANTI-DEBUGGING TRICK
After spawning a new version of itself, Sality executes
its malicious activities. However, these are not easy for
an analyst to observe when the malware is loaded in the
context of a debugger.

Within a debugger, the malware will decrypt most of its
binaries and proceed to generate multiple threads. Once the
fi rst thread is generated, Sality will intentionally access a
non-existent memory location to produce an exception that
will crash the debugger.

In normal execution, the exception will be ignored since the
new thread will be executed in its own context. But if it is
inside a debugger, you have to fi nd a way to execute the fi rst
thread before the main thread calls the exception.

MAIN THREAD
The primary goal of the main thread is to decrypt the
malware code for its execution. Every four bytes (DWORD)
are decrypted using 32 iterations with 403 instructions per
iteration. In other words, it will take an estimated 12,896
instructions just to decrypt a single DWORD. Even tracing
through the code takes time just to fi gure out the exact
location of the initial DWORD.

A signifi cant number of IMUL, SHL and jump instructions
are allocated to perform the decryption for each WORD.
The extensive jump instructions will lead you almost
everywhere in the code.

After decrypting (0xFEE8) 65,256 bytes, Sality transfers
control to the newly decrypted code.

As it did in the initial process, Sality parses the PEB to get
hold of kernel32.dll. Then it parses the list of API names in
kernel32’s export table to look for the LoadLibraryExA and
GetProcAddress APIs.

To make sure that the malware has the right kernel32, it
reloads kernel32.dll using the LoadLibraryExA API and
uses the GetProcAddress API to resolve the rest of the APIs
that it needs.

Sality creates two fi le-mapping objects, namely
‘hh8geqpHJTkdns0’ and ‘purity_control_90833’ with
INVALID_HANDLE_VALUE as fi le handles. The resulting
fi le-mapping objects are not associated with any regular fi le.
They are basically used as names for the newly generated
section of memory (see Figure 2).

Figure 2: The mutex name and section names.

A call to the MapViewOfFile API with the handle set to
the ‘purity_control_90833’ fi le-mapping object generates a
memory space in a similar way to calling the VirtualAlloc
API. This is followed by copying the 65,256 bytes
decrypted earlier to the new virtual memory space.

Afterwards, it creates a new thread that will run in its own
context. The newly created thread sends a signal to the main
thread indicating that it is executing properly – if the main
thread does not receive such a signal it will generate an
exception.

The main thread is also responsible for spawning the
fi rst-layer threads.

SYSTEM CONFIGURATION THREAD
This thread stores the fi lename of the current process and
creates a mutex named ‘uxJLpe1m’. It then creates a virtual
memory space using the VirtualAlloc API and copies the
executable image. This executable image is taken from the
65,256 bytes decrypted from the main thread. The image
has the regular MZ/PE header and section names UPX0,
UPX1 and UPX2, indicating that it is a UPX-packed

VIRUS BULLETIN www.virusbtn.com

12 JANUARY 2014

executable. This is followed by resolving the APIs it
needs before transferring control to the UPX executable in
memory.

Within the UPX, the initial step is to unpack the malware’s
main code. After unpacking, Sality initializes the use of
Windows Sockets functions by calling the WSAStartup API,
for later use.

This is followed by setting the fi les and folders views to
hidden by changing the registry entry ‘Hidden’ to 2 within
the [HKEY_CURRENT_USER\Software\Microsoft\
Windows\CurrentVersion\Explorer\Advanced] key (see
Figure 3).

Figure 3: Options to set the hidden attributes of the fi les and
folders.

OVERRIDES AND DISABLES
Within the System Confi guration thread, Sality sets the
following data found in the [HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\Security Center] key:
AntiVirusOverride

AntiVirusDisableNotify

FirewallDisableNotify

FirewallOverride

UpdatesDisableNotify

UacDisableNotify

Setting these values to 1 disables AV, fi rewall, and
UAC-related notifi cations. Normally, these notifi cations
remind and notify the user about the status of their
anti-virus software, fi rewall and User Access Control
settings – for example, warning the user if the AV software
needs an update, if the fi rewall is turned off, or if a fi le
access is using an inadvisable security level.

It also creates and sets the same set of data found in the
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Security Center\Svc] key.

After setting the Security Center’s registry keys, the
malware makes sure that Internet Explorer is not in offl ine
mode by setting [HKEY_CURRENT_USER\Software\
Microsoft\Windows\CurrentVersion\Internet Settings\
GlobalUserOffl ine] to 0.

DISABLING SECURITY FEATURES

Still within the System Confi guration thread, Sality
also disables the UAC (User Account Control) by
setting the EnableLUA subkey to 0 from the [HKEY_
LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\policies\system] key.

UAC is a security feature of the operating system that
prompts the user for permission if an event or action could
potentially harm the computer. Disabling this feature could
help Sality to carry out some of its malicious activities
without being noticed.

FIREWALL SETTINGS MANIPULATION

Finally, Sality adds its current module name to the
fi rewall’s exceptions list in [HKEY_LOCAL_MACHINE\
SYSTEM\ControlSet001\Services\SharedAccess\
Parameters\FirewallPolicy\StandardProfi le\
AuthorizedApplications\List], simply to bypass the
fi rewall blocking. The module name is in the form
<modulename>:*:Enabled:ipsec.

The malware is a little paranoid. It not only adds itself
to the fi rewall’s exceptions list but it also disables the
fi rewall by setting the EnableFirewall subkey to 0. And
to make sure that exceptions are allowed, it disables the
DoNotAllowExceptions subkey. Notifi cations are also
disabled by placing the value 1 in the DisableNotifi cations
subkey. The subkeys can be found in the
[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\
Services\SharedAccess\Parameters\FirewallPolicy\
StandardProfi le] key.

MORE THREADS

Sality spawns one thread after another. Each thread is
dedicated to a specifi c task, although some threads simply
wait for information provided by others.

We have already seen some threads in action here. In the
second part of the article, we will discuss those used for
code injection, fi le infection, and some others in between.

VIRUS BULLETIN www.virusbtn.com

13JANUARY 2014

INSIDE W32.XPAJ.B’S INFECTION
– PART 1
Liang Yuan
Symantec, China

Xpaj.B is one of the most complex and sophisticated fi le
infectors in the world. It is diffi cult to detect, disinfect and
analyse. This two-part article provides a deep analysis of its
infection.

THE INFECTIOUS SPIRIT
Xpaj.B only infects fi les with DLL, SYS, EXE and SCR
extensions, and excludes any fi le if the checksum of its
fi lename appears on a designated list. It avoids infecting
fi les with an overlay, protected fi les, and fi les that are
no larger than 0x2800. The virus checks whether the
executable and 32-bit fl ags are set, that the COFF magic
number corresponds to a 32-bit fi le, and that the value
in the CPU fi eld corresponds to the Intel i386. Only
under Windows XP can it infect an executable image for
the Windows native subsystem – in which case it avoids
infecting fi les if the checksum of their imported DLL name
is 0x36036a24. If it wants to infect this kind of fi le, it
makes sure that the name of the section it inserts its code
into is ‘INIT’. In other cases, it avoids infecting fi les if the
checksum of their imported DLL name is 0xE742EA43 or
0x4B1FFE8E.

When infecting a fi le, the virus fi rst selects a section into
which to insert its body and other data. The logic used to
select the section is shown in Figure 1. To avoid infecting
the same fi le twice, it checks for an infection marker. The
marker is present if the byte sum of the data in the tail of the
inserted section is no smaller than 0xfc.

