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DLL hijacking is a well known class of attack which was 
always believed only to affect the Windows OS. However, 
this paper will show that OS X is similarly vulnerable to 
dynamic library hijacks. By abusing various features and 
undocumented aspects of OS X’s dynamic loader, attackers 
need only to ‘plant’ specially crafted dynamic libraries to 
have malicious code automatically loaded into vulnerable 
applications. Using this method, such attackers can perform 
a wide range of malicious and subversive actions, including 
stealthy persistence, load-time process injection, security 
software circumvention, and a Gatekeeper bypass (affording 
opportunities for remote infection). Since this attack 
abuses legitimate functionality of the OS, it is challenging 
to prevent and unlikely to be patched. However, this 
paper will present techniques and tools that can uncover 
vulnerable binaries as well as detect if a hijacking has 
occurred. 

BACKGROUND 

Before detailing the dynamic library (dylib) hijacking attack 
on OS X, dynamic link library (DLL) hijacking on Windows 
will briefl y be reviewed. As the two attacks are conceptually 
quite similar, examining the well-understood Windows attack 
can help in gaining an understanding of the former. 

DLL hijacking on Windows is best explained by Microsoft:

‘When an application dynamically loads a dynamic link 
library (DLL) without specifying a fully qualifi ed path 
name, Windows tries to locate the DLL by searching 
a well-defi ned set of directories. If an attacker gains 
control of one of the directories, they can force the 
application to load a malicious copy of the DLL instead 
of the DLL that it was expecting.’ [1] 

To reiterate, the default search behaviour of the Windows 
loader is to search various directories (such as the 
application’s directory or the current working directory) 
before the Windows system directory. This can be 
problematic if an application attempts to load a system 
library via an insuffi ciently qualifi ed path (i.e. just by its 
name). In such a scenario, an attacker may ‘plant’ a malicious 
DLL (the name of which matches that of the legitimate 
system DLL) in one of the primary search directories. With 
this malicious DLL in place, the Windows loader will fi nd the 

attacker’s library before the legitimate DLL and blindly load 
it into the context of the vulnerable application. 

This is illustrated in Figures 1 and 2, where a vulnerable 
application (Figure 1) is hijacked by a malicious DLL that 
has been planted in the primary search directory (Figure 2). 

Figure 1: Loading the legitimate system DLL. 

Figure 2: Loading the attacker’s malicious DLL. 

DLL hijacking attacks initially gained notoriety in 2010 
and quickly grabbed the attention of both the media and 
malicious attackers. Also known as ‘binary planting’, 
‘insecure library loading’ or ‘DLL preloading’, the discovery 
of this vulnerability is often attributed to H.D. Moore [2, 3]. 
However, the NSA was actually the fi rst to note this fl aw, 
12 years prior to Moore, in 1998. In the NSA’s unclassifi ed 
‘Windows NT Security Guidelines’, the organization both 
describes and warns of DLL hijacking: 

‘It is important that penetrators can’t insert a “fake” 
DLL in one of these directories where the search fi nds it 
before a legitimate DLL of the same name.’ [4]

To an attacker, DLL hijacking affords many useful scenarios. 
For example, such attacks can allow a malicious library to 
stealthily be persisted (without modifying the registry or 
other components of the OS), privileges to be escalated, and 
even provides the means for remote infection. 

Malware authors were fairly quick to realize the benefi ts of 
DLL hijacking. In a blog post entitled ‘What the fxsst?’ [5], 
Mandiant researchers described how they had uncovered 
various unrelated malware samples all named ‘fxsst.dll’. 
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Upon closer inspection, they found that the samples were 
all exploiting a DLL hijacking vulnerability in the Windows 
shell (Explorer.exe), that provided a stealthy method of 
persistence. Specifi cally, as Explorer.exe was installed in 
C: \Windows, planting a library named fxsst.dll in the same 
directory would result in the persistence of the malicious 
DLL as the loader searched the application’s directory before 
the system directory where the legitimate fxsst.dll lived. 

