
VIRUS BULLETIN www.virusbtn.com

1OCTOBER 2014

Covering the
global threat landscape

INVADING THE CORE: IWORM’S
INFECTION VECTOR AND
PERSISTENCE MECHANISM
Patrick Wardle
Synack, USA

iWorm is a recently discovered OS X backdoor that affords
an attacker complete control of an infected host. Initial
reports provided a fairly thorough overview of the malware’s
functionality, however iWorm’s infection vector was not
identifi ed, and its persistence mechanism was not discussed
suffi ciently. These reporting shortcomings were (at least
partially) remedied by subsequent reports that revealed how
the malware both gained and retained access on a host.

This paper builds upon the latest analyses, and provides
a more comprehensive technical analysis of iWorm’s
infection vector and persistence mechanism. Armed with
this information, users will be able to detect existing iWorm
infections and prevent future infections. This is essential,
as users may not be able to count on Apple’s anti-malware
mitigations (XProtect, Gatekeeper, etc.) to protect them from
this threat. More importantly, this analysis reiterates several
well established security mantras and provides information
that will both educate and safeguard users, even against
future threats.

IWORM APPEARS AS A RIDDLE
iWorm was fi rst reported on 29 September 2014 by the
Russian anti-virus company Doctor Web [1]. The researchers’

initial analyses provided a decent overview of this ‘multi-
purpose backdoor’ [1], briefl y describing its capabilities and
its unique Reddit-based C&C server location mechanism.
Unfortunately, the report left out several pertinent facts,
such as the malware’s infection vector, and did not provide
specifi cs as to its persistence mechanisms. Therefore, the
remainder of this paper will provide a comprehensive
analysis of both iWorm’s initial infection vector and its
persistence mechanism. Moreover, suggestions for both
the detection and prevention of iWorm infection will be
discussed and an open-source tool will be detailed that can
enumerate and display persistent OS X binaries generically,
including iWorm. This short paper should give readers a
comprehensive understanding of iWorm’s infection and
persistence mechanisms, and of how to both detect and
prevent the malware. Moreover, by covering various best
practices, analytic techniques, and a generic detection tool,
it is hoped that users will remain secure against other OS X
malware as well.

INITIAL INFECTION VECTOR
A few days after Doctor Web’s initial reports on iWorm, the
owner of Mac security website The Safe Mac reported that
he had received an email tipping him off as to the malware’s
infection vector [2]. The email described how pirated versions
of desirable OS X applications (such as Adobe Photoshop and
Microsoft Offi ce) were infected with the malware. In other
words, iWorm is ‘a classic trojan – a program which tricks
you into installing malware, usually bundled with legitimate
software’ [3]. Magnet links to these infected applications
were uploaded to Pirate Bay by the user ‘acerprog’ in order to

Figure 1: Links to iWorm- infected torrents on Pirate Bay.

VIRUS BULLETIN www.virusbtn.com

OCTOBER 20142

reach a global audience. Although the links have since been
removed, the applications were downloaded prior to their
removal.

INSTALLATION: PART 1
As described in the anonymous write-up [3], the installers
for the pirated applications contained malicious code that
installed the iWorm malware persistently. The write-up
continued by analysing these applications in order to provide
an illustrative overview of the actual infection technique.
Here, a few extra (technical) details will be added to paint
a comprehensive picture of how iWorm infects a target

Figure 2: Infected application’s Info.plist fi le.

Figure 3: Infected installer application.

computer. Specifi cally, the infected ‘Adobe Photoshop CC
2014 Mac OS X’ torrent will be dissected to reveal iWorm’s
installation (infection) and persistence mechanisms.

Whenever a user launches an application, OS X consults the
application’s Info.plist fi le for the app’s binary. As shown in
Figure 2, the Info.plist fi le for the infected Adobe Photoshop
application specifi ed that the ‘Install’ binary should be
executed whenever the application was launched.

