
MARCH 2014

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Covering the global threat landscape

FOREVER TARRY
Last month, Peter Ferrie described a Windows
virus that turns Java class fi les into droppers for the
virus, and concluded that it would be a simple matter
to reverse that: for a virus writer to create a Java class
fi le that turns Windows fi les into droppers for the
virus. This is exactly what {W32/Java}/Tarry does.
page 4

RESURFACING INFECTOR
Expiro is a fi le infector that resurfaces from time
to time, demonstrating more skills on each new
appearance – infecting a service that gives a unique
vantage point on traditional malicious activities;
running the malware at computer restart without
creating a start-up registry; using different mutexes
for different types of infected process; escalating
privileges; and executing infected fi les without
calling the CreateProcess or WinExec APIs. Raul
Alvarez takes a closer look.
page 17

COME PREPARED
The author of Simbot doesn’t take anything for
granted: all the necessary components for the
malware’s execution are bundled and dropped
onto the system, including the relevant vulnerable
application for exploitation and regular Windows
system binaries.
page 21

2 COMMENT

 Making the case for incident response

3 NEWS

 40% of CryptoLocker victims pay up

 Securing the Internet of Things

 Insurers refuse to cover poorly protected
 power fi rms

 Black market haul

 MALWARE ANALYSES

4 A short visit with a virus

6 ProxyCB, a spam proxy under the radar

12 Solarbot botnet

17 Not Expir-ed yet

21 TECHNICAL FEATURE

 BYOT: Bring Your Own Target

29 SPOTLIGHT

 Greetz from academe: Censored

30 END NOTES & NEWS

2 MARCH 2014

COMMENT

Editor: Helen Martin

Technical Editor: Dr Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Scott James

Sales Executive: Allison Sketchley

Perl Developer: Tom Gracey

Consulting Editors:
Nick FitzGerald, AVG, NZ
Ian Whalley, Google, USA
Dr Richard Ford, Florida Institute of Technology, USA

MAKING THE CASE FOR
INCIDENT RESPONSE
Currently, there is a lot of talk of preventative security
technologies being all but dead. I disagree, but their use
might have changed. It would be a mistake to ignore the
recommended best practice of installing anti-virus, but
it would be an even bigger mistake to stop there. The
threat detection market is alive and well with a plethora
of advanced technologies that do incredible things,
from on-demand virtual sandboxes to advanced APT
detection.

The problem is this: in some cases the bad guys will
still get in, and the way in which you react once your
defences have been breached can make the difference
between a security event and a security disaster. It
could mean the end of your job, or even the end of
your company. A vast amount of time and money is
dedicated to trying to keep the bad guys out, but very
little is spent on planning for what to do when that
defence fails.

Every day, I talk to organizations that have great
intentions, but little to no preparation. Making the case
for incident response to management can be trying
at best. Unless your company has seen the result of a
serious incident, both in terms of clean-up costs and
brand damage, it can be an uphill battle to convince
budget holders of the value of incident response tools

and techniques. While the continuing catalogue of
high-profi le breaches in the news can only help your
case, this is a problem that is not going to go away any
time soon.

You can understand why, after so much time, effort and
money has been spent on preventative tools, security
professionals are hesitant to bring up the need for
more tools or resources to deal with the situation when
someone defeats their defences. While preventative
tools are necessary, make no mistake, someone will get
around them. Given enough time and resources on the
part of the attacker, no system is 100% secure. We can
see this is especially true in the case of state-sponsored
malware – these attackers have almost endless
resources.

What is not often discussed is how valuable defensive
tools can be to the incident response process. Anti-virus,
IDS, SIEMs and other security tools are essential in
recreating an incident timeline. They provide us with
information about the attack vector, pathway through
the network, and indicators of compromise. In fact, they
allow us to make our defences stronger, once we know
where to look.

There is a shift occurring in the security space
around incident response. It’s becoming clear that
no organization is completely safe. Whether you’re a
retailer, a manufacturer, a hospital or insurance fi rm, you
will need a plan. You will need a system of record. You
will need a repeatable process, and the last thing you
want is to be creating that process during the heat of an
incident. In fact, you’ll want to tie that incident response
process into every tool that helps.

A large part of the incident response process is made
up of research, and having the output of quality tools
available will shorten your response time. Look at any
breach report and you’ll see that the response time is
currently measured in months. As an industry, we need
to bring that under control – it is the unfortunate truth
that the bad guys currently have the upper hand. We are
not winning at the gateway, we are not winning on the
network, and we are not winning at the endpoint. We
must win at incident response. Collecting data during
incident response, sharing indicators of compromise,
and making it as hard as possible for attackers is our
best chance.

I believe that we need to accept that we will all
deal with a breach at some point. But if we can act
collectively to make attackers less effective, and get
rid of the shame of disclosure, we can turn the tide of
security to our favour.

‘There is a shift
occurring ... around
incident response.
It’s becoming clear
that no organization
is completely safe.’
Tim Armstrong, Co3 Systems

3MARCH 2014

VIRUS BULLETIN www.virusbtn.com

NEWS
40% OF CRYPTOLOCKER VICTIMS PAY UP
Around 40% of people whose machines are infected by
the CryptoLocker ransomware end up agreeing to pay a
ransom of around £300 to recover their fi les, according to
researchers from the University of Kent.

CryptoLocker has become known as the unfortunate
crypto success story of 2013. While stories about broken
cryptography implementations made the headlines
throughout the second half of the year, no one has yet been
able to fi nd a serious weakness in this piece of ransomware.
Victims who fi nd their fi les encrypted by CryptoLocker and
who do not have a back-up of their fi les are forced either to
pay the ransom, or to consider the fi les lost forever.

Researchers at the University of Kent’s Research Centre
for Cyber Security surveyed 1,500 adults in the UK, asking
them eight cybercrime and security-related questions. They
discovered that ransomware represents one in every 30
malware cases – which is higher than previous estimates.

The researchers questioned 48 people who had been
affected by CryptoLocker – of whom, 17 said they paid the
ransom and 31 said they did not.

Although CryptoLocker has proved a tough case to crack
and has caused many a headache for those unfortunate
enough to fi nd themselves infected with it, the creators of
other pieces of ransomware are, thankfully, not quite as
adept. Last month, French researchers Fabien Perigaud
and Cedric Pernet uncovered a serious vulnerability in the
Bitcrypt ransomware that allowed them to crack the keys
used by the malware to encrypt the victim’s fi les – as a
result, they were able to restore the encrypted fi les. The
researchers have made a Python script available so that
others can also crack Bitcrypt’s keys and restore their fi les.

SECURING THE INTERNET OF THINGS
Cisco is offering prizes of up to US$75,000 for solutions
dealing with the issue of securing the Internet of Things
(IoT).

The future will likely see our fridges, cars, TVs and even
toothbrushes connected to the Internet – but while the
IoT offers countless possibilities for increasing effi ciency,
streamlining day-to-day tasks, gathering data and so on, the
biggest perceived disadvantage is security.

Cisco’s ‘Internet of Things Grand Security Challenge’ offers
prizes ranging from US$50,000 to US$75,000 for proposals
that deal with securing the IoT.

The judges will assess submissions assessed for: feasibility,
scalability, performance, and ease-of-use; applicability to
multiple IoT verticals (manufacturing, mass transportation,

healthcare, oil and gas, smart grid, etc.); technical maturity/
viability of proposed approach; and the proposers’ expertise
and ability to feasibly create a successful outcome.

The winners will be announced in the autumn.

INSURERS REFUSE TO COVER POORLY
PROTECTED POWER FIRMS
According to the BBC, energy and utility companies are
being turned down by insurance fi rms when requesting
insurance cover for cyber attacks because their defences are
perceived to be too weak.

Underwriters at specialist insurance market Lloyd’s of
London told the BBC that there has been a huge increase in
demand for cover from energy fi rms over the last year or
so – but that in the majority of cases, cover is being refused
as assessors are fi nding that the fi rms’ IT security defences,
policies and procedures are inadequate.

It has long been common for insurance fi rms to offer
businesses cover against data breaches – for example to
aid in their recovery in the event of their networks being
penetrated and customer data stolen. Recently, however,
there has been a signifi cant rise in the number of power
companies applying for multi-million-pound policies to
cover them against damages caused by a cyber attack.

Clearly, the perception of the insurance assessors is that, in
the majority of cases, fi rms are placing too much emphasis
on transferring the risk to insurers, rather than paying
enough attention to risk mitigation. It is to be hoped that
the companies that have been refused insurance cover will
revisit their cybersecurity policies and procedures and focus
on strengthening the protection they have in place – using
insurance cover as a means to transfer the remaining risk,
rather than as a substitute for a robust security programme.

BLACK MARKET HAUL
360 million stolen credentials and 1.25 billion email
addresses were found on the black market last month by
security fi rm Hold Security.

The fi rm believes that the 360 million credentials come
from multiple breaches that have not yet been publicly
disclosed (and may not even be known about by the
victims) – with a single breach accounting for 105 million
of the stolen credentials. Many of the passwords paired with
usernames were in plaintext.

The stolen email addresses are from all the popular email
providers such as AOL, Gmail, Microsoft and Yahoo!, but
also include addresses from a large number of the Fortune
500 companies and several nonprofi t organizations.

VIRUS BULLETIN www.virusbtn.com

4 MARCH 2014

A SHORT VISIT WITH A VIRUS
Peter Ferrie
Microsoft, USA

Last month, I described a Windows virus that turns Java
class fi les into droppers for the virus [1]. I concluded that it
would be a simple matter for a virus writer to reverse that
– in other words, to have a Java class fi le that turns Windows
fi les into droppers for the virus. That is exactly what we
have in {W32/Java}/Tarry.

SECOND PLACE GOES TO...

The virus begins by pushing the host original entry point
onto the stack. It then adds the host ImageBase value from
the Process Environment Block, to construct the virtual
address of the host entry point. This allows the virus to
support applications that opt into Address Space Layout
Randomization (ASLR), even though it does not support
fi les that support ASLR.

The virus registers a Structured Exception Handler, then
retrieves the base address of kernel32.dll. It does this by
walking the InLoadOrderModuleList from the
PEB_LDR_DATA structure in the Process Environment
Block. The virus assumes that kernel32.dll is the second
entry in the list. This is true for Windows XP and later,
but it is not guaranteed under Windows 2000 and earlier
because, as the name suggests, the list shows the order
of loaded modules. If kernel32.dll is not the fi rst DLL
that is loaded explicitly, then it won’t be the second entry
in that list (ntdll.dll is guaranteed to be the fi rst entry in
all cases).

IMPORT/EXPORT BUSINESS

The virus resolves the address of the only API function
that it requires: LoadLibraryA. Despite this being only
a single entry, the virus uses a hash instead of a name. It
uses a reverse polynomial to calculate the hash. The virus
does not check that the export exists, relying instead on
the Structured Exception Handler to deal with any
problems that occur. Of course, the required API should
always be present in the kernel, so no errors should occur
anyway.

The hash table is terminated explicitly using a single byte.
The position of this byte corresponds to the next hash
value in the list, and the search exits when a particular
value is seen. This is intended to save three bytes of data,
but actually introduces a risk. The assumption is that no
hash will have that value in that position. While this is

true in the case of this virus, it could result in unexpected
behaviour if other APIs are added, for which the low byte
happens to match the current sentinel value. The reason the
hash technique is used to resolve a single API address is
simply because this virus is derived from an existing code
base that makes use of the technique for resolving multiple
API addresses. It would be quicker simply to resolve
GetProcAddress() by string name, and then use that API to
resolve LoadLibraryA().

JAVA VIRTUAL MISMATCH

The virus loads the jvm.dll with no path. This assumes
that the DLL can be found in one of the locations in which
Windows searches, but the host can affect this list by using
DLL redirection or carrying a manifest. The virus resolves a
single API from this DLL, again by using the hash method.
The API is JNI_CreateJavaVM(). The virus uses this
API to create a new instance of the Java VM, but in order
for the API to succeed, the ‘_ALT_JAVA_HOME_DIR’
environment variable must be defi ned and must point to the
Java installation directory. This is not normally the case.
The usual method for invoking Java is by adding the Java
installation directory to the path environment variable, and
then either passing the directory on the command line or
allowing the Java executable to defi ne the environment
variable dynamically.