Another example of malware using a DLL hijack can be 
found within the leaked source code for the banking trojan 
‘Carberp’ [6]. The source code shows the malware bypassing 
User Account Control (UAC) via a DLL hijack of 
sysprep.exe (see Figure 3). This binary is an auto-elevated 
process, meaning that it requires no UAC prompt to gain 
elevated status. Unfortunately, it was found to be vulnerable 
to a DLL hijacking attack and would load a maliciously 
planted DLL (named cryptbase.dll) into its elevated process 
context [7]. 

These days, DLL hijacking on Windows is somewhat 
uncommon. Microsoft was swift to respond to attacks, 
patching vulnerable applications and detailing how others 
could avoid this issue (i.e. simply by specifying an absolute, 
or fully qualifi ed path for imported DLLs) [8]. Moreover, 
OS-level mitigations were introduced, which if enabled via the 
SafeDllSearchMode and/or CWDIllegalInDllSearch registry 
keys, stop the majority of DLL hijackings generically. 

DYLIB HIJACKING ON OS X 
It has always been assumed that dynamic library hijacking 
was a Windows-only problem. However, as one astute 
StackOverfl ow user pointed out in 2010, ‘any OS which 
allows for dynamic linking of external libraries is 
theoretically vulnerable to this’ [9]. It took until 2015 for 
him to be proved correct – this paper will reveal an equally 
devastating dynamic library hijack attack affecting OS X. 

The goal of the research presented here was to determine 
whether OS X was vulnerable to a dynamic library attack. 

Specifi cally, the research sought to answer the question: 
could an attacker plant a malicious OS X dynamic library 
(dylib) such that the OS’s dynamic loader would load 
it automatically into a vulnerable application? It was 
hypothesized that, much like DLL hijacking on Windows, 
such an attack on OS X would provide an attacker with a 
myriad of subversive capabilities. For example, stealthy 
persistence, load-time process injection, security software 
circumvention, and perhaps even ‘remote’ infection. 

It should be noted that several constraints were placed 
upon this undertaking. First, success was constrained 
by disallowing any modifi cation to the system – except 
for the creation of fi les (and if necessary folders). In 
other words, the research ignored attack scenarios that 
required the subverting of existing binaries (e.g. patching) 
or modifi cations to existing OS confi guration fi les (e.g. 
‘auto-run’ plists, etc.). As such attacks are well known and 
trivial both to prevent and to detect, they were ignored. The 
research also sought a method of hijack that was completely 
independent of the user’s environment. OS X provides 
various legitimate means to control the environment in 
a manner that could coerce the loader to load malicious 
libraries automatically into a target process. These 
methods, such as setting the DYLD_INSERT_LIBRARIES 
environment variable, are user-specifi c and, again, well 
known and easy to detect. As such, they were of little 
interest and were ignored. 

The research began with an analysis of the OS X dynamic 
linker and loader, dyld. This binary, found within /usr/bin, 
provides standard loader and linker functionality including 
fi nding, loading and linking dynamic libraries. 

As Apple has made dyld open source [10], analysis was 
fairly straightforward. For example, reading the source code 
provided a decent understanding of dyld’s actions as an 
executable is loaded and its dependent libraries are loaded 
and linked in. The following briefl y summarizes the initial 
steps taken by dyld (focusing on those that are relevant to the 
attack described in this paper): 

Figure 3: Carberp abusing a DLL hijack to bypass UAC.
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1. As any new process is started, the kernel sets the 
user-mode entry point to point to __dyld_start 
(dyldStartup.s). This function simply sets up the stack 
then jumps to dyldbootstrap::start(), which in turn calls 
the loader’s _main(). 

2. Dyld’s _main() function (dyld.cpp) invokes link(), 
which then calls an ImageLoader object’s link() method 
to kick off the linking process for the main executable.