Once an appropriate section has been found, the virus
chooses some subroutines from the entry point section,
stores a copy of them in the selected section, then
overwrites the subroutines with its own code. The code is
a small stack-based virtual machine that is used to locate
the address of the ZwProtectVirtualMemory function,
then call this API to modify the memory protection of the
virtual memory containing the encrypted virus body. It then
constructs and executes a decryptor to decrypt the virus
body, and constructs and executes a jumper to execute the
virus code.

RANDOM DISPOSITION
Once the inserted section has been found, the virus
computes the size of the space it needs (which is the

increased size of the inserted section). It iterates through
all the tables (such as export, resource and base relocation
tables) in the PE fi le to be infected, and parses the relevant
structures to obtain their RVAs. If the RVAs are bigger
than the RVA at the end of the inserted section, it will fi x
them by adding the relevant size to them. It also fi xes the
RVAs of the data directories and the entry point if needed
(as shown in Figure 2). Then it moves the content behind
the inserted section to create the space needed to insert
the virus body, the patch structure list, the VM operation
structure array and the decryptor (or jumper). It then fi lls
the space with random data, and writes the virus body to
the position shown in Figure 3. (It may tweak the virus
body prior to writing.) Note that the patch structure list and
the VM operation structure array will be written later, the

Is it EP SEC?

 Get the SEC
with max VA

EP SEC with the min VA or
EP SEC name is “ INIT” ?

counter = num
of SEC

 counter == 0?

succ

(counter -1)
== 0?

Is it SHARED
SEC? fail

fail

Get the SEC with
counter’ th biggest VA

counter =
 counter -1,

(counter -1) == 0?

Is it SHARED
SEC?

SEC.foffset or
SEC.fsize == 0?

Is it .reloc or .rsrc
SEC?

Get the next SEC by
checking VA

(SEC.VirtualSize-
SEC.fsize)<= 0x19000?

Get the next SEC by
checking VA

Fail

Fail

N

Y

START

Succ

N

succ

Y

Y

 Get the SEC
with min VA

Y

Y N

Y

Y

N

Y

N
N

N

N

Y

N

N

Y

Figure 1: Logic for selecting a section into which to insert
code.

MALWARE ANALYSIS 3

VIRUS BULLETIN www.virusbtn.com

14 JANUARY 2014

Figure 2: Fixing the RVAs of the data directories and entry
point.

Original section content

Patch struct list

Virus body

VM operation struct array

Decrypter or jumper

Distance:
Xorshift(0x1000) + 0x100

Distance:
Xorshift(0x1000) + 0x100

Distance:
Xorshift(0x10) + 0x2010 –

size of patch struct list

Distance:
0xe00 – size of VM array

The section
content

after inserted

Figure 3: Section content after the insertion of virus code.

virus body, the patch structure list and the VM operation
structure array will be encrypted, and the decryptor and
jumper will be constructed by the virtual machine. Finally,
the virus updates the relevant section headers and enlarges
the SizeOfImage fi eld in the PE header.

It uses a modifi ed xorshift to compute the positions in order
to keep them random (as shown in Figure 3). The modifi ed
xorshift is shown in Listing 1.

GAINING CONTROL, AND ENCRYPTION

Unlike many simple viruses, Xpaj.B doesn’t attempt to
execute the virus code by hijacking control when the
infected fi le is started [1]. Instead, it chooses a number
of subroutines from the entry point section and stores a
copy of them in the inserted section, then overwrites these
subroutines with its own code. However, this method does
not guarantee that the virus code will execute every time
an infected fi le is opened. To improve its chances of being
executed, it redirects some other unrelated calls to point to
its own code.

To fi nd suitable subroutines to be overwritten, it collects
instruction and subroutine information from the entry point
section. The disassembler is used to analyse the instructions
of the subroutine, check whether it can be overwritten, and
if it can, how many bytes can be overwritten. For the variant
I analysed, the second overwritten subroutine is modifi ed
by at least 0x36 bytes, the other overwritten subroutines
are modifi ed by at least 0x24 bytes, and between two and
ten subroutines are overwritten. The number of bytes to be
overwritten is between 0x186 and 0x258.

At the same time, the virus saves the original bytes of
the overwritten subroutines in the inserted section. It also
stores the information from the base relocation table in the

DWORD xorshift(DWORD given_dword){

 DWORD seed;

 DWORD key_radix;

 DWORD keep_value2;

 DWORD keep_value3;

 DWORD xor_shift_key_array[3];//it will use system time to update this array

 seed = given_dword * 100;

 key_radix = (xor_shift_key_array[0] << 11)^xor_shift_key_array[0];

 xor_shift_key_array[0] += xor_shift_key_array[1];

 keep_value2 = xor_shift_key_array[2];

 xor_shift_key_array[1] += keep_value2;

 keep_value3 = xor_shift_key_array[3];

 xor_shift_key_array[2] += keep_value3;

 xor_shift_key_array[3] = ((((keep_value3>>19)^(keep_value3))^key_radix)^(key_radix >> 8));

 return ((xor_shift_key_array[3]+keep_value2)%seed)/(100);

}

Listing 1: Modifi ed xorshift.

Section
content
after
code
insertion

VIRUS BULLETIN www.virusbtn.com

15JANUARY 2014

Offset Size Field Description

0 4 Flags 0 -> encrypted entry

1 -> decrypted entry 0xffffffff -> end of the list

4 4 next_offset The next patch structure offset

8 4 patched_rva_
start

The RVA of the start of the patched area

12 4 patched_rva_end The RVA of the end of the patched area

16 4 stolen_bytes_
size

patched_rva_end - patched_rva_start + 5

(for the redirected calls)

or

patched_rva_end - patched_rva_start + 0xd

(others)

20 4 reloc_count The number of relocations from the base relocation table between
patched_rva_start and patched_rva_end

24 4 reloc_offset The offset storing the relocations between patched_rva_start and
patched_rva_end

28 4 stolen_bytes_
offset

Should always be 0x20

32 8 code[8] It will be executed after the virus is started

• for the fi rst overwritten subroutine, the content is: 9090909090909090

• for the other overwritten subroutines, the content is:
83C4049089EC5D90

83C404 add esp, 4

90 nop

89EC mov esp, ebp

5D pop ebp

90 nop

• for the redirected calls, the content is:
E9 xx xx xx xx

Jmp original destination address of the redirected call

40 patched_rva_end
- patched_rva_start

+ 5

original_bytes[

patched_rva_end
- patched_rva_
start

+ 5]

The original bytes of the patched area. Xpaj.B may add one jmp
instruction to jump to the patched_rva_end at the end of the array. For
the redirected calls, this fi eld is not used.

reloc_offset reloc_count*4 Relocation
_offsets[

reloc_count]

The offsets of the relocations in the patched area. The offset is relative
to the start of the patch structure. If the reloc_count is zero, this fi eld
does not exist.

next_offset Start of the next patch structure

Table 1: The patch_info structure used to log information about the overwritten subroutines and redirected calls.

VIRUS BULLETIN www.virusbtn.com

16 JANUARY 2014

overwritten area and rebuilds the base relocation table for
infected fi les to avoid corruption. It uses the structure shown
in Table 1 to log the information about the overwritten
subroutines and redirected calls.

Note that the subroutines overwritten by the virus are
moved to the original_bytes fi eld of the patch structure
which is stored in the inserted section and executed
from there. For copies to work correctly in the new
location, the virus must analyse these subroutines and
patch any instructions that refer to blocks of code that
have moved [1].

Once the overwritten subroutines have been found, some
other unrelated calls are redirected to point to the start
address of the fi rst overwritten subroutine, so the chances of
the virus code being executed improve signifi cantly. At the
same time, the virus updates the patch structure list for the
redirected calls.