The virus creates a byte array that is large enough to
hold the combined virus body, then defi nes a class that
contains the Java-specifi c virus body. It retrieves a
pointer to the infection method within the Java-specifi c
virus body, then runs the method. This technique allows
the virus to execute Java code directly from memory,
instead of dropping a class fi le and executing it from
disk. After the method call returns, the virus deletes the
objects in memory, then raises an exception using the
‘int 3’ technique. The ‘int 3’ technique appears only once
in the virus code, but is an elegant way of reducing the
code size. Since the virus has protected itself against
errors by installing a Structured Exception Handler, the
simulation of an error condition results in the execution of
a common block of code to exit a routine. This avoids the
need for separate handlers for successful and unsuccessful
code completion.

The exception handler restores the registers, then transfers
control to the host entry point.

CAFEBABE

The Java-specifi c virus body begins by creating a list of
the objects in the current directory. The virus enumerates

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5MARCH 2014

the entries in the list, looking specifi cally for fi les. It
uses no bounds checking during the enumeration, relying
instead on a defi ned exception handler to receive control
when the list is exhausted. The virus attempts to open any
fi le it fi nds, in writable mode. It does not check whether
the fi le is writable, nor does it remove the read-only
attribute fi rst.

The virus is interested in 32-bit Portable Executable fi les
for the Intel x86 platform that have no relocation items,
line numbers, symbols, or appended data, and that are
not system or DLL fi les. The virus checks the COFF
magic number to ensure that the fi le is 32-bit. It requires
the fi le to be targeting the GUI subsystem and to have
no fl ags set in the DllCharacteristics fi eld. This reduces
the pool of candidates to those which are primarily
not No-eXecute compatible, and which do not support
Address Space Layout Randomization. This effectively
rules out all modern applications. The virus also requires
that the fi le has no Load Confi guration Table structure,
which further rules out any fi le that uses SafeSEH, among
other things.

The virus has some strange code in a couple of places,
whereby a query is made for the current fi le pointer
position, despite a seek() operation being issued
immediately before it. In that case, the position would be
known already. The virus also searches to the end of the
fi le by adding the SizeOfRawData and PointerToRawData
values from the last section, instead of simply using the
fi le.length property.

[NO] TEST, [NO] FIX

The technique that the virus uses to infect a fi le is to write
a push instruction to the end of the fi le, followed by what
should be the original AddressOfEntryPoint value, and
then the array that contains the combined virus body.
However, there is a bug in the code that performs writes
to the fi le. The bug is that the third byte of each four-byte
write references the wrong variable. Instead of accessing
the third byte of the four-byte value, it accesses the fi rst
byte of the SizeOfRawData value from the last section.
Such a bug would have been obvious immediately had
any attempt at recursive infection been made. It seems
likely that the fi rst generation of the virus code was
executed, it infected a fi le, and the result was examined
statically.

After writing the combined virus body, the size of the
fi le is increased by 4KB. This value is hard-coded, and
is entirely independent of the size of the virus code. The
virus introduces the infection marker for fi les whose fi le
alignment is less than 4KB. However, since the increase

in size does not take into account the actual fi le alignment
value, a fi le whose fi le alignment value exceeds 4KB
will be reinfectable because it lacks the infection marker.
The virus increases the virtual and physical size of the
last section by exactly 4KB each. In this case, since the
increase in size does not take into account the actual
fi le alignment value, a fi le whose fi le alignment value
exceeds 4KB will appear to be truncated and will fail to
load. Finally, the virus marks the section characteristics as
writable and executable.

BEST INTENTIONS

The virus intends to set the entry point to point to the
original end of the last section, but the fi le-write bug applies
here, resulting in a corruption of the value. This means
that unless the host had an entry point whose third byte
happened to match the value of the fi rst byte of the size of
the last section (most commonly, a value of zero), then the
infected fi le will not execute any code.

The virus also intends to increase the size of the image by
4KB, but depending on the original value of the size, the
fi le-writing bug is likely to corrupt the value to the point
where the new image size is far too small to cover all of
the sections, and thus the infected fi le will not even load.
Specifi cally, if the size of the image (not the fi le) is any
multiple of 61,440 bytes up to about 15MB, which is the
case for calc.exe in Windows XP (126,976 bytes), then the
new size of the image will be zero. Other values will simply
be truncated, but with the same effect.

Once the fi le has been infected, the virus closes the handle,
and then continues to search for more fi les.

CONCLUSION

There is nothing inherently diffi cult about creating a Java
virus that infects Windows executable fi les. The fact that the
Java-specifi c portion of this virus code was written directly
in byte code rather than the high-level code is merely a
detail. However, the fact that something as simple as that
could yield such a signifi cant bug should give pause to the
virus writer. This is clearly not where he/she should be
spending his/her time. There are many other arts which are
far more forgiving of mistakes in implementation. Why not
go and paint something instead?

REFERENCE
[1] Ferrie, P. Getting one’s hands dirty. Virus Bulletin,

February 2014, p.4. http://www.virusbtn.com/pdf/
magazine/2014/201402.pdf.

http://www.virusbtn.com/pdf/magazine/2014/201402.pdf

VIRUS BULLETIN www.virusbtn.com

6 MARCH 2014

PROXYCB, A SPAM PROXY
UNDER THE RADAR
Wei Wang & Kyle Yang
Fortinet, Canada

ProxyCB is a trojan that acts as a proxy server to send spam
via the HTTP, HTTPS or SMTP protocol. It has been active
in the wild since December 2011. ProxyCB usually has a
three-level fi le structure: an installer EXE fi le, a loader DLL
component and ProxyCB payload (DLL fi le). In this article,
we’ll take a detailed look at its installation process, how it
bypasses UAC, and the fi nal payload loading process, before
dissecting its communication protocol and commands.

INSTALLATION PROCESS

Preparing

Upon executing, ProxyCB fi rst generates a 12-letter string,
which is derived from the volume serial number of the
victim machine (see Figure 1) and will be used later both as
a mutex name and as the fi lename of the dropped fi le.

Next, it checks the mutex (see Figure 1) to make sure the
current machine is not infected, and checks the version of
Windows and the user privilege level. Depending on the
results, it will decide how to install the ProxyCB bot on the
victim machine.

Bypassing UAC

User Account Control (UAC) has been part of the Windows
operating system since Windows Vista. It aims to improve

Figure 1: The generated string and checking the mutex.

the security of the operating system by limiting applications
to standard user privileges until an administrator authorizes
an elevation in privileges. In this way, only applications that
are trusted by the user can receive administrative privileges,
and malware should be kept from compromising the
operating system [1].

With the Windows 7 UAC default settings, if you want
to copy a fi le into the system directory, a prompt will be
displayed even if you are an administrator (see Figure 2).

Figure 2: ‘Access Denied’ message.

In this case, the explorer.exe process runs at a medium
integrity level that only has the Authenticated Users security
access token [2]. This does not have the ability to write fi les
to the system folder. If the bot wants to drop a fi le into the
system folder or modify the registries, it needs to gain high
integrity (Figure 3). This is the fi rst and most important part
of the installation process.

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

7MARCH 2014

Figure 3: Integrity levels linked to specifi c SIDs.

With the Windows 7 UAC default settings, the ProxyCB bot
can obtain high integrity without triggering any prompt, by
using the following steps:

• It checks and creates a mutex for the UAC pass
component.

• It drops a DLL fi le in the %TEMP% folder. The
fi lename is made up of a random eight-digit number
and the extension ‘.dat’.

• It injects into the explorer.exe process to move the
dropped fi le to %SYSTEM%\sysprep\cryptbase.dll.

 In this step, the bot just needs to fi nd a process that has
been signed with the Windows Publisher certifi cate.
These signed processes can copy fi les to the system
folder without any prompt being displayed using the
IFileOperation method, even if they are running at a
medium integrity level. Explorer.exe is one of these
signed processes and runs from Windows start-up, so it
is a good target.

• It executes %SYSTEM%\sysprep\sysprep.exe, and the
fake cryptbase.dll fi le will be loaded.

 Sysprep.exe is an auto-elevation program [3] – it
can automatically and silently elevate itself to high
integrity, no matter who runs it.

 When a process starts, it will look for the needed DLL
fi les in its own folder fi rst, and fall back on the system
folder. Although Windows has a list of ‘Known DLLs’,
in which fi les will always be loaded directly from
the system folder (Figure 4), cryptbase.dll is missing
from the list. As a result, the %SYSTEM%\sysprep\
cryptbase.dll fi le will be loaded instead of the real
cryptbase.dll fi le in the system folder.

Figure 4: List of ‘Known DLLs’ – cryptbase.dll is missing.

• The fake cryptbase.dll is a tiny fi le measuring only
2,048 bytes. As soon as it is loaded, it will create a new
instance of the ProxyCB installer and exit the process
with a special ExitCode to notify the fi rst installer
process (see Figure 5).

Figure 5: Code of cryptbase.dll.

Now, a new process of the ProxyCB installer starts with the
high integrity level that has been inherited from sysprep.exe
(see Figure 6).

VIRUS BULLETIN www.virusbtn.com

8 MARCH 2014

Figure 6: The ProxyCB bot inherits high integrity.

Dropping the fi le

The installer tries to drop a DLL component which was
embedded as a resource inside itself. If the process has
administrator privileges, it tries to drop the fi le in the
%SYSTEM% folder and falls back on the %COMMON_
APPDATA% folder.

Modifying the registry

When the DLL fi le has been dropped successfully, the
installer tries to modify the registry so that the dropped
fi le will be loaded each time Windows starts up (see
Figure 7).

If the process has administrator privileges, it will try to
append the path of the dropped fi le after the following
registry entry:

Key: HKLM\CurrentControlSet\Control\SecurityProviders

Value: SecurityProviders

If it fails, or the process does not have administrator
privileges, it tries to create the following new registry entry:

Key: HKCU\ Software\Microsoft\Windows\
CurrentVersion\Run

Value: Windows Time

Data: rundll32.exe ‘{The dropped fi le}’,EntryPoint.

Figure 7: The installer tries to modify the registry so that
the dropped fi le will be loaded on each system start-up.

LOADING PROCESS

Loading the DLL component

By now, the dropped DLL component has successfully
been installed in the system and the registry has been
changed so that the component will be loaded on system
start-up. But the DLL has not been loaded yet. So the
installer process does one last thing: it loads the DLL
component.

It will try the following methods, depending on the version
of the current system and the process privilege:

• It executes rundll32.exe using the ShellExecuteEx
method with the parameter
‘{The DLL Component}’,EntryPoint’.

• It shuts down and reboots Windows so that the DLL
can be loaded when Windows starts. It will post the
message shown in Figure 8, but you would be lucky to
see it because the timeout is set to just one second.

Figure 8: The shutdown message.

• It appends the DLL component to explorer.exe using
the CreateRemoteThread method. The LoadLibraryA
method is used as the starting address. The path of the
DLL component will be injected into the explorer.exe
process and used as the parameter of LoadLibraryA
(see Figure 9). This is a popular method to load a DLL
fi le into the system memory.

Figure 9: CreateRemoteThread method.

VIRUS BULLETIN www.virusbtn.com

9MARCH 2014

• It simply uses the LoadLibraryA method to load
the DLL component into the current process. This
is the simplest way to load the fi le, but this method
needs the installer process to be kept alive and may
cause some fi rewall alerts later, so it is used as a last
resort.

Loading the real ProxyCB

The dropped DLL component loads the real ProxyCB
payload, which will perform the malicious activities. The
payload is a DLL fi le too, and it has no export functions
except the DllEntryPoint.