3. The ImageLoader class (ImageLoader.cpp) exposes 
many functions that dyld calls in order to perform 
various binary image loading logic. For example, 
the class contains a link() method. When called, this 
invokes the object’s recursiveLoadLibraries() method to 
perform the loading of all dependent dynamic libraries. 

4. The ImageLoader’s recursiveLoadLibraries() method 
determines all required libraries and invokes the 
context.loadLibrary() function on each. The context 
object is simply a structure of function pointers that 
is passed around between methods and functions. The 
loadLibrary member of this structure is initialized with 
the libraryLocator() function (dyld.cpp), which simply 
calls the load() function. 

5. The load() function (dyld.cpp) calls various helper 
functions within the same fi le, named loadPhase0() 
through to loadPhase5(). Each function is responsible 
for handling a specifi c task of the load process, such as 
resolving paths or dealing with environment variables 
that can affect the load process. 

6. After loadPhase5(), the loadPhase6() function 
fi nally loads (maps) the required dylibs from the fi le 
system into memory. It then calls into an instance of 
the ImageLoaderMachO class in order to perform 
Mach-O-specifi c loading and linking logic on each dylib. 

With a basic understanding of dyld’s initial loading logic, 
the research turned to hunting for logic that could be abused 
to perform a dylib hijack. Specifi cally, the research was 
interested in code in the loader that didn’t error out if a dylib 
wasn’t found, or code that looked for dylibs in multiple 
locations. If either of these scenarios was realized within 
the loader, it was hoped that an OS X dylib hijack could be 
performed. 

The initial scenario was investigated fi rst. In this case, it 
was hypothesized that if the loader could handle situations 
where a dylib was not found, an attacker (who could 
identify such situations) could place a malicious dylib in 
this presumed location. From then on, the loader would 
now ‘fi nd’ the planted dylib and blindly load the attacker’s 
malicious code. 

Recall that the loader calls the ImageLoader class’s 
recursiveLoadLibraries() method to both fi nd and load all 
required libraries. As shown in Figure 4, the loading code 

is wrapped in a try/catch block to detect dylibs that fail to 
load. 

Figure 4: Error logic for dylib load failures.

Unsurprisingly, there is logic to throw an exception (with a 
message) if a library fails to load. Interestingly though, this 
exception is only thrown if a variable named ‘required’ is set 
to true. Moreover, the comment in the source code indicates 
that failure to load ‘weak’ libraries is OK. This seems to 
indicate that some scenario exists where the loader is OK 
with missing libraries – perfect! 

Digging deeper into the loader’s source code revealed 
where this ‘required’ variable is set. Specifi cally, 
the doGetDependentLibraries() method of the 
ImageLoaderMacho class parses the load commands 
(described below) and sets the variable based on whether 
or not the load command is of type LC_LOAD_WEAK_
DYLIB. 

Load commands are an integral component of the Mach-O 
fi le format (OS X’s native binary fi le format). Embedded 
immediately following the Mach-O header, they provide 
various commands to the loader. For example, there are load 
commands to specify the memory layout of the binary, the 
initial execution state of the main thread, and information 
about the dependent dynamic libraries for the binary. To 
view the load commands of a compiled binary, a tool such as 
MachOView [11] or /usr/bin/otool (with the -l command-line 
fl ag) can be used (see Figure 6).

The code in Figure 5 shows the loader iterating over all the 
load commands within a binary, looking for those that specify 
a dylib import. The format of such load commands (e.g. 
LC_LOAD_DYLIB, LC_LOAD_WEAK_DYLIB, etc.) can 
be found in the mach-o/loader.h fi le. 
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Figure 7: The format of the LC_LOAD_* load commands. 