The virtual machine will execute successfully only from the
start address of the fi rst overwritten subroutine – when calls
to the fi rst overwritten subroutine (or redirected calls) are
made, the virtual machine starts to work and the virus gains
control. To make sure the virtual machine can also execute
correctly when other overwritten subroutines are called, the
following code is added to the beginning of all the patched
subroutines:

push ebp

mov ebp,esp

push reg(random reg, esp and ebp are excluded)

call the address of fi rst overwritten subroutine

The virtual machine’s instructions are written to the
remaining space of these overwritten subroutines.

Then the virus encrypts both the patch structure list and the
virus body stored in the inserted section.

POLYMORPHIC STACK-BASED VIRTUAL
MACHINE

The virus writes a small polymorphic stack-based virtual
machine to the target subroutines. This virtual machine
is highly polymorphic and we will take a detailed look at
its implementation in the second part of this article, next
month.

REFERENCES

[1] Krysiuk, P. Xpaj.B – An Upper Crust File Infector.
Symantec Security Response blog.
http://www.symantec.com/connect/blogs/w32xpajb-
upper-crust-fi le-infector.

GREETZ FROM ACADEME:
RINGING IN THE NEW
John Aycock
University of Calgary, Canada

In the latest of his ‘Greetz from Academe’ series,
highlighting some of the work going on in academic
circles, John Aycock focuses on computer science surveys,
looking in particular at one on binary code obfuscations in
packer tools.

January can be a
long, cold month
in which any
distraction from
winter is welcome.
Unfortunately, not
all Canadian cities
come equipped with
a crack-smoking
mayor whose
buffoonish
behaviour makes
global headlines
[1], so I’m forced
to turn elsewhere
for entertainment.
Thus to while away
the wintry hours,
I started refl ecting on the fact that novelty is the crack of
academic researchers.

That may seem like a rather fl ippant comment, but there
is a lot of truth in it. Academic research papers have to
make clear the researchers’ contributions to furthering
knowledge, and indicate how their research is novel and
never before seen. There is a sweet spot, and ironically
too much novelty can be a bad thing (unless the research
cures cancer or proves that P=NP). Evolutionary ideas
often play better than revolutionary ones, especially
given endemic problems in the peer review process that
precedes publication – but that’s an entirely separate
discussion. The point is that new is considered to be
good, whether it’s a little new or a lot of new; not new is
defi nitely bad.

In my opinion, this attitude is a shame, because there is
a need in the research ecosystem for researchers to come
along and clean up after their novelty-addled colleagues.
In some fi elds, this takes the form of replication of results
– something which is extremely rare in computer science.
Instead, the ‘cleaning up’ in computer science can take the
form of surveys.

SPOTLIGHT

http://www.symantec.com/connect/blogs/w32xpajb-upper-crust-file-infector

VIRUS BULLETIN www.virusbtn.com

17JANUARY 2014

SURVEYS

A good survey of an area of research is an invaluable
resource. It places research work in context, it classifi es
all the work, and it provides a ‘one-stop shop’ for anyone
wanting to learn about the area. Even though writing a
survey is not new research per se, I can attest that it is
insanely diffi cult to do, involving tracking down work,
making sense of it, and fi guring out how to organize it.
Sometimes the survey itself even leads to new discoveries
– classifying things and building taxonomies is a great way
to discover what’s missing.

In the anti-malware world, we have some good examples
of useful surveys: the late Peter Ször’s The Art of
Computer Virus Research and Defense [2] and Vesselin
Bontchev’s Ph.D. dissertation [3] come to mind. More
generally, the journal Software: Practice and Experience
will publish the occasional paper ‘where apparently
well-known techniques do not appear in the readily
available literature’ [4]. As an example, there was a good
(although now outdated) survey on buffer overfl ows [5]
that appeared in the journal.

Some workshops, such as USENIX WOOT [6], allow
what they call ‘systematization of knowledge’ papers,
i.e. surveys – although they are treated as somewhat
second-class, non-refereed papers at the same time as
being declared ‘highly valuable to our community’.
(Unsurprisingly, with an academic disincentive like that,
examples are not exactly plentiful.)

All of this is a long-winded way of arriving at another,
and perhaps the most major, venue for computer science
surveys. ACM Computing Surveys is a publication
that excels in publishing surveys of areas of computer
science. I would venture so far as to say that if a survey
appears in ACM Computing Surveys, it’s probably worth
reading.

A GOOD READ

While the surveys published in Computing Surveys don’t
always focus on security, the most recent issue has one that
does: Roundy and Miller’s ‘Binary-Code Obfuscations in
Prevalent Packer Tools’ [7]. While there may not be any
surprises in the paper for experienced malware analysts,
it would make excellent background reading for new
employees or less technical people in companies wanting to
expand their knowledge.

The authors organize the obfuscations in terms of
analysis tasks – a good approach, and one that provides
additional information for an uninitiated reader beyond
the obfuscations themselves. I am even unable to bemoan

the ignorance of related work in the anti-malware
community: Roundy’s affi liation is given as the University
of Wisconsin and Symantec Research Labs, and among the
paper’s 90-odd references are pointers to CARO, VB and
AVAR.

However, the paper does suffer from a problem that
is typical of journal publication in computer science:
timeliness (or lack thereof). Journals are seen as archival
in many areas of computer science, rather than a means
to disseminate cutting-edge work – and for good reason.
It can take literally years to publish a journal article.
In Roundy and Miller’s case, Computing Surveys fi rst
received the paper in March 2012; after revisions, it
was accepted in October 2012, a full year before it was
published [7]. Obviously, the work reported in the paper
would have been done some time before its submission,
and indeed a 2008 article by Panda Security is used as the
basis of what constitutes a ‘prevalent’ packer tool. The
authors note this problem, saying up front on page one
that their survey ‘will need to be periodically refreshed as
obfuscation techniques continue to evolve’ [7]. Even with
this limitation however, the paper would be a good January
distraction for anyone needing to bring themselves up to
speed in the area.

REFERENCES

[1] Wikipedia. Rob Ford. http://en.wikipedia.org/w/
index.php?title=Rob_Ford&oldid=584393736.

[2] Ször, P. The Art of Computer Virus Research and
Defense. Addison Wesley, 2005.

[3] Bontchev, V.V. Methodology of Computer
Anti-Virus Research. Ph.D. thesis, University of
Hamburg, 1998.

[4] Wiley. Software: Practice and Experience
Overview. http://onlinelibrary.wiley.com/
journal/10.1002/(ISSN)1097-024X/homepage/
ProductInformation.html.

[5] Lhee, K.-S.; Chapin, S.J. Buffer overfl ow and
format string overfl ow vulnerabilities. Software:
Practice and Experience 33(5), 2003, pp.423–460.
http://dx.doi.org/10.1002/spe.515.

[6] USENIX WOOT 2013 call for papers.
https://www.usenix.org/conference/woot13/call-for-
papers.

[7] Roundy, K.A.; Miller, B.P. Binary-Code
Obfuscations in Prevalent Packer Tools. ACM
Computing Surveys 46(1), 2013, Article 4.
http://dx.doi.org/10.1145/2522968.2522972.

http://en.wikipedia.org/w/index.php?title=Rob_Ford&oldid=584393736
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-024X/homepage/ProductInformation.html
http://dx.doi.org/10.1002/spe.515
https://www.usenix.org/conference/woot13/call-for-papers
http://dx.doi.org/10.1145/2522968.2522972

VIRUS BULLETIN www.virusbtn.com

18 JANUARY 2014

SGX: THE GOOD, THE BAD, AND
THE DOWNRIGHT UGLY
Shaun Davenport & Richard Ford
Florida Institute of Technology, USA

One might be forgiven for having no idea what the acronym
SGX stands for, especially with respect to the Intel chipset.
Even a careful search of LexisNexis Academic failed to
turn up any useful information. However, these three letters
may prove to be the most signifi cant thing to happen in
the anti-malware space in 2014. SGX stands for ‘Software
Guard Extensions’ and it has the capacity to dramatically
change long-held assumptions about how different software
packages can coexist and, to some extent, battle each other
in memory on untrusted platforms. This has tremendous
implications both for malware authors and for defenders, as
a whole new set of possibilities now exist.