When the dropped DLL component is being loaded, it
checks the name of the current process fi rst. If it fi nds that
it is the rundll32.exe process that has loaded it (via loading
method 1 or system start-up with the second registry),
then it tries to append itself to the explorer.exe process by
creating a remote thread.

Next, it tries to load the real ProxyCB payload. It uses the
VirtualAlloc method to allocate new system memory, and
copies the code and data of the payload into the memory by
parsing the dropper’s PE_Header. Finally, it fi xes the IAT
manually and invokes the DllEntryPoint.

It would be much easier to load the real ProxyCB payload
using the LoadLibraryA method, but it would need to drop
the fi le fi rst. The bot loads the fi le manually, which won’t
drop the real ProxyCB payload. In this way, it might avoid
some fi le-detection-based anti-virus programs.

COMMUNICATION ROUTINE
When the payload is being loaded, it fi rst creates a mutex
to avoid another instance of the installer. Then it tries to
connect to the C&C server that is hard-coded in the binary.
It keeps trying to connect to the C&C server at 10-second
intervals until a successful connection is made.

Testing SMTP servers

Before it connects to the C&C server, it will test for some
mail servers on port 25 (SMTP). If any are accessible, a fl ag
will be set. The host names of the testing mail servers are
hard-coded (Figure 10).

Figure 10: List of the testing mail servers.

Communication protocol

The bot creates a TCP connection with the C&C server

on port 1001, then sets the socket timeout to two minutes.
Now, the communication starts.

Structure of MessagePacket

The message packet received from the C&C server has the
same structure as the message packet that is sent out. The
packet is 26 bytes in length and has the following layout:

struct MessagePacket {

 BYTE(9) magic; // static 85 B2 04 77 CE 38 E0 33 04

 BYTE cmdType;

 WORD dataWord1;

 WORD dataWord2;

 DWORD dataDword3;

 DWORD dataDword4;

 DWORD dataDword5;

}MessageSend, MessageRecv;

Phone home

When the communication starts, a phone home message is
fi rst sent to the server to register the victim machine as a
client. This packet contains two DWORDs of information
based on the victim machine. The fi rst DWORD is one of
the following – it checks and selects the fi rst valuable data
(not 0, 1 or -1):

• The volume serial number of the victim machine

• The hash value of the computer name

• The hash value of the user name associated with the
current thread.

The second DWORD is the dwLowDateTime area of the
%WINDOWS% directory creation time.

The fi rst message packet is set up as follows:

MessageSend.cmdType = 1;

MessageSend.dataWord1 = 1;

MessageSend.dataWord2 = Flag for whether the C&C
server has been changed;

MessageSend.dataDword4 = VolumeSerialNumber/
HashComputerName/HashUserName;

MessageSend.dataDword5 = dwLowDateTime of %WINDOWS%
creation;

Figure 11: The phone home message packet.

Command types

After the phone home message has been sent, the bot
starts to receive messages from the server and takes the

VIRUS BULLETIN www.virusbtn.com

10 MARCH 2014

MessageRecv.cmdType as a command to determine what
to do next:

MessageRecv.cmdType = 1: feedback for the phone home
message.

MessageRecv.cmdType = 2: starts the proxy thread.

MessageRecv.cmdType = 3: retries the communication
with the C&C server.

MessageRecv.cmdType = 4: keeps alive.

MessageRecv.cmdType = 5: changes the C&C server.

MessageRecv.cmdType = 6: restarts the communication
with the C&C server.

Command 1

When the C&C server receives the register message,
it will respond with a feedback message that contains
timeout information for the communication. The cmdType
area of the feedback message packet should be 1. This
command will reset the timeout for the communication to
MessageRecv.dataDword4×2 seconds:

MessageRecv.cmdType = 1;

MessageRecv.dataDword4 = TimeOut/2;

Command 4 and KeepAlive thread

When the communication starts, a KeepAlive thread will be
launched.

As soon as the feedback from the phone home message is
resolved, the KeepAlive thread starts to send a message
packet (Figure 12a) to the C&C server periodically:

MessageSend.cmdType = 4;

MessageSend.dataWord1 = 1; static

MessageSend.dataWord2 = result of the test for SMTP
servers

MessageSend.dataDword4 = VolumeSerialNumber/
HashComputerName/HashUserName

MessageSend.dataDword5 = dwLowDateTime of WinDir
creation

When the C&C server receives the KeepAlive message, it
just feeds back a message (Figure 12b), and the timeout of
the communication will be reset:

MessageRecv.cmdType = 4;

MessageRecv.dataDword4 = TimeOut/2;

Command 5

Command 5 indicates that the C&C server should be
changed.

MessageRecv.cmdType = 5;

MessageRecv.dataWord2 = fl ag to indicate that the
server has been changed;

MessageRecv.dataDword4 = new IP address;

MessageRecv.dataDword5 = new port;

The bot fi rst terminates the communication with the current
C&C server, then uses the MessageRecv.dataDword4
and MessageRecv.dataDword5 as the new host and port,
respectively, to create a new connection. It then initiates the
new communication with a phone home message. In the
meantime, a fl ag will be set to indicate that the C&C server
has been changed.

Commands 3 and 6

These two commands are similar. They both terminate the
current communication and start a new one. But there are
some differences between them:

Command 3 will increase a counter each time it has tried
to establish communication with the current server. If the
C&C server has been changed and the counter reaches a
maximum number (e.g. the maximum is 10 times for the
sample we looked at), it will restore the original server for
communication.

Command 6 just restarts the communication with the C&C
server, there is no counter.

Command 2

This is the most important command for ProxyCB. It
creates a new proxy thread. The proxy thread will try to
connect to the C&C server on another port (e.g. port 1002
was used in this case). The new port is saved in the received
message packet.

MessageRecv.cmdType = 2;

MessageRecv.dataWord1 = new port for proxy thread
connection;

MessageRecv.dataWord4 = tagProxyThread1;

MessageRecv.dataWord5 = tagProxyThread2;

If the connection succeeds, or it has retried three times, a
feedback message will be sent:

Figure 12a: KeepAlive message sent.

Figure 12b: Feedback for KeepAlive message.

VIRUS BULLETIN www.virusbtn.com

11MARCH 2014

MessageSend.cmdType = 2;

MessageSend.dataWord1 = fl ag for the new connection
success or not;

MessageSend.dataWord4 = tagProxyThread1;

MessageSend.dataWord5 = tagProxyThread2;

Figure 13a: Command 2 message packet received.

Figure 13b: Command 2 feedback message.

The proxy thread

When the C&C server receives the feedback message, it
will send a new message that contains IP address and port
information. It usually points to a mail server (e.g.
yahoo.com) on port 25 (SMTP), port 80 (HTTP) or port 443
(HTTPS).

The mail server message may have two different structure
types, as shown in Figure 14.

Figure 14a: Mail server message type 04.

Figure 14b: Mail server message type 05.

When a TCP connection is created with the mail server, the
bot will act as a proxy between the C&C server and mail
server.

The C&C server starts to send SMTP commands on port
25 (such as ‘HELO’, ‘MAIL FROM’, etc.) or HTTP
commands on port 80 or port 443 (such as ‘GET’, ‘POST’,
etc.) to the ProxyCB client.

The bot receives the data and forwards it to the mail
server. It then tries to get a response and send it back to

the C&C server. After that, an email will be sent (see
Figure 15).

CONCLUSIONS

Unlike other spam bots, ProxyCB does not have a
component either to build the spam itself or to retrieve a
spam template from the C&C server. As its name indicates,
it only connects to the C&C server and forwards spam
as a proxy. In this way, it is easy to update the spam
content, email server and the target mailing addresses. The
disadvantage of this method is that if the C&C server is not
accessible, the bot will stop working immediately, and the
C&C server is exposed in this case.

REFERENCES

[1] Wikipedia. User Account Control.
https://en.wikipedia.org/wiki/User_Account_
Control.

[2] MSDN. Windows Integrity Mechanism Design.
http://msdn.microsoft.com/en-us/library/bb625963.
aspx.

[3] List of Windows 7 (beta build 7000) auto-elevated
binaries. http://withinwindows.com/2009/02/05/
list-of-windows-7-beta-build-7000-auto-elevated-
binaries/.

Figure 15: The sent mail.

https://en.wikipedia.org/wiki/User_Account_Control
http://msdn.microsoft.com/en-us/library/bb625963.aspx
http://withinwindows.com/2009/02/05/list-of-windows-7-beta-build-7000-auto-elevated-binaries/

VIRUS BULLETIN www.virusbtn.com

12 MARCH 2014

SOLARBOT BOTNET
He Xu
Fortinet, Canada

Solarbot, a.k.a. Dapato or Napolar, is a classical botnet
that has been around for a long time. It is usually used for
spreading other malware. Like its competitors, this malware
often comes with built-in DDoS and proxy modules. The
most recent version of Solarbot attempts to add Tor network
support to conceal its C&C server. However, it seems
that this feature is either still undergoing development
or has been disabled. The toolkit sells for around $200
and the source code is available for 100 bitcoins (approx.
US$15,000) from the website hxxp://solarbot.net. Let’s take
a closer look.

TLS CALLBACK PROCEDURE
The bot carries an abnormal loader with a special PE header
which has no entry point, and the ImageBase is not the
usual default 0040000 or 01000000 (see Figure 1).

Figure 1: EntryPoint and ImageBase details.

The virus entry point is located in the TLS (Thread Local
Storage) table, which is usually empty in the Data Directory
list.

The structure of the IMAGE_TLS_DIRECTORY is as
follows:

typedef struct _IMAGE_TLS_DIRECTORY32 {

 ULONG StartAddressOfRawData;

 ULONG EndAddressOfRawData;

 ULONG AddressOfIndex;

 ULONG AddressOfCallBacks;

 ULONG SizeOfZeroFill;

 ULONG Characteristics;

} IMAGE_TLS_DIRECTORY32, *PIMAGE_TLS_DIRECTORY32;

Let’s look at the real data in the bot. There are two
TlsCallback functions in the PE fi le (see Figure 2).

Figure 2: Two TlsCallback functions.

When the bot is loaded by the system (PE loader), the
TlsCallback function will be invoked ahead of the EPO.

The fi rst TlsCallback, TlsCallback_0, is an empty function
(see Figure 3). This might be used to trick anti-virus engines.

Figure 3: The fi rst TlsCallback is an empty function.

The second TlsCallback function uses the dynamic TLS
approach to insert a new callback procedure in memory. So
when TlsCallback_1 returns, the TlsDirectory changes, as
shown in Figure 4.

Figure 4: The TlsDirectory changes.

The TlsCallback_2 function decrypts all code using the RC4
algorithm and the fi xed double-word key 0x0F5BC5C9.

MALWARE ANALYSIS 3

VIRUS BULLETIN www.virusbtn.com

13MARCH 2014

FAKE EXPORT DIRECTORY
The bot loader does not have real export functions, but
it has an abnormal export directory that redirects to the
ImageBase (MZ header), as shown in Figure 5.

Figure 5: Export directory redirects to the ImageBase.

We can see that the functions count declared in the structure
is too large, and the Base is 0. This special structure will
cause several debugger applications to enter an exception
and thus be unable to analyse the bot.

DEBUGGER & DEBUGGEE MECHANISM
More and more bots are integrating debugger engines,
and Solarbot is no exception. The bot uses this feature for
anti-debugging purposes, and executes different code. The
bot’s internal debugger engine is much simpler than that of
ZAccess, for example, but it is still effective.

Debugger
The bot will restart itself as a debuggee by calling the
CreateProcessW API with the parameter CreateFlags
DEBUG_ONLY_THIS_PROCESS, then it will enter
the main loop to handle debuggee events such as
CREATE_PROCESS_DEBUG_EVENT, EXCEPTION_
DEBUG_EVENT and EXIT_PROCESS_DEBUG_
EVENT. For other events, the bot’s debugger just
calls the ContinueDebugEvent API with the parameter
dwContinueStatus DBG_CONTINUE.