The ‘Install’ binary existed in the usual Contents/MacOS
folder within the infected application. Oddly, two other
binaries (named ‘0’ and ‘1’) were also present within this
directory. Their purpose will be described shortly.

 VIRUS BULLETIN www.virusbtn.com

OCTOBER 2014 3

Whenever a user launches the Install.app fi le (within the
‘Adobe Photoshop CC 2014’ folder), the ‘Install’ binary
will be executed. Disassembling this 32-bit Mach-O
executable provided an insight into its actions. In short, the
‘Install’ binary simply launched the ‘0’ binary with elevated

privileges, then executed the ‘1’ binary before exiting. The
former action is illustrated in the disassembly and pseudo-
code shown in Figures 4 and 5.

The use of the AuthorizationCreate() and
AuthorizationExecuteWithPrivileges() API functions
generated an authorization dialog that would be presented to
the user, as shown in Figure 6.

If the user entered their password and clicked ‘OK’, the
‘0’ binary would be executed with elevated privileges.
Interestingly, if the user clicked ‘Cancel’, the binary would
not be executed, as there is no code within the ‘Install’
binary to handle this scenario. As the ‘0’ binary is malicious,
clicking ‘Cancel’ would actually prevent infection.

Analysis of the two binaries revealed that the ‘0’ binary
was a second-stage installer (dropper) for the persistent
malware component, while ‘1’ was the legitimate installer
for the pirated application (Adobe Photoshop). Spawning
the malware dropper with elevated permissions makes sense,
as in OS X, unprivileged binaries are fairly constrained
and limited in what actions they can perform. Obviously,
malware authors prefer for their creations to have free reign
over an infected host. If a privilege escalation vulnerability
is not used, simply asking the user for their password via an
authorization prompt may achieve this privileged state. While
the malware dropper is executing, it makes sense to execute
the legitimate installer application in parallel. This ensures
that the user will not notice that anything is amiss.

Figure 7 summarizes iWorm’s initial installation phase,
showing how the malware can fi nd its way onto a user’s
system and gain privileged execution.

Figure 7: Overview of iWorm infection.

First, the malware author uploads an infected application to
the popular torrent site Pirate Bay. Any user who downloads

Figure 4: iWorm installer’s disassembly (IDA).

Figure 5: iWorm installer’s pseudo-code.

Figure 6: iWorm installer’s authorization prompt.

VIRUS BULLETIN www.virusbtn.com

OCTOBER 20144

and runs the infected application will become infected. Of
course, the (fully functional) pirated application will also
be installed – although that is quite a small consolation for
turning over complete control to an unknown adversary!

INSTALLATION: PART 2
The last section described how the pirated Adobe Photoshop
installer application invoked the ‘Install’ binary, which in
turn would execute the ‘0’ binary with elevated privileges.
The ‘0’ binary turned out to be a basic malware dropper.
First, this dropper created the /Library/Application Support/
JavaW/ directory, then it saved 0x29000 bytes from offset
0x00002050 (the start of its _data segment) to a fi le named
JavaW, as shown in Figure 8.

Figure 8: iWorm dropper writing to JavaW.

Single-stepping the malware through a debugger provided
an easy way to examine the bytes as the dropper was writing
them to disk, as shown in Figure 9.

Figure 9: iWorm dropper (within a debugger), writing bytes
to JavaW.

Ah, good old 0xfeedface, the ‘magic’ number indicating an
Intel Mach-O binary – the dropper was saving an embedded
binary to disk. Once the embedded binary (‘JavaW’) had
been saved, the dropper created a property list within the
/Library/LaunchDaemons directory.

Figure 10: iWorm dropper writing out a launch daemon plist.

The contents of this plist fi le are shown in Figure 11.