One of the fi rst articles we came across about the
technology was a great post on Joanna Rutkowska’s
Invisible Things blog [1]. That post and its follow-up are
worth reading for Joanna’s take on what could be done with
the new instructions. The blog post pre-dated the release of
any technical documentation from Intel – now that this is
available [2], we are in a position to take things a little further.

So, what exactly is SGX? Put simply, SGX is a brand new
instruction set coming to Intel’s processors in the near
future. While it may not make it to the desktop (this really
is to be determined), it seems likely that it will be a big
part of cloud servers in the future. The objective of SGX
is to provide secure ‘enclaves’ in which data and code can
execute without fear of inspection or modifi cation. Coupled
with remote attestation, it essentially attempts to allow
developers to build a root of trust even in an untrusted
environment.

As we have never seen a chip with SGX on it in the real
world, we will take a rather lengthy quote from Intel’s
website [2] to detail the intent of the new instruction set:

‘Much of the motivation for Intel® SGX can be
summarized in the following eight objectives:

1. Allow application developers to protect sensitive data
from unauthorized access or modifi cation by rogue
software running at higher privilege levels.

2. Enable applications to preserve the confi dentiality and
integrity of sensitive code and data without disrupting
the ability of legitimate system software to schedule
and manage the use of platform resources.

3. Enable consumers of computing devices to retain
control of their platforms and the freedom to install and
uninstall applications and services as they choose.

4. Enable the platform to measure an application’s trusted
code and produce a signed attestation, rooted in the
processor, that includes this measurement and other
certifi cation that the code has been correctly initialized
in a trustable environment.

5. Enable the development of trusted applications using
familiar tools and processes.

6. Allow the performance of trusted applications to scale
with the capabilities of the underlying application
processor.

7. Enable software vendors to deliver trusted applications
and updates at their cadence, using the distribution
channels of their choice.

8. Enable applications to defi ne secure regions of code
and data that maintain confi dentiality even when an
attacker has physical control of the platform and can
conduct direct attacks on memory.’

That’s a pretty nice set of claims – so much so that it could
be a real game changer if SGX delivers on its promises.
However, as we shall see in this article, while trust sounds
like a good thing, it is most defi nitely a double-edged sword.

Using Intel’s roadmap, it is pretty clear to see one of the
problem spaces Intel was intending to address: trustworthy
cloud computing. The use-case for an application designer
is pretty straightforward. If software and hardware could
be ‘sealed’ in some way to prevent an attacker from
examining data in main memory, even if the attacker had
administrator-level privileges on the machine, not only
could the confi dentiality and integrity of data in the cloud
be protected, but the algorithms and design of cloud-hosted
applications could also be hidden from prying eyes.

HOW DOES SGX WORK?
The core idea of SGX is the creation of a software ‘enclave’.
The enclave is basically a separated and encrypted region
for code and data. The enclave is only decrypted inside
the processor, so it is even safe from the RAM being read
directly.

Creating an enclave is fairly straightforward. As enclave
creation is a privileged instruction, the operating system
is the intended entity to create it. Thus, we expect an API
to be handling requests from user-land applications trying
to create enclaves. This has the added benefi t of giving the
operating system the choice to implement some sort of
access control on the creation of enclaves. However, direct
creation of an enclave should be possible if the software
making the request has the appropriate privileges.

As the enclave leverages strong encryption, key generation
and management are central to the strength of the security

FEATURE 1

VIRUS BULLETIN www.virusbtn.com

19JANUARY 2014

guarantees provided by the technology. The keys used
for SGX enclaves are generated by the new instruction
‘EGETKEY’. The key is a combination of three factors.
First are the SGX Security Version Numbers, in which
‘Some of the version numbers indicate the patch level of
the relevant phases of the processor boot up and system
operations that affect the identity of the SGX instructions’
[3]. Second is the device ID, which is a 128-bit unique
number tied to the processor. The last is the ‘Owner Epoch’,
which gives the owner the ability to add some more entropy
to the keys.

Armed with these keys, several new possibilities arise. One
of the most powerful features is the ability for an enclave
to attest to a remote server reliably. The new instruction
‘EREPORT’ creates a cryptographic report about an enclave
which a remote machine will be able to examine to see if
it was generated by SGX. A complete description of the
remote attestation features of the SGX instruction set can be
found in an Intel whitepaper [4].

Working with enclaves is particularly interesting when
we consider debugger behaviour. An enclave can be
debugged, but only if it consents to this activity explicitly.
As per Section 7.2.1 of [3], if the enclave has not opted
into debugging, the entire enclave should appear as a
‘giant instruction’ to the debugger. This is a boon to those
wishing to protect their algorithms, but will play havoc with
white-hat reverse engineering.

The documentation is fairly clear in stating that while a
VM can run an enclave, an enclave cannot be meaningfully
emulated. As such, the standard reverse engineering trick
of running questionable code inside a VM and gathering
information about it is not possible.

USES OF SGX
Now that we know a little more about the SGX technology,
it is worth taking a look at how people might use it. As is

so often the case, uses range from the good to the bad, and,
alas, the downright ugly.

THE GOOD
In the right hands, SGX can be a very powerful tool,
assuring privacy and protection from malware even when
running on an insecure system. For example, running a web
browser inside an enclave would prevent even privileged
malware from gaining easy access to all your information
(though malware can still simply take snapshots of the
rendered window). Enclaves would make it harder for
malware to take key ring passwords out of memory. VMs
could use enclaves to prevent the hypervisor viewing some
critical information that only gets decrypted after attesting
to a remote server. Video games could put most of their
logic code inside an enclave in an attempt to stop some
forms of wallhacks/aimbots/etc. Kernels could be made
massively more resistant to tampering and hooking. The
possibilities are endless.

THE BAD
Unfortunately, SGX is also a prime weapon for use in
malware. For better or worse, it currently looks like Intel
will not be giving the option for ‘trusted anti-malware
vendors’ to access the contents of enclaves to make sure
they are safe. Thus, malware can, in principle, freely create
enclaves to prevent the operating system/hypervisor/
anti-malware from knowing what it is executing. Coupled
with ubiquitous connectivity, the spectre of small loaders
downloading sophisticated packages of malware remotely
via an encrypted link rears its head.

On the bright side, as enclaves are not able to handle
exceptions inside themselves, anti-malware products might
still be able to determine if there is malware running inside
them from fi le IO and other IO. Furthermore, operating
systems could choose only to give whitelisted programs
permission to create an enclave from the enclave creation
API. However, should a piece of malware successfully
burrow down to Ring 0, the entire range of SGX
functionality would become available to the malware author.

Let’s run though some scenarios.

Scenario 1, the botnet creator:

Normal botnet operation is straightforward: after infecting a
computer, the bot phones home and downloads and updates
malware on the zombie computer. With SGX, the attacker
could create an enclave, perform remote attestation with
their C&C (command and control) server from inside the
enclave, set up some private-public key encryption based
on their SGX keys, and receive a payload to execute inside

(Image source: Intel Software Guard Extensions Programming Reference.)

Figure 1: An enclave within the application’s virtual
address space.

VIRUS BULLETIN www.virusbtn.com

20 JANUARY 2014

the enclave or any other commands from the C&C server.
Furthermore, by leveraging strong encryption, none of this
behaviour can be emulated or tracked, with the exception of
the C&C traffi c itself (which, of course, is encrypted).