For each dylib that an executable was dynamically linked 
against, it will contain an LC_LOAD_* (LC_LOAD_DYLIB, 
LC_LOAD_WEAK_DYLIB, etc.) load command. As the 
loader code in Figures 4 and 5 illustrates, LC_LOAD_DYLIB 
load commands specify a required dylib, while libraries 

imported via LC_LOAD_WEAK_DYLIB are optional (i.e. 
‘weak’). In the case of the former (LC_LOAD_DYLIB), 
an exception will be thrown if the required dylib is not 
found, causing the loader to abort and terminate the process. 
However, in the latter case (LC_LOAD_WEAK_DYLIB), the 
dylib is optional. If such a ‘weak’ dylib is not found, no harm 
is done, and the main binary will still be able to execute.

Figure 8: Attempting to load a ‘weak’ dylib (LC_LOAD_
WEAK_DYLIB).

This loader logic fulfi lled the fi rst hypothetical hijack 
scenario, and as such, provided a dylib hijack attack on OS X. 
Namely, as illustrated in Figure 9, if a binary specifi es a weak 

Figure 5: Setting the ‘required’ variable (src fi le?).

Figure 6: Dumping Calculator.app’s load commands with MachOView.
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import that is not found, an attacker can place a malicious 
dylib in this presumed location. From then on, the loader will 
‘fi nd’ the attacker’s dylib and blindly load this malicious code 
into the process space of the vulnerable binary. 

Figure 9: Hijacking an application via a malicious ‘weak’ 
dylib. 

Recall that another hijack attack was hypothesized if a 
scenario existed where the loader searched for dynamic 
libraries in multiple locations. In this case, it was thought that 
an attacker would be able to place a malicious dylib in one 
of the primary search directories (if the legitimate dylib was 
found elsewhere). It was hoped that the loader would then 
fi nd the attacker’s malicious dylib fi rst (before the legitimate 
one), and thus naively load the attacker’s malicious library. 

On OS X, load commands such as LC_LOAD_DYLIB 
always specify a path to the dynamic library (as opposed 
to Windows, where just the name of the library may be 
provided). Because a path is provided, dyld generally does 
not need to search various directories to fi nd the dynamic 
library. Instead, it can simply go directly to the specifi ed 
directory and load the dylib. However, analysis of dyld’s 
source code uncovered a scenario in which this generality did 
not hold. 

Looking at the loadPhase3() function in dyld.cpp revealed 
some interesting logic, as shown in Figure 10. 

Dyld will iterate over an rp->paths vector, dynamically 
building paths (held within the ‘newPath’ variable) which are 
then loaded via the loadPhase4() function. While this does 
seem to fulfi l the requirement of the second hijack scenario 
(i.e. dyld looking in multiple locations for the same dylib), a 
closer examination was required. 

The comment on the fi rst line of dyld’s source in Figure 
10 mentions the term ‘@rpath.’ According to Apple 
documentation, this is a special loader keyword (introduced 
in OS X 10.5, Leopard) that identifi es a dynamic library as 
a ‘run-path-dependent library’ [12]. Apple explains that a 
run-path dependent library ‘is a dependent library whose 
complete install name (path) is not known when the library 
is created’ [12]. Other online documentation such as [13] 
and [14] provides more detail, describing the role of these 
libraries and explaining how the @rpath keyword enables: 
‘frameworks and dynamic libraries to fi nally be built only 
once and be used for both system-wide installation and 
embedding without changes to their install names, and 
allowing applications to provide alternate locations for a 
given library, or even override the location specifi ed for a 
deeply embedded library’ [14]. 

While this feature allows software developers to deploy 
complex applications more easily, it can also be abused to 
perform a dylib hijack. This is true since in order to make use 
of run-path-dependent libraries, ‘an executable provides a list 
of run-path search paths, which the dynamic loader traverses 
at load time to fi nd the libraries’ [12]. This is realized in code 
in various places within dyld, including the code snippet that 
was presented in Figure 10. 

Since run-path dependent libraries are relatively novel and 
somewhat unknown, it seemed prudent to provide an example 
of building both a legitimate run-path-dependent library and a 
sample application that links against it. 