On OS X, there are many ways to ensure that a binary is
executed automatically by the OS every time the computer
is restarted [4]. For ‘n00bie’ OS X malware writers, launch
items (daemons and agents) are the preferred method of
persistence. To persist a binary as a launch daemon, one
simply has to create a property list (‘plist) within one of the
launch daemon directories (e.g. /Library/LaunchDaemons).
This plist should contain a dictionary of various key value
pairs including the path to the persistent binary and fl ag
(such as RunAtLoad), indicating how and when the binary
should be started by the OS. Since the dropper created a
launch daemon plist with the RunAtLoad key set to true, the
persistent component of the malware (/Library/Application
Support/JavaW/JavaW) would automatically be started by the
OS on each reboot – persistence achieved!

Once the dropper had installed the malware persistently
as a launch daemon, it executed the malware directly via
two calls to the launchctl utility (Figure 12). This native
OS utility interfaces with launchd, the ‘system wide and
per-user daemon/agent manager’ [5]. The calls to launchctl
and arguments passed were observed passively via a simple
dtrace script [6].

The output of the dtrace script showed the dropper fi rst
loading, then starting the malicious launch daemon. It should
be noted that, because the RunAtLoad key was set to true, the
start command was surplus to requirements; the malware was

Figure 11: iWorm’s launch daemon plist.

 VIRUS BULLETIN www.virusbtn.com

OCTOBER 2014 5

both loaded and started via the fi rst load command [7] (see
Figure 13).

With iWorm installed persistently (as a launch daemon) and
started manually for the fi rst time, the dropper exited.

IWORM PROPER
Various online analyses of iWorm, such as [1] and [8],
provide a fairly thorough overview of the malware’s
capabilities and features. While the goal of this paper is to
focus on the infection and persistence of iWorm, several of
the more interesting components of the malware will briefl y
be discussed as well.

The iWorm binary (‘JavaW’) was packed with UPX. While
packers are commonly used by Windows-based malware,
amongst OS X malware specimens, this is a somewhat
uncommon feature. Unpacking the binary (upx -d JavaW)
decompressed it and allowed for analysis to commence.

As mentioned in the initial report from Doctor Web [1],
the malware appeared to have been written in C++. While
binaries on OS X are often written in Objective-C, it’s
likely that the background of the malware author(s) was
Linux-based, and thus C++ was a more familiar language.

iWorm provides basic backdoor functionality, and contains
no worm-like (i.e. self-spreading) capabilities. However, it
does have a few tricks up its sleeve. First, in order to locate
its command and control (C&C) servers, iWorm queried
reddit.com. This query returned ‘a page containing the list
of botnet C&C servers and ports published by criminals
in comments to the post minecraftserverlists under the
account vtnhiaovyd’ [8]. Unfortunately, although several
of the subreddits that contained iWorm’s C&C servers (e.g.
minecraftserverlists) were banned, others such as ‘ilikedota2’
remained (and remain) online. Since these are still accessible,
new iWorm infections are still able to resolve addresses
for remote tasking. It should be noted that (other than
using Reddit) this is not a novel technique. Other malware,
including OS X Flashback, has used online services (such as

Twitter) both for determining the location C&C servers and
for direct command and control [9].

Another interesting feature of iWorm is its support for Lua
[8]. The malware contained an embedded Lua interpreter
that enabled it to execute Lua scripts directly. Such a feature
allows the malware author(s) to dynamically (though not
persistently) extend the core functionality of the malware by
uploading and executing any scripts they desire.

Figure 14: Snippet of iWorm’s embedded Lua interpreter.

Interested readers are encouraged to read [8] to learn
more about iWorm’s capabilities (e.g. supported backdoor
commands) and features (e.g. use of encryption).

GOODBYEWORM

Having gained a comprehensive understanding of iWorm’s
infection vector and persistence mechanism (coupled with
a high-level overview of its features), it’s time to discuss
detection, prevention, and several security ‘best practices’.
In this case, the discussion is quite pertinent as Apple’s
anti-malware mechanisms did little to protect unwitting users
from iWorm infections. Of course, Apple zealots may point
out that there is ‘no patch for human stupidity’, and that if
users are downloading and running malware manually, the
OS doesn’t stand a chance. However, one would hope that the
OS’s anti-malware mechanisms would at least provide some
level of protection. Unfortunately, Apple’s may provide none.