This would be a terrible adversary to face in the wild.
The defender cannot scan for the malware in memory and
cannot create a signature for it. The only way to detect it at
this point would be to examine the effects (such as fi le I/O).

Scenario 2, the video game hacker:

Just as video games can use enclaves, video game hackers
can use them too. Currently, most forms of anti-cheat
technology simply check for signatures of known wallhacks/
aimbots/etc. in memory. Attackers could simply put their
wallhacks/aimbots/etc. inside an enclave to prevent VAC or
Punkbuster from even knowing that it is running.

Just like the ‘good’ possibilities, there are infi nite possibilities
for ‘bad’. Potentially, however, it gets even worse.

THE UGLY

Joanna Rutkowska raised the topic of inter-process
communication on her blog, saying: ‘For any piece of
code to be somehow useful, there must be a secure way to
interact with it.’ We agree with that, but until some form of
secure input/output exists, we cannot consider many of the
use cases with SGX to be bullet-proof. From a pure security
perspective, it is a step in the right direction. Unfortunately,
with the full release of the SGX Reference Manual, it
appears that SGX will not be able to provide any form of
secure input/output. That’s bad for the white-hat use case,
but also bad for the black hat.

Furthermore, there is the terrible realization that for
defenders to really benefi t from SGX, everything will
have to be run as an enclave, providing strong isolation
of parts of code. Inter-process communication will, by
defi nition, require real collaboration between processes.
For interoperability purposes, holes will be punched in the
defences; such holes will not need to exist on the attack side
of the fence. Once the attacker has found any way in, it is
not clear to us that they can be removed easily.

CONCLUSIONS
It is quite easy to fi nd fantastic and exciting new ways for
defenders to use the SGX instruction set to make their
programs more secure, especially in the cloud. As such,
this new extension to the architecture opens up some
really interesting defence mechanisms whereby the actual
state of a machine – or at least critical parts of it – can be
determined remotely. For someone interested in protecting

data, that is a powerful thing. However, the challenge comes
with the idea of placing this technology into the hands of
the attackers, who will doubtless be very early adopters of
the instruction set, if only for a proof of concept.

There has been limited discussion about the possibility
of a system that allows anti-malware vendors access to
enclaves, but this seems impossible to do without having
absolute trust in the anti-malware vendors themselves (not
to mention the inevitable court cases that will centre on
which vendors are deemed ‘trustworthy’ and which are not).
A solution here will not be easy, and even if access were
granted, attackers would probably turn their attention to the
anti-malware software itself as a vector of attack.

One last refl ection. Amidst the recent revelations about the
NSA’s wire-tapping programs, industry observers might be
forgiven for worrying about backdoors into SGX-protected
enclaves. This would be a kill-shot for adoption in some
scenarios, and sets up an asymmetric battle between
attackers and defenders where those that know how to
peer through SGX’s encryption have an advantage that is
probably not possible to overcome, at least not in the general
case. Consider not only the possibilities of snooping, but of
truly undetectable malware via such a backdoor.

All this seems a little premature, perhaps. Intel, as a
company, certainly ‘gets’ security, and so it is hard to
believe that some of the issues outlined here have not been
anticipated, discussed thoroughly and mitigated. However, at
the time of writing, we simply don’t know the state of affairs,
despite having access to some pretty detailed documentation.

In all of this uncertainty, there is one thing we do know:
the release and adoption of SGX-protected enclaves is
likely to require a completely new approach to protecting
our machines from the very malware SGX was designed to
prevent. We are, then, truly confronted by the good, the bad,
and the ugly.

REFERENCES
[1] Rutkowska, J. http://theinvisiblethings.blogspot.com/

2013/08/thoughts-on-intels-upcoming-software.html.

[2] Hoekstr, M. Intel SGX for Dummies (Intel SGX
Design Objectives). http://software.intel.com/en-us/
blogs/2013/09/26/protecting-application-secrets-
with-intel-sgx.

[3] Intel, Software Guard Extensions Programming
Reference. http://software.intel.com/sites/default/
fi les/329298-001.pdf.

[4] Anati, I.; Gueron, S.; Johnson, S.P.; Scarlata, V.R.
Innovative Technology for CPU Based Attestation
and Sealing. HASP, 2013.

http://theinvisiblethings.blogspot.com/2013/08/thoughts-on-intels-upcoming-software.html
http://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
http://software.intel.com/sites/default/files/329298-001.pdf

VIRUS BULLETIN www.virusbtn.com

21JANUARY 2014

EFFUSION – A NEW
SOPHISTICATED INJECTOR FOR
NGINX WEB SERVERS
Andrew Kovalev, Konstantin Otrashkevich, Evgeny
Sidorov & Andrew Rassokhin
Yandex, Russia

This article is a continuation of our research into modern
methods of web malware distribution, the initial results of
which were presented at VB2013. In our presentation, we
spoke about three modern approaches used by attackers
to embed malicious code into HTTP responses [1]. One
of those approaches was the use of web-server modules
for malware distribution, and as an example of this we
described malicious modules for an Apache web server.
In this article we will describe ‘Effusion’ – a new piece of
malware that uses a similar approach, but for an Nginx web
server, and which was used in a massive infection campaign
in the third quarter of 2013.

All the data for this article has been obtained with the use of
Yandex’s anti-virus system [2].

INTRODUCTION
The methods by which malicious code is distributed in
drive-by download attacks are constantly evolving. One
of the fi rst methods to be used involved adding malicious
code to static content (HTML templates, JavaScript fi les,
etc.) – however, after some time such modifi cations became
easy for anti-virus products to detect using signatures.
To complicate signature analysis, attackers began to use
obfuscation and encryption techniques. In response to this,
anti-virus products started to employ JavaScript emulators
(sandboxes), which did a better job of detecting malicious
code in web pages. The next stage in the evolution of
drive-by downloads involved modifying the source code
of content management systems (CMS) such as Joomla,
WordPress, DLE, etc. The malicious code began checking
the referer (e.g. for referral from SERPs) and the user-agent
(the code is not displayed to search bots, mobile redirects,
etc.), as well as the user session (to determine whether the
user is an administrator) and, depending on the results,
deciding whether or not to insert malicious code into the
web page. However, it has become a straightforward task
for the majority of webmasters to remove such an infection
from their web servers – in fact, there are even special
scripts that help with this task [3].

The next step of the evolution involved embedding a piece
of malicious code into the body of an HTTP response. This
approach is heavily employed today, and is the method used

by Effusion – which injects malicious code into the HTTP
responses of Nginx web servers.

Malware representation

At the end of November 2013, we received several calls for
help from webmasters who were having diffi culty removing
infections from their websites. During the investigation
of these incidents we found (and analysed) two malicious
samples.

We also discovered that the attackers had modifi ed the
/etc/init.d/nginx script in order to load a malicious shared
object with the name ‘/usr/lib/libnginx.so’ into the Nginx
address space. The shared object was loaded using the
LD_PRELOAD technique. Part of the modifi ed script is
shown in Figure 1.

Figure 1: Part of the modifi ed /etc/init.d/nginx script.

We found that the malware is represented by only a single
shared object. We analysed two such shared objects with the
following MD5 hashes:

9f1796452a20fca0093d7a4954efad2d

f26ac64f927b0f445cd3f19d91294624

We checked the samples using the VirusTotal service – the
results are shown in Table 1.

Hash Date VirusTotal
results

9f1796452a20fca0093d7a4954efad2d 2013-12-05 1/48

2013-11-25 1/48

f26ac64f927b0f445cd3f19d91294624 2013-12-05 0/48

2013-11-27 0/48

Table 1: The results of checking the samples using the
VirusTotal service.