The debugger will inject all code into the newly allocated
memory of the debuggee while handling the debug event
CREATE_PROCESS_DEBUG_EVENT.

After that, it will modify the debuggee’s entry point
code with the PUSH_RET instruction when it handles
EXCEPTION_DEBUG_EVENT and the corresponding
EXCEPTION_DEBUG_INFO structure with
ExceptionCode EXCEPTION_BREAKPOINT. This
modifi ed code will be triggered when the debuggee runs
before its entry point. This means that all executable code in
the debuggee will be overwritten by the debugger.

The debugger also modifi es another remote function, which
we will discuss in the next section.

The debugger handles the INT3 breakpoint, but only sets
a stack fl ag and calls the ContinueDebugEvent API with
dwContinueStatus DBG_CONTINUE as the parameter.

The debugger will terminate itself if the stack fl ag marker is
found.

Debuggee
As we know, the entry point of the debuggee has been
replaced by the debugger. It will run the code shown in
Figures 6–8.

Figure 6: Run as debuggee.

Figure 7: The bot appears to terminate itself.

It appears as if the bot will terminate itself permanently (see
Figure 7). However, this does not happen, since the bot’s
debugger modifi es the code, as shown in Figure 8.

Figure 8: The debugger modifi es the code.

The redirected code will check the current process. If the
path is %startup%\lsass.exe, the bot will return to the parent
function. Otherwise, it will install itself.

The installed bot triggers the EXCEPTION_BREAKPOINT
(INT3) debug event at address 00FE92DE. The bot’s
debugger will ignore the INT3 event and make sure the EIP
points to the next instruction correctly.

VIRUS BULLETIN www.virusbtn.com

14 MARCH 2014

Finally, the debuggee will try to inject malicious code into
explore.exe, and quit.

VEH EXCEPTION

The malicious code injected into explore.exe uses a special
trick to pick up and decrypt C&C information from the
internal lists.

It installs a VectoredExceptionHandler callback
function into the current VEH chain using
RtlAddVectoredExceptionHandler (see Figure 9).

Then it executes the HLT instruction and causes the
EXCEPTION_PRIV_INSTRUCTION exception, which
will be processed by the KiUserExceptionDispatcher API.
This API will call all callback functions in the VEH chain
to solve the exception – so the newly added VEH callback
function will be called to handle the exception.

Figure 9: A VectoredExceptionHandler callback function is
installed.

The VEH callback function saves the Context structure and
then hooks the KiUserExceptionDispatcher API. Finally,
it returns the EXCEPTION_CONTINUE_EXECUTION
status, which means ‘exception is dismissed, continue
execution at the point at which the exception occurred’. As
a result, the same exception will occur again.

As the KiUserExceptionDispatcher API has been hooked,
the hook function will increase the EIP pointing exception
address of HLT by 0x2E, then call the ZwContinue API
with the parameter Context including the updated EIP (see
Figure 10).

Figure 10: The ZWcontinue API is called with the
parameter Context.

Finally, the EIP will point to address 0xFE7EE8 (see Figure
11), and the newly added VEH callback function will be
removed.

Figure 11: VEH callback function is removed.

Why does the bot use this trick? First,
KiUserExceptionDispatcher is the most important API
that is always called by debuggers, and it’s impossible to
set a breakpoint in it as it will cause the system to become
unstable. Second, the bot will fetch and decrypt the next
C&C information in the hook function just before updating
the EIP.

C&C COMMUNICATION

Traffi c for downloading other malware
Figure 12 shows an example of the traffi c the bot receives
when it gets a command from the C&C server.

Figure 12: Command from the C&C server.

The send package is a clear string that is generated with
following pattern:

v=%d.%d&u=%s&c=%s&s=%s&w=%d.%d.%d&b=%d

A real example is as follows:

v=1.0&u=QA&c=JASON-82539F471&s={74B1FCB1-0FEC-E3A2-
23D4-B4FA74B1FCB1}&w=2.5.1&b=32

As we can see, ‘v’ is the bot version, which is hard-coded;
‘u’ is the username, which is grabbed from a call to the
GetUserNameA API; ‘c’ is the current computer name,
which is generated from a call to the GetComputerNameA
API; ‘s’ is the ClsID, which is generated using various
pieces of system information such as the Drive C Serial
Number; ‘w’ is the Windows version from a call to the

VIRUS BULLETIN www.virusbtn.com

15MARCH 2014

GetVersionEx API; fi nally, ‘b’ indicates whether the system
is running as 32 or 64 bits.

The received package is encrypted, as shown in Figure 13.

Figure 13: The received package is encrypted.

The encryption algorithm is RC4, and the key is the ClsID
included in the sending package parameter as ‘s’.

Figure 14 shows the received data after decryption.

Figure 14: Received package after decryption.

Just like Andromeda, Solarbot uses different command IDs
to identify different jobs. The current variant supports 14
commands, which range from 01 to 0x0E. The example
above shows command 0D, which instructs the bot to
download another piece of malware from a specifi ed link
and includes an MD5 tail for verifi cation. The package also
includes command 0C, which updates the default sleep time
period.

The bot uses the GET method to download the additional
malware, as shown in Figure 15.

Figure 15: The bot uses GET to download malware.

Following the command 0D routine, the bot will check the
downloaded fi le’s MZ and PE signatures, then calculate the
whole fi le’s MD5 and compare it with the MD5 tail included
in the received package. If everything matches, the bot

will drop the malware into the %AppData% folder, using a
random fi lename that follows the pattern ‘%08lX.exe’.

Traffi c idle
If there are no more commands, there will be much less
traffi c than in the previous example (see Figure 16):

Figure 16: No more commands.

The received package is shown in Figures 17 and 18.

Figure 17: Received package binary data.

Figure 18: Received package after decryption.

Command 06 instructs the bot to set the tag to ‘1’ (from the
default 0) to indicate the end of the previous DDoS attack
job, if one existed. The following command, 0C, instructs
the bot to update the default sleep time to 3,600ms.

Traffi c for DDoS
We know the bot has a DDoS attack feature, so let’s look at
some real attack traffi c (Figure 19):

Figure 19: Attack traffi c.

The command 04 signifi es the start of a UDP DDoS attack.
Figure 20 shows what the victim’s traffi c will look like.

According to the code, the bot opens 10,000 connections
with the victim IP at the same time. The DDoS will not
stop unless the bot receives a further command with ID

VIRUS BULLETIN www.virusbtn.com

16 MARCH 2014

06. In this case, command 06 was just behind the second
command 04 (see Figure 19) and was included in the same
package, so the attack time was not very long.

As far as we can tell, the victim IP does not belong to any
organization or business website, so this example may be a
test, and may not cause too much damage.

Command 02 instructs the bot to download malware
without MD5 verifi cation (see Figure 19). In this case, the
bot just downloads the binary from the specifi ed link then
drops it into the %AppData% folder and runs it.

Traffi c for dialler
Command ID 0A instructs the bot to open iexplore.exe or
another default Internet browser to open the URL. This may
currently just be for testing purposes.

Figure 21: Command 0A.

Full description for all commands
The following is a detailed description of all commands as
seen in our analysis:

01: SetEvent to activate the next C&C communication

02: Download malware without MD5 verifi cation, and run
it in the %AppData% folder

03: Create thread for DDoS attack under TCP protocol

04: Create thread for DDoS attack under UDP protocol

05: Create thread for DDoS attack under TCP protocol

06: Set tag to indicate that the current DDoS attack has
fi nished

07: Download malware without MD5 verifi cation, and
drop it in the %AppData% folder (without running it)

08: Create thread for DDoS attack under TCP protocol

09: Create thread as Proxy server

0A: Run iexplore.exe to open URL with fl ag NORMAL_
PRIORITY_CLASS

0B: Run iexplore.exe to open URL with fl ags NORMAL_
PRIORITY_CLASS and CREATE_NO_WINDOW

0C: Update the default sleep time

0D: Download malware with MD5 verifi cation, and run it
in the %AppData% folder

0E: Download malware with MD5 verifi cation, and drop it
in the %AppData% folder (without running it)

0F: Update HTTP request header host string.

JOINING THE TOR NETWORK
Tor is a service for enabling anonymity and making Internet
activity very diffi cult to track. Solarbot generates fi les such
as %AppData%\tor.bin and %AppData%\torrc and stores
them, but it does not appear to use them. We did not locate
any Tor traffi c in Solarbot sample replication, either. Our
best guess is that this feature is still under development.

CONCLUSION
This botnet is very powerful and may become more
aggressive in the future, with lots of evidence in the code
to suggest that it is still undergoing development. We will
continue to monitor its evolution.

REFERENCES
[1] http://blog.avast.com/2013/09/25/win3264napolar-

new-trojan-shines-on-the-cyber-crime-scene/.

[2] http://www.infosecurity-magazine.com/view/34788/
napolar-solarbot-trojans-share-dna/.

[3] http://www.malwaretech.com/2013/10/end-of-line-
for-solar-bot-win32napolar.html.

Figure 20: Victim’s traffi c.

http://blog.avast.com/2013/09/25/win3264napolar-new-trojan-shines-on-the-cyber-crime-scene/
http://www.infosecurity-magazine.com/view/34788/napolar-solarbot-trojans-share-dna/
http://www.malwaretech.com/2013/10/end-of-line-for-solar-bot-win32napolar.html

VIRUS BULLETIN www.virusbtn.com

17MARCH 2014

NOT EXPIR-ED YET
Raul Alvarez
Fortinet, Canada

Most advanced fi le infectors employ a strong encryption
algorithm with a mix of anti-debugging and anti-analysis
techniques, but once you overcome these challenges,
they are straightforward with their fi le infection routine
– searching for fi les to infect, computing the exact location
to put the malware body, confi guring the MZ/PE header,
and there you have it: a fi le infector.

That’s what Expiro looks like on the outside: a simple fi le
infector with a straightforward encryption mechanism. But
if we delve into its code, we will see something that sets it
apart from regular fi le infectors.

This article will look into Expiro’s simple, but meticulous
sequence of steps that leads to the infection of a unique
group of fi les before infecting the rest of the executable fi les
in the system.

SIMPLE POLYMORPHIC ENGINE
Expiro starts by saving all register values to the stack and
initializing the variable that contains the decryption key for
the polymorphic engine.

For the fi rst pass, the malware decrypts (0x32A00) 207,360
bytes using a key starting halfway through the .vmp0 section.
It decrypts each byte from the middle of the .vmp0 section
working backwards to the beginning of the section, where the
least signifi cant byte of the DWORD decryption key is used
to XOR every byte in the given block of encrypted code.

After the fi rst pass, the malware checks whether it has
reached the required number of decryption passes. If it has
not, it will execute the same decryption algorithm again.

On the second decryption pass, after decrypting 207,360
bytes, Expiro decrypts the same group of bytes back to
its original form using the same algorithm. It makes the
same decryption pass over and over again six times, always
producing the same original form.

For every decryption pass, the malware increments a
counter. The same counter is used within the decryption
algorithm, combining it with the decryption key to produce
a different result. But after six passes, the bytes are still in
their original encrypted form. The changes can only be seen
after the seventh decryption pass.

After performing the seventh decryption pass, the (0x32A00)
207,360 bytes are properly decrypted. A block of (0x24880)
149,632 bytes from the newly decrypted code is copied
to the free space of the .vmp0 section. This is followed by

copying another (0xA1C8) 41,416 decrypted bytes to the
free space of the .vmp0 section, beyond the fi rst block.

The decrypted code distributed in the free space of the
.vmp0 section is not yet functional. Some of its binaries
need further tweaking. These blocks of code need patching.

Expiro uses a table that contains keys with corresponding
sizes. Each key is processed to produce patched code,
with its size determining the number of times the patched
code should be applied. The algorithm that produces the
patched code also determines where in the decrypted code
the patched code should be applied. Once a patch has been
applied the correct number of times, the next key from
the table is processed to produce patched code, and again
applied to the decrypted code where the last patch was
applied. The malware continues patching the decrypted
code until all the keys from the table have been used.