A run-path-dependent library is a normal dylib whose install 
name is prefi xed with ‘@rpath’. To create such a library in 
Xcode one can simply set the dylib’s installation directory to 
‘@rpath’, as shown in Figure 11. 

Figure 11: Building a run-path-dependent library. 

Once the run-path-dependent library was compiled, 
examination of the LC_ID_DYLIB load command (which 
contains identifying information about the dylib) showed the Figure 10: Loading ‘rpath’ dependent libraries.
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run-path of the dylib. Specifi cally, the ‘name’ (path) within 
the LC_ID_DYLIB load command contained the dylib’s 
bundle (rpathLib.framework/ Versions/A/rpathLib), prefi xed 
with the ‘@rpath’ keyword (see Figure 12). 

Figure 12: ‘@rpath’ embedded in the dylib’s ‘install name’ 
(path). 

Building an application that linked against a 
run-path-dependent library was fairly straightforward as well. 
First, the run-path-dependent library was added to the ‘Link 
Binary With Libraries’ list in Xcode. Then a list of run-path 
search directories was added to the ‘Runpath Search Paths’ 
list. As will be shown, these search directories are traversed 
by the dynamic loader at load time in order to locate the 
run-path-dependent libraries. 

Figure 13: Linking in a @rpath’d dylib and specifying the 
run path search paths.

Once the application was built, dumping its load commands 
revealed various commands associated with the run-path 
library dependency. A standard LC_LOAD_DYLIB load 
command was present for the dependency on the run-path-
dependent dylib, as shown in Figure 14. 

Figure 14: The dependency on the @rpath’d dylib.

In Figure 14, note that the install name (i.e. path) to the 
run-path-dependent dylib is prefi xed with ‘@rpath’ and 
matches the name value from the LC_ID_DYLIB load 
command of the run-path-dependent dylib (see Figure 12). 
This application’s embedded LC_LOAD_DYLIB load 

command with the run-path-dependent dylib tells the loader, 
‘I depend on the rpathLib dylib, but when built, I didn’t know 
exactly where it would be installed. Please use my embedded 
run-path search paths to fi nd it and load it!’ 

The run-path search paths that were entered into the 
‘Runpath Search Paths’ list in Xcode generated LC_RPATH 
load commands – one for each search directory. Dumping 
the load commands of the compiled application revealed 
the embedded LC_RPATH load commands, as shown in 
Figure 15. 

Figure 15: The embedded run-path search paths (directories).

With a practical understanding of run-path-dependent dylibs 
and an application that linked against one, it was easy to 
understand dyld’s source code which was responsible for 
handling this scenario at load time. 

When an application is launched, dyld will parse the 
application’s LC_LOAD_* load commands in order to load 
and link all dependent dylibs. To handle run-path-dependent 
libraries, dyld performs two distinct steps: it extracts all 
embedded run-path search paths and then uses this list to fi nd 
and load all run-path-dependent libraries. 

In order to extract all embedded run-path search paths, dyld 
invokes the getRPaths() method of the ImageLoader class. 
This method (invoked by the recursiveLoadLibraries() 
method) simply parses the application for all LC_RPATH 
load commands. For each such load command, it extracts the 
run-path search path and appends it to a vector (i.e. a list), as 
shown in Figure 16. 

Figure 16: Extracting and saving all embedded run-path 
search paths. 



  VIRUS BULLETIN   www.virusbtn.com 

MARCH 2015 7

With a list of all embedded run-path search paths, dyld can 
now ‘resolve’ all dependent run-path-dependent libraries. 
This logic is performed in the loadPhase3() function in 
dyld.cpp. Specifi cally, the code (shown in Figure 17) checks 
to see if a dependent library’s name (path) is prefi xed with the 
‘@rpath’ keyword. If so, it iterates over the list of extracted 
run-path search paths, replacing the ‘@rpath’ keyword in the 
import with the current search path. Then it attempts to load 
the dylib from this newly resolved directory. 