We found that the ELF headers in the samples were
corrupted in order to complicate their analysis. The fi rst
sample was detected only by Avira’s AntiVir product,
which detected it as HEUR/ELF.Malformed. The second
sample was not detected by any product. The samples were
compiled for the x64 platform with the ‘-fPIC’ key.

FEATURE 2

VIRUS BULLETIN www.virusbtn.com

22 JANUARY 2014

Analysis of the initialization process

The LD_PRELOAD technique allows the shared
object to be the fi rst to be loaded and allows it to hook
different functions easily. If a standard library function is
reimplemented in such an object, it will be replaced by that
of the shared object. The malicious sample contains its own
implementation of the setsid function, so this function is
invoked by Nginx instead of the original one.

The reimplementation of the setsid function is used for
the initialization of the malicious sample. First, the dlsym
function is executed in order to obtain the address of the
original setsid function, then the original setsid is executed.
Next, the sample checks whether initialization has already
been performed. If initialization is required, it will continue
with the execution. The initialization process involves the
following steps:

1. The base address is obtained by searching for
the ELF signature in memory. A type of ABI
(application binary interface) and a fi le class of the
shared object are obtained from the ELF header and
stored in memory for future use.

2. The malicious confi guration, stored in the data
segment, is decrypted and parsed. If the confi guration
contains a particular fi lename, then this fi le will be
opened and mapped into the process memory, and
additional confi guration information (an array with
blacklisted IP addresses) will be loaded. If there is no

such a fi lename, a part of memory will be allocated
via the mmap function call. This memory will be
used for inter-process communications.

3. The process is cloned via a call to the fork function
and the child process will be used for remote
control, system process monitoring and root activity
detection functions.

4. The addresses of the zlibVersion and infl ateInit2
functions are obtained via the corresponding dlsym
function calls and stored in memory. They will
be used for the processing of compressed HTTP
responses.

An overview of the hooking of the setsid function is shown
in Figure 2.

During the loading of the shared object, an initialization
function, _init_proc, is executed. In this function, the
ngx_http_copy_fi lter_init function is hooked by replacing
its address in the ngx_http_copy_fi lter_module_ctx
structure; the address of the reference to this function in the
structure is hard-coded in the shared object and differs from
sample to sample.

Figure 3: Addresses of several Nginx functions in the shared
object are hard-coded.

The hooking of ngx_http_copy_fi lter_init in turn embeds
pointers to the custom HTTP header and HTTP body fi lters
(defi ned in the shared object) into Nginx’s fi lter chain.
These functions will be executed during the processing
of the HTTP response header and HTTP response body,
respectively. The embedding is performed by replacing the
values of the global variables ngx_http_top_header_fi lter
and ngx_http_top_body_fi lter in Nginx’s memory using
addresses of special functions in the shared object. The
original values of these variables are stored in memory and
will be used in the embedded fi lters. Additional information
about the handlers and fi lters in the Nginx web server can
be found in [4]. Figure 4 shows a typical HTTP request
processing cycle in Nginx – the fi lter chain in which the
functions are embedded is underlined.

The embedded functions will be used for analysis of HTTP
traffi c and for injection of malicious code. The addresses for
the replacements (in other words, the addresses of global
references ngx_http_top_header_fi lter and ngx_http_top_
body_fi lter) are also hard-coded in the shared object. This
completes the initialization process. An overview of the
hooking of ngx_http_copy_fi lter_init is shown in Figure 5.Figure 2: Overview of the hooking of the setsid function.

VIRUS BULLETIN www.virusbtn.com

23JANUARY 2014

Code injection

The two fi lters embedded into Nginx’s fi lter chain are used
to provide code injection and remote control functions.
Let’s start with the malicious HTTP header fi lter. During the
execution of the fi lter the following steps are performed:

1. The ctx fi eld of the ngx_http_request_t structure (the
parameter of the original function) is obtained and
checked.

2. If the pointer to ctx is NULL, then 160 bytes of
memory will be allocated and the pointer to the
memory area will be assigned to ctx. A special
marker, 0xDEADBEEF, will be written into the
memory.

3. The ctx memory is checked for the presence of the
0xDEADBEEF marker. If the marker is not found,
the hook will execute the original ngx_http_top_
header_fi lter and will exit after execution.

4. The fi lter performs several checks. For example,
it checks whether the request method is ‘GET’,
whether the content length is a non-zero value,
whether the status code is 200, etc. If any of these
checks fail, the execution of the hook will be
interrupted and the original function will be invoked.

5. If an HTTP request contains the ‘Pragma’ header
and remote control is allowed by the current

confi guration, then the fi lter will attempt to process
it as a management request.

6. If it is not a management request, the fi lter performs
more checks. It checks whether the current time
value is greater than a particular value, that the client
IP address isn’t blacklisted and malicious code hasn’t
already been injected into the HTTP response for this
client, that the URI doesn’t contain certain forbidden
substrings listed in the confi guration, that the
processed HTTP response has a Content-Type header
with a proper value, that the client has a proper user-
agent and referer headers, that root isn’t logged on,
and that a forbidden process isn’t being run. If the
processed HTTP header is suitable for code injection,
information about it will be stored in the ctx fi eld.

7. The original fi lter is executed.

IP addresses for which a piece of malicious code has
already been injected into an HTTP response are added to
the hash table in order to avoid repeated infection of the
same client. The hash table structure is employed to avoid
performance issues. In addition, if a client requests a URI
that contains a forbidden substring, then the IP address of
the client will be placed on the array in the memory space
that was allocated during the initialization process, and
harmful code won’t be injected into the client.

Now let’s consider the case of an embedded HTTP body
fi lter, which is used for the processing of the HTTP
response body. The following steps are performed during
the execution of this fi lter:

1. The fi lter checks that the ctx fi eld value is not
NULL, and checks for the presence of the
0xDEADBEEF marker in the ctx memory.

2. The information from the ngx_http_top_header_
fi lter is checked, and if this HTTP response has been
marked as suitable for injection, the execution will
be continued.

3. The fi lter checks whether the processed response is
an answer to a management HTTP request. If it is, it
will be processed as a management request.

4. The fi lter searches for a string in the response body
before or after which the malicious code will be
injected, and then the injection is performed. The
string is defi ned in the confi guration.

5. The original ngx_http_top_body_fi lter is executed.

Remote control functions

Effusion’s remote control is accomplished via a specially
crafted HTTP request that must contain the ‘Pragma’
header. During the processing of such a request, the value of

Figure 4: Typical HTTP request processing cycle in an
Nginx web server.

Figure 5: Overview of the hooking of the ngx_http_copy_
fi lter_init function.

VIRUS BULLETIN www.virusbtn.com

24 JANUARY 2014

the ‘Pragma’ header is decoded from BASE64, then the fi rst
eight bytes of decoded data are decrypted and the fi rst four
bytes of the eight-byte block are checked for the presence
of the 0xDEADBEEF marker. The last four bytes in this
eight-byte block denote the remote command. The available
types of command are shown in Table 2.

The last DWORD value
in fi rst eight bytes

Description of remote
command

10001h Get status of the malware

10002h Update malware confi guration

10003h Resume code injection

10004h Pause code injection

10005h Backconnect to remote server

Table 2: The remote commands available.

The other part of data is the payload, which is encrypted only
in the case of update malware confi guration messages. For
example, if the attacker wanted the malware to perform a
backconnect and route his commands to an opened root shell,
he would send an HTTP request with the ‘Pragma’ header
and the value of this header must be in the following form:
BASE64_ENCODE(

XTEA_ECB_ENCRYPT(key, 0xDEADBEEF||0x10005)||IP
address||Port

)

where ‘key’ is the encryption key which is stored in the data
segment of the sample; the backconnect is performed in the
child process which appears after the call to the fork function
during the initialization of the shared object. An overview of
the remote control function is shown in Figure 6.