HASHING INITIAL API NAMES
A common method of getting the imagebase address of
kernel32.dll is by parsing the PEB (Process Environment
Block). For fi le infectors, another method is to parse the
import table of the host fi le.

Parsing the import table to locate kernel32 can be done in
many ways. Expiro gets the DLL names and checks the
seventh and third characters to determine if they match ‘3’
and ‘r’ from ‘kernel32.dll’, respectively. If they match, the
rest of the characters in ‘kernel32’ are also checked.

Then, Expiro gets the imagebase of kernel32.dll by zeroing
out the least signifi cant DWORD of the address of the fi rst
API found.

Afterwards, Expiro resolves the addresses of some of its
APIs using their hash values.

Initially, a routine looks for the export table of
kernel32.dll and locates the list of exported API names. The
malware computes the hash value of each API name using its
own hashing algorithm. Each hash value is compared against
the hash value of ‘GetCurrentThreadId’ until they match.
The address of the GetCurrentThreadId API is resolved by
using the index pointing to the matched API name.

A similar routine resolves the following APIs:
CreateThread, EnterCriticalSection, GetProcAddress,
GetTickCount, InitializeCriticalSection,
LeaveCriticalSection and VirtualProtect.

Commonly, the resolved API addresses are stored in a table
with consecutive memory locations, but not in this case.

Once all the API addresses have been resolved, it is easy to
determine the next actions of the malware by looking at the
list of addresses. For Expiro, each resolved API address is

MALWARE ANALYSIS 4

VIRUS BULLETIN www.virusbtn.com

18 MARCH 2014

scattered in a different location in its virtual space, making
it a challenge for analysts wanting to look at them all at
once. Figure 1 shows the resolved APIs stored in different
memory locations.

Once the initial APIs have been resolved, Expiro spawns a
new thread.

Figure 1: The resolved APIs which are stored in different
memory locations.

ON-DEMAND DECRYPTION ALGORITHM
Upon execution of the new thread, Expiro executes another
decryption algorithm to generate the API names that the
malware needs.

The API names are grouped by libraries with the exception
of the LoadLibraryA and GetModuleHandleA APIs. Each
group of APIs passes through a routine that contains the
decryption algorithm and address resolver.

The on-demand decryption algorithm computes each byte
of data with a byte taken from the key string
‘V@sna8TbCzTSrs:s[fR@6’. An incrementing pointer
determines which byte will be used to decrypt the byte from
the given memory location. When the last character from
the key string is reached, the pointer will reset to point back
to the fi rst character.

There are separate routines for each group of APIs per
library (DLL). After decrypting the API names, each routine
checks if the module/library already exists by using the
GetModuleHandleA API. If it does not exist, it will load the
module by calling the LoadLibraryA API. Then, the routine
will use the GetProcAddress API to determine the actual
API addresses.

Every string or name used by Expiro passes through the
on-demand decryption algorithm. All the API names, library
names, mutex names, and all other strings use the same
decryption. These names and strings are only decrypted
when Expiro needs them (see Figure 2).

UNDER WOW64
After getting the addresses of all the required APIs, Expiro
checks if it is running under WOW64 (32-bit Windows on
64-bit Windows).

Initially, it checks if the operating system supports WOW64
by checking the OS version using the GetVersionExA API.
This is followed by getting its own PID (process id) using
the GetCurrentProcessId API, and getting the handle by
opening it using the OpenProcess API. Finally, it uses the
IsWow64Process API to determine if it is running under
WOW64.

This is also the part where Expiro determines the kind of
infection needed, since the malware is capable of infecting
both 32- and 64-bit executables.

If the malware is not running under WOW64, it can function
as a 32-bit piece of malware on 32-bit operating systems, or
as a 64-bit piece of malware on 64-bit operating systems.

CHECKING SECURITY ACCESS LEVEL
After determining whether it is running under WOW64,
Expiro checks its security access level using the following
routines:

The malware gets the username of the current thread using
the GetUserNameA API, and compares it to the newly
decrypted strings ‘SERVICE’ and ‘SYSTEM’. Expiro skips
this routine if the username contains the strings ‘SERVICE’
or ‘SYSTEM’ – it assumes that it has a higher security level
if the username contains these strings.

If it doesn’t have the above credentials, it gets the computer
name using a simple call to the GetComputerNameA API,
and compares it against the username. If the username of
the current thread is also the computer name, the malware
will again try to skip the current routine.

Figure 2: Part of the on-demand decryption algorithm with
sample encrypted and decrypted strings.

VIRUS BULLETIN www.virusbtn.com

19MARCH 2014

Otherwise, it proceeds to acquire the environment block of
the current process using the GetEnvironmentStrings API.
Expiro searches for the strings ‘systemprofi le’ and ‘ervice’
within the environment block. Since the malware checks
byte by byte, ‘ervice’ will yield to true if it fi nds either
‘service’ or ‘Service’. Normally, services that run in the
system will contain these strings.

If the malware has a higher security access level on the
system, it will skip the routine that escalates its privilege
level.

HANDLING MUTEX
After determining the malware’s security access level,
Expiro decrypts more strings (‘kkq-vx’ and ‘%s_mtx%u’)
and checks if a mutex named ‘kkq-vx-mtx28’ exists, using
the OpenMutexA API. If the mutex exists, it will terminate
it using a call to the CloseHandle API.

The malware will loop back on the start of this routine to
check for the existence of other mutexes by changing the
value 28 in ‘kkq-vx-mtx28’. (The value may be different
in some infected samples.) The number increments by one
each time, until it reaches 99. In simpler terms, Expiro
checks for the existence of mutexes ‘kkq-vx-mtx28’ up
to ‘kkq-vx-mtx99’. If any of these exist, they will be
terminated.

After terminating all of these mutexes, a new routine is
started. This time, a mutex named ‘kkq-vx-mtx1’ is created
using the CreateMutexA API. This is followed by creating
a second mutex named ‘kkq-vx-mtx28’. Finally, the
WaitForSingleObject API is called, with parameter WAIT_
FOREVER for the mutex ‘kkq-vx-mtx28’ (see Figure 3).

Afterwards, Expiro decrypts another string, ‘gazavat-svc’,
and checks if a mutex named ‘gazavat-svc’ exists using
another call to the OpenMutexA API. If it exists, it will also
be terminated.

The mutex ‘gazavat-svc’ will be used later on, after the
infection routine.

ESCALATING ACCESS
After handling the mutexes, and if the security access
level of the malware is not high enough, Expiro will try to
escalate its privileges using the following routine:

Initially, the malware gets the PID (process ID) using
the GetCurrentProcessId API, and gets the handle to
the process using the OpenProcess API. Afterwards, it
gets the access token of the process, and its data, using
the OpenProcessToken and GetTokenInformation APIs,
respectively.

Expiro uses the token in conjunction with the security
descriptor. After initializing the security descriptor using
the InitializeSecurityDescriptor API, the malware sets
the discretionary access control list (DACL) using the
SetSecurityDescriptorDacl API, followed by setting the
owner information of the security descriptor using the
SetSecurityDescriptorOwner API. The malware evaluates
this information before it performs the escalation.

For the actual escalation, the malware acquires the locally
unique identifi er (LUID) of the SE_TAKE_OWNERSHIP_
NAME privilege using the LookupPrivilegeValueA API,
then sets the privilege using the AdjustTokenPrivileges API.

At this point, Expiro should have the necessary security
privileges to take ownership of any process or fi le in the
system.

PREPARING FOR INFECTION
After a considerable number of tasks and routines have
been performed, Expiro is ready to choose which fi le to
infect. But the preparation is not yet over: instead of just
enumerating the executable fi les by performing simple calls
to the FindFirstFileA and FindNextFileA APIs with ‘*.EXE’
or ‘*.SCR’ as parameters, Expiro wants a different set of
executable fi les: services.

Let’s look into the preparation.

First, Expiro gets the handle for the service control
manager database using a call to
the OpenSCManagerA API. This
is followed by enumerating the
services with name and status using
the EnumServicesStatusA API with
parameters:

dwServiceType = (0x30) SERVICE_
WIN32_OWN_PROCESS and
SERVICE_WIN32_SHARE_
PROCESS

dwServiceState = (0x02) SERVICE_
INACTIVEFigure 3: Mutexes for infected service and infected fi le.

VIRUS BULLETIN www.virusbtn.com

20 MARCH 2014

Basically, Expiro is searching for inactive or stopped
services in the system.

Expiro opens the service from the enumerated list using
the OpenServiceA API, and retrieves the confi guration
parameters using the QueryServiceConfi gA API. The
service’s confi guration contains properties including
service name, start-up type, service status, and path to the
executable fi le of a given service.

Expiro is interested in the physical location of the
executable fi le of a given service. It converts the whole
path name to lower case, then checks if it contains ‘.exe’
– making sure that it really is an executable fi le.

If the path name passes a series of checks, the malware
converts it to a Unicode version of the string for use in a call
to the SfcIsFileProtected API. Expiro wants to determine if
the specifi ed fi le is protected. If it is protected, the malware
will remove the protection.

After removing the fi le’s protection, the malware checks
if the path name contains the strings ‘rsvp.exe’ (Microsoft
RSVP), or ‘chrome.exe’ (Google Chrome) – if either of these
strings is found, the malware will skip the infection routine.

INFECTION ROUTINE
After the necessary checks, Expiro will perform the
infection routine for the selected service’s executable fi le.

First, it opens the executable fi le using the CreateFileA API
with GENERIC_READ and GENERIC_WRITE access. It
acquires the fi le size using the GetFileSize API, then copies
the fi le to the newly allocated memory using the ReadFile
API, effectively creating an exact image of the service’s
executable fi le.

Once the image is loaded into memory, the malware parses
the MZ/PE header to point to the import table and locate
the DLL names. Expiro tries to locate kernel32.dll using the
following routine:

After getting the DLL name from the import table list, the
names will be converted to all caps. Then, the fi rst fi lter is to
check for the eighth byte (char ‘2’) – most DLL names fail
this check. The second fi lter is to check for the seventh byte
(char ‘3’) – ADVAPI32.DLL can still pass this one. The
next fi lters are ‘L’, ‘E’, ‘K’, and ‘R’. Finally, it saves the
location of ‘KERNEL32.DLL’ for later use.

Once kernel32.dll is secured, the PE header of the image is
expanded to make room for the new section header. After a
few computations, Expiro modifi es the new section header
with the following sequence:

• The new section’s virtual size gets the value (0x7d000)
512,000, which corresponds to the increase in size of
the infected fi le.

• The starting relative virtual address (RVA) of the new
section is also set, which varies between different
infected fi les. Generally, the RVA of the new section is
right after the end of the previous section.

• The NumberOfRelocations, NumberOfLineNumbers
and PointerToLineNumbers fi elds are zeroed out.

• The malware uses ‘.vmp0’ as the name of the new
section, which we already know.

• The PointerToRelocations fi eld is zeroed out.

• The value (0x7d000) 512,000 is placed in the
SizeOfRawData fi eld, similar to the VirtualSize fi eld.

• The PointerToRawData or the fi le offset of the start of
the new section is set with a value that depends on the
size of the host fi le.

• The section’s characteristics are set to (0xE0000000)
Executable | Readable | Writable.

After setting up the new section header, the malware sets the
SizeOfImage to 0x81000 (which varies between different
infected samples). This is followed by incrementing the
number of sections by one, to accommodate the newly
added section.

Once the MZ/PE header has been modifi ed and the new
section header has been added, Expiro generates random
values and patches a block of code containing a copy of the
malware body.

This is followed by copying a portion of the image (from
the entry point) to the patched block of code in memory.

Then, it copies the (0x7C6CD) 509,645 bytes of code
(containing the patched code and the portion of the image)
to the start of the new .vmp0 section.