According to Apple, the Gatekeeper security feature
helps protect Macs from malicious applications that are
downloaded and installed from the Internet [10]. Aiming to
be the fi rst line of defence, it checks whether downloaded
fi les are digitally signed, and may either warn the user or
simply block a downloaded fi le from executing if it comes
from an untrusted source. Contrary to popular belief,
Gatekeeper (like XProtect) is fairly limited in the attacks it
can prevent. This is due to the fact that Gatekeeper will only
examine binaries that contain a quarantine attribute named
‘com.apple.quarantine’. Interestingly, it is the responsibility
of the downloading application (e.g. Safari, the torrent client,
etc.) to set this quarantine attribute. If the downloading
application does not set this, Gatekeeper will remain out of
the loop. Unfortunately, many of the torrent clients that are
likely to be used to download the infected applications may
not set this attribute. For example, uTorrent (a popular OS

Figure 12: iWorm dropper launching iWorm via launchctl.

Figure 13: Simplifying the launch of iWorm.

VIRUS BULLETIN www.virusbtn.com

OCTOBER 20146

X torrent client) did not set it, and thus when the infected
installer was executed, no Gatekeeper prompt appeared. The
malicious fi le was allowed to run in an uninhibited manner.

Of course, had the com.apple.quarantine attribute been
set, a Gatekeeper alert would have been raised (since the
iWorm installer was not signed) and the malware would have
been blocked. This was confi rmed by setting the attribute
manually, then attempting to re-run the installer application.
As expected, this (fi nally) resulted in Gatekeeper blocking
the malicious installer (see Figure 16).

XProtect is Apple’s attempt at an anti-virus product.
Implemented within the CoreServicesUIAgent, it uses

Figure 15: No com.apple.quarantine.

Figure 16: With the quarantine attribute set, Gatekeeper displays an alert.

Figure 17: XProtect’s iWorm signature.

signatures from /System/Library/CoreServices/CoreTypes.
bundle/Contents/Resources/XProtect.plist to detect OS X
malware. Since it is a static, signature-based AV product, it
cannot detect (and thus prevent) new malware samples. Thus
iWorm was initially free to ravage a user’s system. To give
Apple some credit though, although XProtect could not detect
iWorm initially, once the malware had been reported, the
company released several detection signatures.

Interestingly, the signature (shown in Figure 17) will only
match (and thus block) the malware’s installer application
(‘Install’, sha1: c0800cd5095b28da4b6ca01468a279fb5be6
921a). Although two other iWorm signatures were released,

 VIRUS BULLETIN www.virusbtn.com

OCTOBER 2014 7

Infection indicator type Infection indicator Description

Process JavaW The persistent iWorm component is named JavaW and
runs as a launch daemon.

Directory /Library/ApplicationSupport/JavaW/ The malware installer creates this directory to contain
things such as the malware’s binary (JavaW).

File /Library/ApplicationSupport/JavaW/
JavaW

The persistent iWorm component is named JavaW and
is installed into the /Library/ApplicationSupport/JavaW/
directory.

File /Library/LaunchDaemons/com.JavaW.plist In order to persist, the malware installer creates this plist
fi le.

Table 1: iWorm infection indicators.

these also only detect the installer (variants ‘B’ and ‘C’). This
means that existing iWorm infections (e.g. the JavaW binary)
will not be detected. Worse yet, like Gatekeeper, XProtect
only scans fi les that have the quarantine attribute set. Thus, if
the downloading application (e.g. uTorrent) does not set this
attribute, the malware (including its installer) will still be able
to execute freely and infect the user’s system.