Monitoring of the processes in the system and
detection of root activity

The malware has functions for scanning the list of running
processes and for detection of root activity in the system.

Such functions are implemented in order to protect the shared
object from anti-rootkit software such as rkhunter, and from
being detected by the server administrator. The functionality
acts in the child process which appears after the call to the
fork function during the initialization of the shared object.

While monitoring system processes, the shared object reads
the content of the /proc directory. Each record is examined
to determine whether it is a number or a string. After that,
a path to a command line for each process is obtained in
the form of ‘/proc/%d/cmdline’, then the values of the
command lines are read and checked for the presence of
forbidden process names. If a forbidden process is being
run, the shared object stops acting.

As for the detection of root activity, the malware obtains the
IDs of the processes being run, then for each process the status
is read (‘/proc/%d/status’). Next, a UID is obtained from each
status and compared with zero. If there is a process whose
status contains a zero UID, then for that process opened fi le
descriptors are obtained by reading ‘/proc/%d/fd’. After that
the malware searches through opened fi le descriptors for
those that contain the ‘pts’ substring, and the modifi cation
time of such descriptors is obtained via a call to the lstat
function. Eventually, if the difference between the current
time value and the value of the modifi cation time is less than
a constant set in the confi guration, the malware decides that
root is logged in and stops acting.

Confi guration decryption algorithm

Every sample we analysed contained initial confi guration
stored in the data segment in an encrypted form. The
decryption key is also stored in the data segment. The fi rst
byte of the encryption key is used as an offset inside the
data segment array and is used to fi nd a valid start address
of the ciphertext.

At fi rst, only the fi rst eight bytes are decrypted, then the
malware checks whether the last four bytes are equal
to 0xDEADBEEF. If they are, then the fi rst four bytes

Figure 6: Overview of the remote control function.

VIRUS BULLETIN www.virusbtn.com

25JANUARY 2014

represent the length of the encrypted data. After this the rest
of the ciphertext is decrypted. Figure 8 shows pseudo code
of the decryption algorithm.

We analysed this code and found that this is an
implementation of the XTEA encryption algorithm [5, 6]
with the number of rounds equal to 11; the mode of
operations is ECB [7, 8]. Different encryption keys are used
in different samples. We developed a special tool for the
decryption of such confi gurations [9].

Confi guration of the shared object can be updated via
specially crafted HTTP requests – the XTEA algorithm in
ECB mode is also used for data decryption in such requests.

Format of the confi guration

Examples of the initial confi guration and updated

confi guration of the samples are presented in Figures 9 and
10. The fi rst part of the confi guration contains special fl ags
and offsets to data in the rest of the fi le.

Figure 9: The initial confi guration.

Figure 10: Strings from the updated confi guration of
Effusion.

The confi guration format is described in Table 3.

None of the samples we analysed contained malicious code
for injection in their initial confi guration – such malicious
code appeared only after an update of the confi guration via
special management HTTP requests.

BLACK MARKET
Effusion appeared on the black market on 13 November
2013, costing $2,500 – it is sold only to a limited number
of verifi ed customers. Its author also developed ‘Trololo_
mod’, a malicious module for an Apache web server.
According to a seller on one of the underground forums,
the product is distributed in binary form and doesn’t need
developer packages to be installed on the target server. An
attacker just needs to run the builder that will install the
malware; the process takes between 60 and 180 seconds.
The malware doesn’t require a C&C server for its activity.

INFECTION CAMPAIGN
As stated at the beginning of this article, Effusion was used
in a massive infection campaign which started in the middle

Figure 7: How to fi nd valid encrypted data in the shared
object.

Figure 8: The decryption algorithm used in Effusion.

VIRUS BULLETIN www.virusbtn.com

26 JANUARY 2014

of November 2013. Figure 11 shows the number of infected
hosts and their appearances in Yandex search results (with
alerts) on a day-by-day basis.

The victims were servers hosting moderately popular
websites. Effusion was used to embed code which loaded
malicious content from web resources with URLs in the
following format:

hxxp://rdomn[0-9]{8,11}.hopto.me

In order to embed harmful code, Flash objects were also
used. Eventually, users were redirected to a landing page
of a Nuclear exploit kit, and a piece of ransomware was
installed onto their systems.

CONCLUSION
Effusion is the most sophisticated injector for *nix systems
that we have come across. In a nutshell, it has the following
peculiarities:

• ELF headers are modifi ed in order to complicate analysis.

• Modifi ed functions similar to strlen, inet_addr, etc. are
used instead of regular ones.

Offset Size in
bytes

Description

0 4 This fi eld contains the number of
eight-byte blocks in the confi guration
– in other words, the length of the
confi guration in eight-byte blocks

4 4 Special marker 0xDEADBEEF

8 4 Time interval which represents an
IP address lifetime in the hash table
containing IP addresses of the clients

12 4 Offset to ‘Content-Type’ values for
future checks (permitted values of
‘Content-Type’ header)

16 4 If the value in this fi eld is 1, then
malicious code will be injected before
particular strings which are also stored in
the confi guration; if the value is 2, then
malicious code will be injected after the
strings

20 4 Offset to the strings before or after which
malicious code can be injected into the
HTTP response

24 4 Offset to a piece of malicious code for
injection

28 4 Offset to a list of strings for the
‘User-Agent’ header check

32 4 Offset to a list of strings with forbidden
IP address ranges – e.g. 127.0.0.0/8

36 4 Offset to a list of forbidden substrings in
URIs

40 4 Offset to the name of a special fi le for
mapping into memory

44 4 Check special management header in
HTTP headers fl ag – if this fl ag has
a non-zero value, remote control is
allowed through HTTP requests with the
‘Pragma’ header

48 4 Offset to the strings used by the malware
– in other words, an offset to strings used
in regular procedures in the shared object

52 4 Offset to the list of names of forbidden
processes

56 4 Offset to a fi lename with the list of
forbidden IP addresses

Table 3: The format of the malware confi guration.

Offset Size in
bytes

Description

60 4 Time interval for detection of root activity
in the system

64 4 Time for silence – malicious code won’t
be injected after this point in time

68 4 Offset to a list of strings for ‘Referer’
header checks

Table 3 (contd.): The format of the malware confi guration.

Figure 11: Hosts infected by Effusion and their appearance
in Yandex search results (with alerts).

VIRUS BULLETIN www.virusbtn.com

27JANUARY 2014

• The XTEA algorithm (11 rounds) in ECB mode is used
for encryption/decryption.

• Hash tables are used in order to avoid performance
issues.

• There are functions that monitor forbidden processes.

• Advanced techniques are used for checking root activity.

• Updated confi guration is stored only in RAM and is
never dumped to disk.

The appearance of this malware confi rms the fact that
attackers are moving from the practice of infecting
individual fi les to infecting the executable fi les of web
servers. The old infection methods are gradually coming
to nought, clearing a way for modern hi-tech methods
of malicious code embedding which are hard to detect
using traditional approaches. Yandex uses a traffi c analysis
approach to detect such types of infection: an anti-virus
robot browses web pages, emulates legitimate user
behaviour and analyses HTTP responses, so harmful code
injected into web pages can be detected. The SafeBrowsing
API [10] can be used to check whether a particular site
is infected, and additional information about detected
malicious code is available at [11].

REFERENCES
[1] Rassokhin, A.; Sidorov, E. Embedding malware

in websites using executable web server fi les.
Proceedings of the 23rd Virus Bulletin International
Conference, 2013.

[2] http://company.yandex.ru/technologies/antivirus/.

[3] http://www.revisium.com/ai/.

[4] Emiller’s Guide To Nginx Module Development.
http://www.evanmiller.org/nginx-modules-guide.
html.