Since the malware code at the new .vmp0 section is not
yet encrypted (just recently patched), Expiro runs a simple
encryption routine to encrypt the content of the .vmp0
section of the image, byte by byte. The encryption skips the
copied portion from the image’s entry point.

APPLYING THE CHANGES

After the modifi cation of the service’s executable image in
memory, it will release the handle for the physical fi le using
the CloseHandle API.

Afterwards, Expiro creates a ‘.vir’ fi le, e.g.
‘{service_fi lename}.vir’, using the CreateFileA API, which
is followed by copying the infected service’s image from
memory to the .vir fi le, using the WriteFile API.

Then, the malware frees up the image using the LocalFree
API and closes the handle to the .vir fi le. Expiro

VIRUS BULLETIN www.virusbtn.com

21MARCH 2014

copies the .vir fi le to its .exe counterpart (e.g. it copies
‘XYXYXservice.vir’ to ‘XYXYXservice.exe’), using
the CopyFileA API. After a successful copy, the malware
deletes the .vir fi le using the DeleteFileA API.

Expiro checks if the service name of the infected fi le is
found in the string ‘|wscsvc|WinDefend|MsMpSvc|NisSr
v|’, which contains the names of the services for Security
Center, Windows Defender, Microsoft Antimalware Service
and Microsoft Network Inspection, respectively.

If the service name is found, the malware disables the
service permanently by calling the ChangeServiceConfi gA
API with the (dwStartType) SERVICE_DISABLED
parameter. Then it exits the current routine.

If the service name of the newly infected fi le is not in the
list, it will set the service’s confi guration to the following
parameters: (dwServiceType) SERVICE_INTERACTIVE_
PROCESS | SERVICE_WIN32_SHARE_PROCESS,
and (dwStartType) SERVICE_AUTO_START, using the
ChangeServiceConfi gA API. Earlier, in selecting which
services to infect, Expiro searched for inactive and stopped
services. Once these services are infected, the malware
changes their start type to start automatically when the
operating system restarts. This is another technique for
making sure the malware runs during the boot process.

Expiro then runs the infected service simply by calling the
StartServiceA API. One of the markers that indicates that
a service is infected is the presence of the mutex named
‘gazavat-svc’ (see Figure 3).

Afterwards, the malware will proceed with the infection of
the rest of the inactive services, while the rest of Expiro’s
malicious activities will be executed within the service’s
process.

WRAPPING UP
Expiro relies heavily on the use of its on-demand decryption
algorithm. Although not too complex, it serves its purpose
well – not revealing everything all at once.

Expiro is not a new fi le infector, but it resurfaces from
time to time, demonstrating more skills on each new
appearance – infecting a service that gives a unique
vantage point on traditional malicious activities; running
the malware at computer restart without creating a start-up
registry; using different mutexes for different types of
infected process; escalating privileges; and executing
the infected fi les without calling the CreateProcess or
WinExec APIs.

Expiro has other malicious activities which are beyond the
scope of this article. Simple or not, this is not the last time
that we will hear from this malware.

BYOT: BRING YOUR OWN
TARGET
Gabor Szappanos
Sophos, Hungary

It is nothing new for a piece of malware to exploit a
vulnerability found in an application – in fact, that is
the routine procedure for infecting a computer. This
approach does, however, have a weak point: the application
in question must be installed on the target computer;
furthermore, it must be a vulnerable version of it.

One malware sample we analysed recently breaks
the traditional mould in two ways: the purpose of the
exploitation is not intrusion, but to minimize the detectable
system footprint, and it does not rely on preinstalled
applications. Apart from that, so as not to break with
tradition completely, the system infection is achieved via a
common Word exploitation technique.

Following successful infection, only a handful of clean
applications are left on the system, along with the encrypted
payload fi le and a single registry key, which is a crucial
element of the infection scheme.

The issue of whether or not the appropriate version of the
vulnerable application is installed on the target system
is eliminated simply: the trojan drops the vulnerable
application onto the system itself, and uses it for its own
purposes. In fact, the author of this malware does not take
anything for granted: all the necessary components for the
malware’s execution are bundled and dropped onto the
system, including regular Windows system binaries.

INSTALLATION PROCESS

The installation of the malware is a little complicated.
It starts with a document exploit, runs through multiple
intermediate dropper stages, and concludes in the fi nal
infected state with a handful of clean components and
the encrypted payload on the system. The process is
summarized in Figure 1.

1. Exploited carrier document

File size: 830,336 bytes
SHA1: 0ddae43498e1b03a274f8ca8b32cd48a1a440e7d
MD5: 6282568857a120a93de3af57e21952e1

The starting point of the infection chain is an encrypted
Excel workbook with default hard-coded null password,
the meaning of which was explained in [1]. The same
vulnerability as described in [1] (CVE-2012-0158) was used
in this case as well.

TECHNICAL FEATURE

VIRUS BULLETIN www.virusbtn.com

22 MARCH 2014

Figure 1: Installation fl ow of Simbot.

Figure 2: Exploit document structure.

The carrier document is a very unique
compound, as illustrated in Figure 2.
Normally, in document exploitations
we see either Excel workbooks or Word
RTF documents that contain the (usually
multi-staged) shellcode with the encrypted
payload executable appended. In this case, the
fi rst-stage shellcode is within an encrypted
Excel workbook, the second-stage shellcode
is in an appended Word RTF fragment, and
then comes the encrypted executable. It gives
the impression of a project that has been
copy-pasted from different sources with
minimal integration effort.

The encrypted workbook contains the
fi rst-stage shellcode, which enumerates
open fi le handles, checking for the fi le
size. The fi le size must be exactly 830,336
bytes – the size of the carrier workbook.
Then it reads in, decodes and executes the
content from fi le offset 0x1de00, at which
the hexadecimal text representation of the
second-stage shellcode is located.

The second-stage shellcode once again
checks for the correct fi le size for the carrier
workbook and searches for the start marker
for the embedded .exe (TSRQPONMP). If
the marker is found, the DWORD following
it is used as the length of the embedded fi le,
followed by the whole payload content,
which will be encrypted with a single-byte
XOR encoding, the key being decremented
by one after each byte.

After the second-stage code, further shellcode
fragments are found, which are not used
and are corrupted when decrypting the
shellcode (running over the real length).
This is an indication that the carrier was
created by reusing older components and
overwriting the (longer) shellcode with the
new code, not caring about what happens
to the trailing remainder of the old code.
Again, this underlines the minimal integration
effort made in the creation of the exploited
workbook.

2. First-stage dropper
File size: 654,675 bytes
SHA1: 16fbb14ef6c7ae9c401859aedf9
 9cfd762f00794
MD5: dfed4bdf77892f2c62b8c68782c
 16132

VIRUS BULLETIN www.virusbtn.com

23MARCH 2014

This component is a very simple dropper. It reads
the next stage executable from offset 0x1800 in
0x400 byte chunks, saves it to a temporary fi le in
the %TEMP% folder, then executes the dropped
fi le.

3. Intermediate dropper

File size: 647,168 bytes
SHA1: 79ef9296a2a0913e60a925da2f9d061ae
 3a364c7
MD5: 91d26990f22a4584e631395f5ae234c3

This dropper searches for a mutex named
‘Sample06’ to determine whether another instance
of the dropper is already running – if it fi nds the
mutex, it exits.

It checks for the presence of a debugger by looking
for magic bytes in the allocated heap:

• 0ABABABABh (used by Microsoft’s debug-
built HeapAlloc() implementation to mark ‘no
man’s land’ guard bytes after allocated heap memory)

• 0BAADF00Dh (used by Microsoft’s debug-built
HeapAlloc() implementation to mark uninitialized
allocated heap memory)

• 0FEEEFEEEh (used by Microsoft’s debug-built
HeapFree() implementation to mark freed heap
memory).

If a debugger is found, only an empty window with the title
‘NewSetup’ is displayed.

Otherwise, in an untainted environment, it decodes
an offset-independent code (using a single-byte XOR
algorithm, with key 0x97), and executes it.

This component creates the HKLM\SOFTWARE\
Microsoft\Windows\Help -> Confi g registry key and saves
the encrypted confi guration data there (see Figure 3).

If, for any reason, saving the confi guration data to the registry
fails, then as a backup method, the same data is dumped into
the fi le C:\Documents and Settings\All Users\NetWork\t1.dat.

This confi guration data is used by the fi nal stage payload,
with the C&C server address extracted from the key value
of the fi le.

Finally, it decodes and executes the next stage dropper.

4. Installer
File size: 466,872 bytes
SHA1: 5a22efba829c259f1cb17f9ffe529c398397e25c
MD5: 138f32de8f53fe651a7b6967c63cf7ac

This component is actually a Windows DLL with obfuscated
entry code and a lot of redirections.

It drops the following fi les:

C:\Documents and Settings\All Users\NetWork\Confi g.dat
(encrypted main payload)

C:\Documents and Settings\All Users\NetWork\
DDVCtrlLib.dll (clean DLL, needed for science.exe to
execute)

C:\Documents and Settings\All Users\NetWork\DDVEC.
dll (clean DLL, needed for science.exe to execute)

C:\Documents and Settings\All Users\NetWork\science.
exe (clean executable).

In order to survive a reboot, it registers the dropped
executable as a service, passing an enormously long
command line with three command-line parameters:

HKLM\SYSTEM\CurrentControlSet\Services\NetWork
Service ImagePath:

C:\Documents and Settings\All Users\NetWork\science.
exe LLLLYIIII7QZAkA0D2A00A0kA0D2A12B10B1ABjAX8A1uIN2
uNkXlMQJLePvbUPePJgW59t7kwOKDSPJgg5hh2ZezxFVXJg75xlr
ebuXbtKyWqUXp5FKfZvYPKwpEzTm7xosdLUO7w5zXLnN0dVNKO72
eKLYKJs3ROEucKypdnkgEVP5PgpUPLKRVtLLKT6ELLKw6WxlKQnw
PLKp6u6vYPOr8RUzRnkyHlKRs7LNkpTvzt8w

...{7760 further ASCII characters skipped}...

pW2kOhRD2A00A0kA0D2A12B10B1ABjAX8A1uIN2unkZLk1jLGpdB
Wpwpo73uKTWkwOIdU0iWW5kX0z5zjfTxO7rexlsu2uM2TKxGbejP
5Fn6HVyPXG1Ul4M7XoRtZ5yW2ezXNNxP4VlkO73uilYKhSSR856S
HIsTnkgE6PGpUPUPLKPvtLNkafWllKr 100 PC@

The fi rst parameter is intended to cause a buffer overfl ow
in the clean executable and, by invoking a shellcode,
run the loader for Confi g.dat. It should be noted that, of
the three parameters passed in the command line, the
second bears no relevance, but the last one is of crucial
importance.

Figure 3: Confi guration data stored in the registry.

VIRUS BULLETIN www.virusbtn.com

24 MARCH 2014

Not wanting to wait for the next reboot, CreateProcess
is called with the same parameter to execute the payload
immediately (the fi nal couple of bytes differ; also the
second command-line argument, 100, is replaced with 300).

LOADING PROCESS
When all of the required pieces have been installed on the
system, the malware deletes the temporary components, and
the infected computer is ready for (ab)use. During system
start-up, the dropped science.exe fi le is loaded as a service,
with a malicious command line.

Science.exe

File size: 112,064 bytes
SHA1: 6261e967baf09e608e5d5b156a3701339c73fb95
MD5: 0070a38553997de066b2aba8c0574d6f

This is a legitimate, digitally signed clean application
(certifi cate issued to Jinhua 9158 Network Science and
Technology Co. Ltd), the original name of which is
Download.exe. Looking up other fi les signed by the same
certifi cate, we found a handful of other application installers
that dropped similar versions of Download.exe (see
Appendix). All of them proved to be vulnerable to the same
abuse, but due to reorganization of the code and memory
layout, modifi cations would be needed in order for them to
be used in this way.

As shown in Figure 4, the science.exe fi le is intact, not
modifi ed by the malware author.

Figure 4: Digital signature checked OK.