Since Apple seems unable to protect its users or detect the
infection, how can users remain safe? First, the obvious:
downloading pirated and cracked applications from untrusted
sources is a bad idea (at least from a security point of view).
As iWorm clearly illustrates, malware authors may use such
applications to distribute their malware. Also, applications
from untrusted sources that request elevated privileges should
be treated with care. If the source cannot be verifi ed, such
applications should be avoided. If the application must be
run, executing it within a virtual machine under the watchful
eye of various profi ling tools may be a possible solution.

Detecting the iWorm infection is actually fairly trivial, as
the malware does not employ any rootkit or self-defence
mechanisms. Several infection indicators are detailed in
Table 1.

Removing the malware from an infected host is trivial
as well. The steps shown in Figure 19 (run with elevated
privileges) should remove all traces of the infection. Of
course, if the malware has installed additional components,
other steps may be necessary as well.

Figure 19: Steps to remove iWorm.

Figure 18: With the quarantine attribute set, XProtect detects the malware.

VIRUS BULLETIN www.virusbtn.com

OCTOBER 2014

Editor: Martijn Grooten

Chief of Operations: John Hawes

Security Test Engineers: Scott James, Tony Oliveira, Adrian Luca

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

Perl Developer: Tom Gracey

Consultant Technical Editors: Dr Morton Swimmer, Ian Whalley

© 2014 Virus Bulletin Ltd, The Pentagon, Abingdon Science
Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. Fax: +44 (0)1865 543153
Email: editorial@virusbtn.com
Web: http://www.virusbtn.com/

8

As Mac OS X continues to increase in popularity, persistent
OS X malware such as iWorm is becoming more common
than ever. There are many locations on OS X that may be
abused for persistence (such as launch daemons), and Apple’s
anti-malware mitigations may not protect end-users.

In order to detect persistent OS X malware generically, a
new tool has recently been developed that can enumerate
and display persistent OS X binaries. Named KnockKnock,
the goal of the tool is simple: to tell you who’s there! Open
source [11], and based on an extensible plug-in architecture,
it can easily evolve as new methods of persistence are
uncovered. KnockKnock can readily detect the presence of
iWorm via the malware’s persistence technique.

Figure 20: Using KnockKnock to detect iWorm generically.

CONCLUSION

iWorm is a recent OS X backdoor that allows an attacker
complete remote control over infected hosts. As detailed
in this paper, iWorm was distributed via infected pirated
applications that were hosted on Pirate Bay. When run, it was
persistently installed as a launch daemon, which ensured that
it would automatically be executed each time the infected
computer was rebooted.

Although users cannot rely on Apple’s anti-malware
mechanisms for protection from iWorm, refraining from
using pirated applications should keep them safe in this case.
More generically, armed with a tool such as KnockKnock,
users can detect both current and future persistent OS X
threats.

REFERENCES

[1] New Mac OS X botnet discovered.
http://news.drweb.com/show/?i=5976.

[2] iWorm method of infection found!
http://www.thesafemac.com/iworm-method-of-
infection-found/.

[3] Mac.BackDoor.iWorm. https://docs.google.com/
document/d/1YOfXRUQJgMjJSLBSoLiUaSZfi aS_
vU3aG4Bvjmz6Dxs/edit.

[4] Methods of malware persistence on Mac OS
X. https://www.virusbtn.com/virusbulletin/
archive/2014/10/vb201410-malware-persistence-
MacOSX.

[5] Man page for launchd. https://developer.apple.com/
library/mac/documentation/Darwin/Reference/
Manpages/man8/launchd.8.html.

[6] D-trace script. https://gist.github.com/
viroos/1242279.

[7] What is launchd? http://launchd.info/.

[8] The Mac.BackDoor.iWorm threat in detail.
http://news.drweb.com/show/?i=5977&lng=en.

[9] Flashback Mac Malware Uses Twitter as Command
and Control Center. http://www.intego.com/mac-
security-blog/fl ashback-mac-malware-uses-twitter-
as-command-and-control-center/.

[10] OS X: About Gatekeeper. http://support.apple.com/
kb/ht5290.

[11] KnockKnock. https://github.com/synack/
knockknock.