[5] Wheeler, D.; Needham, R. Correction to XTEA.
http://www.movable-type.co.uk/scripts/xxtea.pdf.

[6] Wikipedia. XTEA. http://en.wikipedia.org/w/index.
php?title=XTEA&oldid=558387953.

[7] Wikipedia. Block cipher mode of operation.
http://en.wikipedia.org/w/index.php?title=Block_
cipher_mode_of_operation&oldid=582012907.

[8] Schneier, B. Applied Cryptography. John Wiley &
Sons, 1996.

[9] GitHub. Effusion. https://github.com/e-sidorov/
Effusion.

[10] Yandex Safe Search. http://safe.yandex.com/.

[11] Yandex Webmaster. http://webmaster.yandex.com/.

VB2014 SEATTLE
Virus Bulletin is seeking submissions
from those wishing to present papers
at VB2014, which will take place
24–26 September 2014 at the Westin
Seattle hotel, Seattle, WA, USA.

The conference will include a programme of 30-minute
presentations running in two concurrent streams. Unlike in
previous years, the two streams will not be distinguished
as ‘corporate’ and ‘technical’, but instead will be split into
themed sessions covering both traditional AV issues and
some slightly broader aspects of security:

• Malware & botnets

• Anti-malware tools & methods

• Mobile devices

• Spam & social networks

• Hacking & vulnerabilities

• Network security

Submissions are invited on topics that fall into any of the
subject areas listed above. A more detailed list of topics and
suggestions can be found at http://www.virusbtn.com/
conference/vb2014/call/.

SUBMITTING A PROPOSAL
The deadline for submission of proposals is Friday
7 March 2014. Abstracts should be submitted via our
online abstract submission system. You will need to include:

• An abstract of approximately 200 words outlining the
proposed paper and including fi ve key points that you
intend the paper to cover.

• Full contact details.

• An indication of which stream the paper is intended for.

The abstract submission form can be found at
http://www.virusbtn.com/conference/abstracts/.

One presenter per selected paper will be offered a
complimentary conference registration, while co-authors
will be offered registration at a 50% reduced rate (up to a
maximum of two co-authors). VB regrets that it is not able
to assist with speakers’ travel and accommodation costs.

Authors are advised that, should their paper be selected for the
conference programme, they will be expected to provide a full
paper for inclusion in the VB2014 Conference Proceedings
as well as a 30-minute presentation at VB2014. The deadline
for submission of the completed papers will be 10 June 2014,
and potential speakers must be available to present their
papers in Seattle between 24 and 26 September 2014.

Any queries should be addressed to editor@virusbtn.com.

CALL FOR PAPERS

SEATTLE
2014

http://company.yandex.ru/technologies/antivirus/
http://www.revisium.com/ai/
http://www.evanmiller.org/nginx-modules-guide.html
http://www.movable-type.co.uk/scripts/xxtea.pdf
http://en.wikipedia.org/w/index.php?title=XTEA&oldid=558387953
http://en.wikipedia.org/w/index.php?title=Block_cipher_mode_of_operation&oldid=582012907
https://github.com/e-sidorov/Effusion
http://safe.yandex.com/
http://webmaster.yandex.com/
http://www.virusbtn.com/conference/abstracts/
mailto:editor@virusbtn.com
http://www.virusbtn.com/conference/vb2014/call/

JANUARY 2014

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

28

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Jimmy Kuo, Independent researcher, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Roel Schouwenberg, Kaspersky Lab, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2014 Virus Bulletin Ltd, The Pentagon,
Abingdon Science Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. /2014/$0.00+2.50. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any
form without the prior written permission of the publishers.

FloCon 2014 will be held 13–16 January 2014 in Charleston, SC,
USA. For details see http://www.cert.org/flocon/.

Suits and Spooks Washington DC takes place 19–21 January
2014 in Washington, DC, USA. For full details see
http://www.suitsandspooks.com/2014/01/dc-2014/.

The 6th International Forum on Cybersecurity takes place 21–22
January 2014 in Lille, France. For more information see
http://www.forum-fic.com/2014/en/.

The Cyber Defence & Network Security Conference will be held
27–30 January 2014 in London, UK. For details and registration
see http://www.cdans.org/.

RSA Conference 2014 will take place 24–28 February 2014 in
San Francisco, CA, USA. For more information see
http://www.rsaconference.com/events/us14/.

The ZebraCON International InfoRisk 360 Professional
Workshop takes place 4–6 March 2014 in Kuala Lumpur,
Malaysia. For details see http://zebra-con.com/main/risk-
management-workshop/.

The Commonwealth Telecommunications Organisation’s 5th
Cybersecurity Forum takes place 5–7 March 2014 in London,
UK. For more information see http://www.cto.int/events/upcoming-
events/cybersecurity-2014/.

Cyber Intelligence Asia 2014 takes place 11–14 March 2014 in
Singapore. For full details see http://www.intelligence-sec.com/
events/cyber-intelligence-asia-2014.

ComSec 2014 takes place 18–20 March 2014 in Kuala Lumpur,
Malaysia. For details see http://sdiwc.net/conferences/2014/
comsec2014/.

Black Hat Asia takes place 25–28 March 2014 in Singapore. For
details see http://www.blackhat.com/.

Information Security by ISNR takes place 1–3 April 2014 in Abu
Dhabi, UAE. For details see http://www.isnrabudhabi.com/.

SOURCE Boston will be held 9–10 April 2014 in Boston, MA,
USA. For more details see http://www.sourceconference.com/boston/.

The Infosecurity Europe 2014 exhibition and conference will
be held 29 April to 1 May 2014 in London, UK. For details see
http://www.infosec.co.uk/.

The 15th annual National Information Security Conference
(NISC) will take place 14–16 May 2014 in Glasgow, Scotland. For
information see http://www.sapphire.net/nisc-2014/.

Cyber Security and Digital Forensics takes place 20–22 May 2014
in Kuala Lumpur, Malaysia. For details see
http://www.ib-consultancy.com/events/event/44-cyber.html.

SOURCE Dublin will be held 22–23 May 2014 in Dublin, Ireland.
For more details see http://www.sourceconference.com/dublin/.

The 26th Annual FIRST Conference on Computer Security
Incident Handling will be held 22–27 June 2014 in Boston, MA,
USA. For details see http://www.first.org/conference/2014.

Black Hat USA takes place 2–7 August 2014 in Las Vegas, NV,
USA. For details see http://www.blackhat.com/.

VB2014 will take place 24–26 September 2014 in Seattle, WA,
USA. For more information see http://www.virusbtn.com/
conference/vb2014/. For details of sponsorship opportunities and any
other queries please contact conference@virusbtn.com.

http://www.virusbtn.com/conference/vb2014/
mailto:conference@virusbtn.com
mailto:editorial@virusbtn.com
http://www.virusbtn.com/
http://www.virusbtn.com/virusbulletin/subscriptions/
http://www.cert.org/flocon/
http://www.suitsandspooks.com/2014/01/dc-2014/
http://www.forum-fic.com/2014/en/
http://www.cdans.org/
http://www.rsaconference.com/events/us14/
http://zebra-con.com/main/risk-management-workshop/
http://www.cto.int/events/upcoming-events/cybersecurity-2014/
http://www.intelligence-sec.com/events/cyber-intelligence-asia-2014
http://sdiwc.net/conferences/2014/comsec2014/
http://www.blackhat.com/
http://www.blackhat.com/
http://www.isnrabudhabi.com/
http://www.sourceconference.com/boston/
http://www.infosec.co.uk/
http://www.sapphire.net/nisc-2014/
http://www.ib-consultancy.com/events/event/44-cyber.html
http://www.sourceconference.com/dublin/
http://www.first.org/conference/2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