The program is executed either via the registry key, or using
the CreateProcess API. In both cases the extremely long
command line is passed to it. Either way, the long command
line causes a stack overfl ow, and leads to the execution
of a piece of shellcode. Although not obvious at fi rst, the
shellcode is actually hidden within the command line
argument itself.

Crash dumps show that an access violation occurs at virtual
offset 404350h in science.exe, which is an interesting
coincidence (actually, a lot more than a coincidence), given
that the last command-line argument, PC@, is exactly this
value in hexadecimal representation.

Looking at the executable in a disassembler, one can
observe that at this virtual address there is a POP ECX,
RET sequence:

.text:00404350 59 pop ecx

.text:00404351 C3 retn

A bit of debugging reveals that, upon reaching this point,
the stack contains the command-line parameter address and
a zero; the code above pops the zero and transfers execution
to the fi rst byte of the command line.

The mechanism of this exploitation is exactly the reason
why the MSDN library documentation contains warnings
such as the following for some of the function references:

‘Using vsprintf, there is no way to limit the number
of characters written, which means that code using
this function is susceptible to buffer overruns. Use
_vsnprintf instead, or call _vscprintf to determine how
large a buffer is needed.’

The overfl ow occurs when the command-line arguments
are written out to the log fi le (Download.log) and vsprintf is
used on this buffer without any precaution. This will cause
an overfl ow if the command line is longer than 0x2000
bytes.

char *write_log(int a1, char *Format, ...)

{

 va_list va; // [sp+200Ch] [bp+Ch]@1

 char *result; // eax@1

 char Dest; // [sp+0h] [bp-2000h]@2

 va_start(va, Format);

 result = Format;

 if (Format)

 {

 result = (char *)vsprintf(&Dest, Format, va);

 if ((unsigned int)result < 0x2000)

 result = (char *)CLog__ADD_Log(g_Log,
&Dest, result, a1);

 }

 return result;

}

VIRUS BULLETIN www.virusbtn.com

25MARCH 2014

The function calls vsprintf to print the argument list into
a string buffer allocated with a size of 0x2000 bytes; the
format string is the command-line argument, which in our
case turns out to be longer than the allocated space for the
buffer. As a result, vsprintf will overwrite the return address
on the top of the stack.

The command-line argument is fi lled with junk characters
just to make sure that the PC@ at the end will end up at the
location at which the return address is stored.

This way, the return at the end of the function:

add esp, 2000h

retn

will position the stack pointer to the 0x404350 DWORD on
the overwritten stack.

To illustrate this, the top of the stack on the entry of the
write_log() function looks like this:

return address

Param 1: log entry ID

Param 2: address of command line

Then, after the stack overrun on the exit of write_log(), the
stack will contain:

0x404350

Param 1: log entry ID

Param 2: address of command line

When the execution returns to offset 0x404350, the fi rst
value is popped from the stack, leaving only the entry ID
and the address of the command line:

Param 1: log entry ID

Param 2: address of command line

At offset 0x404350 in the program, a function epilogue is
found:

.text:00404350 pop ecx

.text:00404351 retn

This will pop the log entry ID from the top of the stack,
and return to the next address found on the stack, which
is the address of the command line. Consequently, the
execution starts at the fi rst byte of the command-line
argument.

I should mention that this is a very simple stack overfl ow
exploitation – a textbook example that was commonly
being practised over 10 years ago. Nowadays, secure
coding methods make applications a lot harder to break.
Nevertheless, the malware writers only needed to fi nd one
vulnerable application, and use it for their purpose.

Shellcode from science.exe

At fi rst glance, the command-line parameter looks like a
random string:

LLLLYIIII7QZAkA0D2A00A0kA0D2A12B10B1ABjAX8A1uIN2uNkXl
MQJLePvbUPePJgW59t7kwOKDSPJgg5hh2ZezxFVXJg75xlrebuXbt
KyWqUXp5FKfZvYPKwpEzTm7xosdLUO7w5zXLnN0dVNKO72eKLYKJs
3ROEucKypdnkgEVP5PgpUPLKRVtLLKT6ELLKw6WxlKQnwPLK...

But in fact it is a valid 32-bit Intel code, starting with a short
decoder, which is followed by the decrypted shellcode. It is
very likely that it was created by the unicode_upper encoder
of the Metasploit toolkit. This encoder generates a fi nal
form where each byte of both the decoder and the decoded
content is an alphanumeric character – very suitable if it
has to be passed as a command line. However, an important
part of the shellcode usually cannot be represented in
ASCII bytes. This is the prologue, which is responsible for
determining the exact memory position. Without knowing
this, it is not possible to decode the main shellcode body.

Normally, the Metasploit decoders begin with a ‘get EIP’
fragment, similar to this:

fabs

fnstenv byte ptr [esi-0Ch]

pop ebp

First, a random fl oating point instruction is executed, and
then the fnstenv instruction is used to get the fl oating point
environment structure. Among many properties, at offset
0x0C this structure contains the EIP of the last executed
fl oating point instruction (fabs, in this case). The structure
is aligned 0x0C bytes into the stack, thus the top of the
stack will just contain the EIP value, which is later popped
into the EBP register. This is a commonly used, portable
solution, but has one major disadvantage: the byte code
of the fl oating point instructions contains non-printable
characters, thus can’t be used in a string command-line
parameter.

The shellcode used in the Simbot infection scheme
is limited by the fact that it also has to serve as a
command-line parameter, and can thus only contain
printable characters. This means that it can’t contain the
usual code to fi nd its own memory offset, but it can make
use of the fact that it knows the exact stack layout during
the exploitation – thanks to the very controlled environment
(i.e. only the specifi c science.exe, dropped during the
installation, has to be exploited).

Simbot’s shellcode uses the following ‘get EIP’ snippet:

dec esp

dec esp

dec esp

dec esp

pop ecx

VIRUS BULLETIN www.virusbtn.com

26 MARCH 2014

The advantage is obvious: all of these instructions are
represented by printable characters. But the exploitation
must be very strict; this prologue requires the stack pointer
to be controlled to an exact value. In the previous section
we saw that this is the case – the stack pointer is well
known by the time the execution reaches this point.

The code was reached via a RET instruction from
science.exe, therefore decreasing the stack pointer by four
will position it back to the memory address of the command

Figure 5: Unicode_upper decoder.

Figure 6: A more or less traditional piece of shellcode is found.

line, which coincides with the start of the shellcode, the two
being the same.

The fi rst part of the shellcode is the unicode_upper decoder,
which performs a single-byte XOR decryption, the key
value being modifi ed in each loop.

After the decoding, a more or less traditional piece of
shellcode is found.

The API resolver code (a combination of shift left by three

VIRUS BULLETIN www.virusbtn.com

27MARCH 2014

bytes, and a bytewise XOR of the last byte of the checksum
with the actual character of the name) is unusual, and has
not yet been seen in other samples.

The shellcode reads the content of Confi g.dat (the main
payload) from the folder from which the exploited
science.exe was executed, and decrypts it.

The decryption has two layers: fi rst is a single-byte XOR,
the key being the fi rst byte of the fi le; the second is a
running-key single-byte XOR, which starts with 1, and is
incremented in each loop.

Finally, it executes the decrypted content.

Memory loader

The decrypted Confi g.dat contains the embedded main
payload, which starts at offset 0xc13, and a loader code.

The loader code, executed by the shellcode, does the
necessary housekeeping to transfer this embedded data
(which is actually a Windows PE executable) to an
executable memory image: it fi xes the section permissions,
resolves the imports, and performs the necessary
relocations. This way, the payload can be decoded and
executed without hitting the hard disk (and without giving
on-access anti-virus products the chance to check and
detect it).

MAIN PAYLOAD
The fi nal payload is a Windows DLL with an obfuscated
entry code, using a couple of redirections before reaching
the DllMain function, which itself is also obfuscated to
make tracing more complicated.

It contains yet another encrypted PE loader code and
a large, 0x18A00-byte-long encrypted embedded DLL
which is packed using the zlib algorithm and dropped as
instsrv.dat in the %TEMP% directory. This loader is very
similar to the loader of Confi g.dat. It serves as a back-up
loader (in case the execution runs into access restrictions),
which checks the OS version: if it is 5.2 (Windows 8),
then it injects the loader code into the explorer.exe
process; if it is anything else, it injects the loader code
into dwm.exe.

The injected code uses a UAC bypassing technique that is
very similar to [2]. Using this, it executes the instsrv.dat fi le
dropped in the %TEMP% directory.

Instsrv.dat is a PE executable that fi rst adds
%ALLUSERSPROFILE%\NetWork\science.exe to the DEP
exclusion list by invoking the NoExecuteAddFileOptOutList
export of the sysdm.cpl applet, passing the path name as a
parameter. After that, it terminates the science.exe process,
deletes the NetworkService service, and registers science.exe

with the exploiting buffer as a service again. Finally, it
restarts the service.

Now back to the fi nal payload.

It connects to 59.188.23.121 (which is a dial-up IP located
in Hong Kong) on ports 8001 and 8433.

It loads confi guration data from the registry key HKLM\
SOFTWARE\Microsoft\Windows\Help -> Confi g
(two-byte XOR with key 0x004f). Alternatively, if the
key for some reason cannot be created in the dropping
process, it reads from the fi le %ALLUSERSPROFILE%\
NetWork\t1.dat. The decoded content has the value
585e9b41ebebe0126cfa878bdea036bc.

This is the encoded form of the C&C IP address.
Interestingly, the trojan does not decrypt it, rather it is later
brute-forced to match the IP – all possible IP address strings
are generated and tested. The IP addresses (two of them,
both the same) are decoded character-by-character.

Given the complexity of the installation and the loading
process, the backdoor component has disappointingly
little functionality: once the connection is established, it
sends and receives data. The data is BASE64-encoded and
zlib compressed (version 1.2.3 code is compiled into the
code), it is decompressed in memory, and executed. An
uncompressed PE executable in the network traffi c would
be too obvious a sign of suspicious activity, hence the
compression.

So the result of all the efforts described here is ‘only’ to
open a channel to the infected computer and facilitate the
execution of arbitrary code.

At the time of writing this article, we are not aware of the
components that are pushed to the infected computer, but it
would be safe to say that the usual data-stealing and remote
access components are the most likely candidates.

CONCLUSION
It is common in APT-related attack scenarios for an
application vulnerability (usually in one of the MS Offi ce
suite) to be used to breach a system and infect it. The
unique feature in Simbot is that an additional exploitation
is utilized, this time to hide the presence of the malware
on the infected system, and persist after the system
restarts.

This malware does not rely on a preinstalled application
for infection, rather it carries and drops the target itself – a
very convenient approach to ensure that the system contains
a vulnerable version of the application in question. Even if
the vulnerable application is fi xed by the vendor, and the fi x
is distributed to all users, this will not affect the malware:

VIRUS BULLETIN www.virusbtn.com

28 MARCH 2014

as long as the malware authors have a single vulnerable
version, no matter how old, they can bundle it with the
installation package, and drop it onto the system. As
mentioned previously, this malware does not take anything
for granted, carrying all the necessary components (both
malicious and clean) itself.

Ironically, the original purpose of science.exe, as its
developer intended, was to download executable updates.
Indeed, the Simbot backdoor makes use of this downloader
application to download executable updates, but not by
using the natural functionality of the downloader, rather
by exploiting its logging function to load and execute a
binary payload that, after some twists and turns, does the
downloading itself.

After a successful infection we will fi nd the following on
the system:

• A clean signed application registered for start-up

• Two clean DLL fi les needed for the execution of the
clean executable

• An encrypted payload fi le

• A registry subkey that contains an encrypted shellcode.

This is not very much on which to base a reliable detection.
And this is a functioning backdoor infection – I can’t think
of a case with a less detectable fi ngerprint on the infected
system.

REFERENCES

[1] Szappanos, G. Needle in a haystack. Virus Bulletin,
February 2014, p.19. http://www.virusbtn.com/pdf/
magazine/2014/201402.pdf.

[2] Windows 7 UAC whitelist: Proof-of-concept source
code. http://www.pretentiousname.com/misc/W7E_
Source/Win7Elevate_Inject.cpp.html.

APPENDIX: FILES WITH THE SAME
CERTIFICATE

The clean science.exe application was signed by ‘JINHUA
9158 NETWORK SCIENCE AND TECHNOLOGY CO.,
LTD.’ This company is tied to the website 9158.com, which
is registered to mikefu@t2t2.com, to the organization
Jinhua 9158Network Science and Technology Co., Ltd, in
Hangzhou, China.

We were able to identify a number of further fi les in our
collection that use a certifi cate from the same issuer; all of
them were clean installers. Some of them (the 9158 KTV

installers) dropped Download.exe as a component. Clearly,
this application would be the source of the exploited
binary.

4d2f9aac4408237a56dadb89e256e637a703b4ee: 9158
Virtual Camera installer – looks legitimate

4d64bb02d287f2f4e3707f8f7c64a92fbe6621b5: 9158
KTV installer (a version of Download.exe is installed)
– looks legitimate

4f1e67bfe5c2698698f7abffbfa740507aaaeb49 :
CHOUZHOUGame (an add-on of some sort, not a
standalone application) – looks legitimate

878f09552e7277544f6b3702e310757c0bde1b42:
DuoDuoVideoGame installer (a version of Download.exe
is installed) – looks legitimate

9e7cb141eb97e4a83946b3494344b55bbbf0691a: 9158
KTV installer (a version of Download.exe is installed)
– looks legitimate

a8fb2fa2d1fdbeb45831c3ba08d6d73cd08cb44b: 9158
KTV installer (a version of Download.exe is installed
– same as with 9e7cb141eb97e4a83946b3494344b55bbbf
0691a) – looks legitimate

f1dae1ee4ece2d5e30b199663f721a3718a661b9:
XinGuang installer – looks legitimate

Altogether, four different versions of Download.exe
were found (including the one carried by the malware).
Differentiating between them was made diffi cult by the fact
that all versions had exactly the same version information,
as seen on the following output of the Sysinternals sigcheck
tool:

Verifi ed: Signed

Signing date: 07:20 23/02/2012

Publisher:

Description: DownLoad Microsoft ???????

Product: DownLoad ????

Version: 1, 0, 0, 1

File version: 10, 3, 19, 1

Testing the other versions of Download.exe (replacing
science.exe right before the CreateProcessA) caused a
crash and a debug dialog pop-up. All of these variations
were vulnerable to the exploitation, with the same bogus
write_log() function, but due to reorganization of the
code in the development process, the 0x404350 address,
where the execution is re-routed does not contain the
required POP-RET instruction sequence. Fixing the
return value could make these variants vulnerable to full
exploitation as well.

http://www.virusbtn.com/pdf/magazine/2014/201402.pdf
http://www.pretentiousname.com/misc/W7E_Source/Win7Elevate_Inject.cpp.html

VIRUS BULLETIN www.virusbtn.com

29MARCH 2014

GREETZ FROM ACADEME:
CENSORED
John Aycock
University of Calgary, Canada

From time to time, I visit schools to give outreach talks about
computer security. One question I always ask the students is
how they know that what they see in their web browser is the
same information as was sent from the web server. It’s easy
to forget that for many – possibly most – users, the Internet is
a magical thing. For regular users, of course the information
they receive comes straight from the source; why would
they suspect that what they see has been broken apart like
countless Lego bricks, strewn across multiple devices and
systems, and reconstructed seamlessly for their pleasure?

The reality is different, of course, and even if both the user’s
machine and the server(s) providing content are assumed to
be uncompromised, there are many points along the way at
which content changes can occur. As security professionals,
we might be inclined to think fi rst of man-in-the-middle
attacks, and while that is a possibility, it is just one of
several. What makes some other content-changing scenarios
interesting is that they are legitimate (for certain values
of the word ‘legitimate’), and are not any easier to detect
despite their legitimacy.

A case in point: companies market products to Internet
service providers, providing ‘in-browser messaging’ for
a variety of purposes [1]. The corresponding patents are
much more detailed, and specifi cally say ‘content may be
modifi ed or replaced along the path to the user’ [2].

Back in 2008, Reis et al. took a crack at detecting content
modifi cation by using what they called ‘web tripwires’ [3].
Their idea was for a server to provide content as usual, but
to include a script to run in the browser that would compare
the content received with some ‘ground truth’ version of
the same content. As they tested the web tripwires, they
were indeed able to spot some content modifi cations made
en route, as well as tripping across some instances where
ad-blocking software had thoughtfully injected exploitable
vulnerabilities into the content.

Another ‘legitimate’ content modifi cation scenario is
censorship. (Done only to protect the children / catch
terrorists / facilitate a stable and moral society, you
understand; pick your favourite.) There are more than
enough examples of censorship to go around – the OpenNet
Initiative’s reports [4] are an informative, if somewhat
depressing, place to start reading – but the question is how
such content modifi cations might be detected.

As it happens, December is ACSAC season, i.e. the Annual
Computer Security Applications Conference, and a paper

included in the proceedings of the 2013 event looked at
exactly this problem. Wilberding et al.’s ‘Validating web
content with Senser’ [5] works ‘even when SSL/TLS is not
supported by the web server’ – a fact I mention because
they thought to include that exact phrase in the paper’s
abstract and in the introduction, italicized in both places. It
has excellent Internet meme potential, I think, e.g. ‘Cleans
your dirty dishes… even when SSL/TLS is not supported by
the web server.’ When the meme goes viral, just remember
you heard it in VB fi rst. But I digress.

What Senser does is build a ‘consensus’ view of the
content of a web page by querying a number of proxies
distributed around the Internet. The premise is that, as long
as the majority of the proxies receive an unfettered view
of the web page, a version of it can be reconstructed in the
browser. There are a number of practical problems, in that
localized or customized content may be delivered even in
the absence of censorship, but also the fact that there may
be ‘AS-level adversaries who control large segments of the
network and may attempt to manipulate web content’ [5,
p.340]. Not to name names. Senser devotes considerable
effort to diversifying the AS-level paths between the proxies
and the server with the content, in an attempt to route
around this problem.

An underlying issue I have with systems like Senser (and
also Tor) when it comes to censorship, is that meta-data
reveals many potentially compromising things. Depending
on where a user resides, the simple fact (meta-meta-data,
almost) that they used Senser or Tor is suspicious. Until
these systems are shipped, enabled by default, in Windows,
nothing will change that… and that’s not a happy Disney
ending to reach out to school children with.

REFERENCES
[1] PerfTech. Solutions. http://www.perftech.com/

solutions.html, last accessed 18 February 2014.

[2] Donzis, H. M.; Donzis, L. T.; Frey, R. D.; Murphy,
J. A.; Schmidt, J. E. Internet connection user
communications system. U.S. Patent 8,108,524, 31
January 2012.

[3] Reis, C.; Gribble, S. D.; Kohno, T.; Weaver, N. C.
Detecting in-fl ight page changes with web tripwires.
5th USENIX Symposium on Networked Systems
Design and Implementation, 2008, pp.31–44.

[4] OpenNet Initiative. https://opennet.net/, last
accessed 18 February 2014.

[5] Wilberding, J.; Yates, A.; Sherr, M.; Zhou, M.
Validating web content with Senser. 29th Annual
Computer Security Applications Conference, 2013,
pp.339–348.

SPOTLIGHT

http://www.perftech.com/solutions.html
https://opennet.net/

MARCH 2014

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

30

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Jimmy Kuo, Independent researcher, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Roel Schouwenberg, Kaspersky Lab, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2014 Virus Bulletin Ltd, The Pentagon,
Abingdon Science Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. /2014/$0.00+2.50. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any
form without the prior written permission of the publishers.

The Commonwealth Telecommunications Organisation’s 5th
Cybersecurity Forum takes place 5–7 March 2014 in London,
UK. For more information see http://www.cto.int/events/upcoming-
events/cybersecurity-2014/.

European Smart Grid Cyber and SCADA Security will take
place 10–11 March in London, UK. For more information see
http://www.smi-online.co.uk/2014cybergrids31.asp.

Cyber Intelligence Asia 2014 takes place 11–14 March 2014 in
Singapore. For full details see http://www.intelligence-sec.com/
events/cyber-intelligence-asia-2014.

ComSec 2014 takes place 18–20 March 2014 in Kuala Lumpur,
Malaysia. For details see http://sdiwc.net/conferences/2014/
comsec2014/.

The Future of Cyber Security 2014 takes place 20 March 2014 in
London, UK. For booking and programme details see
http://www.cyber2014.psbeevents.co.uk/.

Black Hat Asia takes place 25–28 March 2014 in Singapore. For
details see http://www.blackhat.com/.

Information Security by ISNR takes place 1–3 April 2014 in Abu
Dhabi, UAE. For details see http://www.isnrabudhabi.com/.

SOURCE Boston will be held 9–10 April 2014 in Boston, MA,
USA. For more details see http://www.sourceconference.com/boston/.

Counter Terror Expo takes place 29–30 April 2014 in London,
UK. The programme includes a cyber terrorism conference on 30
April; the event is co-located with Forensics Europe Expo. For details
see http://www.counterterrorexpo.com/.

The Infosecurity Europe 2014 exhibition and conference will be
held 29 April to 1 May 2014 in London, UK. For details see
http://www.infosec.co.uk/.

AusCERT2014 takes place 12–16 May 2014 in Gold Coast,
Australia. For details see http://conference.auscert.org.au/.

The 15th annual National Information Security Conference
(NISC) will take place 14–16 May 2014 in Glasgow, Scotland. For
information see http://www.sapphire.net/nisc-2014/.

CARO 2014 will take place 15–16 May 2014 in Melbourne, FL,
USA. For more information see http://2014.caro.org/.

SOURCE Dublin will be held 22–23 May 2014 in Dublin, Ireland.
For more details see http://www.sourceconference.com/dublin/.

Oil and Gas Cybersecurity takes place 3–4 June 2014 in Oslo,
Norway. For details see http://www.smi-online.co.uk/energy/europe/
conference/Oil-and-Gas-Cyber-Security-Nordics.

The 26th Annual FIRST Conference on Computer Security
Incident Handling will be held 22–27 June 2014 in Boston, MA,
USA. For details see http://www.first.org/conference/2014.

Hack in Paris takes place 23–27 June 2014 in Paris, France. For
information see http://www.hackinparis.com/.

Black Hat USA takes place 2–7 August 2014 in Las Vegas, NV,
USA. For details see http://www.blackhat.com/.

VB2014 will take place 24–26 September 2014 in Seattle, WA,
USA. For more information see http://www.virusbtn.com/conference/
vb2014/. For details of sponsorship opportunities and any other
queries please contact conference@virusbtn.com.

http://www.virusbtn.com/virusbulletin/subscriptions/
mailto:editorial@virusbtn.com
http://www.virusbtn.com/
http://www.sourceconference.com/dublin/
http://2014.caro.org/
http://www.sapphire.net/nisc-2014/
http://www.cto.int/events/upcoming-events/cybersecurity-2014/
http://www.smi-online.co.uk/2014cybergrids31.asp
http://www.intelligence-sec.com/events/cyber-intelligence-asia-2014
http://sdiwc.net/conferences/2014/comsec2014/
http://www.cyber2014.psbeevents.co.uk/
http://www.blackhat.com/
http://www.blackhat.com/
http://www.isnrabudhabi.com/
http://www.sourceconference.com/boston/
http://www.counterterrorexpo.com/
http://www.infosec.co.uk/
http://conference.auscert.org.au/
http://www.smi-online.co.uk/energy/europe/conference/Oil-and-Gas-Cyber-Security-Nordics
http://www.first.org/conference/2014
http://www.hackinparis.com/
http://www.virusbtn.com/conference/vb2014/
mailto:conference@virusbtn.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