Figure 17: Searching run-path search directories for 
@rpath’d dylibs. 

It is important to note that the order of the directories that 
dyld searches is deterministic and matches the order of the 
embedded LC_RPATH load commands. Also, as is shown in 
the code snippet in Figure 17, the search continues until the 
dependent dylib is found or all paths have been exhausted. 

Figure 18 illustrates this search conceptually. The loader (dyld) 
can been seen searching the various embedded run-path search 
paths in order to fi nd the required run-path-dependent dylib. 
Note that in this example scenario, the dylib is found in the 
second (i.e. non-primary) search directory (see Figure 18). 

Figure 18: Dyld searching multiple run-path search 
directories. 

The astute reader will recognize that this loader logic opens 
up yet another avenue for a dylib hijack attack. Specifi cally, 
if an application is linked against a run-path-dependent 
library, has multiple embedded run-path search paths, and the 
run-path-dependent library is not found in a primary search 
path, an attacker can perform a hijack. Such a hijack may 
be accomplished simply by ‘planting’ a malicious dylib into 
any of the primary run-path search paths. With the malicious 
dylib in place, any time the application is subsequently run, 
the loader will fi nd the malicious dylib fi rst, and load it 
blindly (see Figure 19). 

Figure 19: Hijacking an application via a malicious ‘@rpath’ 
dylib. 

To summarize the fi ndings so far: an OS X system is vulnerable 
to a hijacking attack given the presence of any application that: 

1. Contains an LC_LOAD_WEAK_DYLIB load 
command that references a non-existent dylib. 

or

2. Contains both an LC_LOAD*_DYLIB load command 
that references a run-path-dependent library (‘@rpath’) 
and multiple LC_RPATH load commands, with the run-
path-dependent library not found in a primary run-path 
search path. 

The remainder of this paper will fi rst walk through a 
complete dylib hijack attack, then present various attack 
scenarios (persistence, load-time process injection, ‘remote’ 
infection etc.), before concluding with some possible 
defences to counter such an attack. 

In order to assist the reader in gaining a deeper understanding 
of dylib hijacking, it seems prudent to detail the trials, errors, 
and ultimate success of a hijack attack. Armed with this 
knowledge it will be trivial to understand attack automation, 
attack scenarios, and practical defences. 

Recall the previously described sample application 
(‘rPathApp.app’) that was created in order to illustrate linking 
against a run-path-dependent dylib. This application will be 
the target of the hijack. 

A dylib hijack is only possible against a vulnerable 
application (that is to say, one that fulfi ls either of the 
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two previously described hijack conditions). Since the 
example application (rPathApp.app) links against a 
run-path-dependent dylib, it may be vulnerable to the 
second hijack scenario. The simplest way to detect such a 
vulnerability is to enable debug logging in the loader, then 
simply run the application from the command line. To enable 
such logging, set the DYLD_PRINT_RPATHS environment 
variable. This will cause dyld to log its @rpath expansions 
and dylib loading attempts. Viewing this output should 
quickly reveal any vulnerable expansions (i.e. a primary 
expansion that points to a non-existent dylib), as shown in 
Figure 20.

Figure 20: The vulnerable (test) application, rPathApp. 

Figure 20 shows the loader fi rst looking for a required dylib 
(rpathLib) in a location where it does not exist. As was 
shown in Figure 19, in this scenario, an attacker could plant a 
malicious dylib in this primary run-path search path and the 
loader will then load it blindly. 

A simple dylib was created to act as a malicious hijacker 
library. In order to gain automatic execution when loaded, 
the dylib implemented a constructor function. Such a 
constructor is executed automatically by the operating 
system when the dylib is loaded successfully. This is a nice 
feature to make use of, since generally code within a dylib 
isn’t executed until the main application calls into it via some 
exported function.

Figure 21: A dylib’s constructor will automatically be 
executed. 

Once compiled, this dylib was renamed to match the target 
(i.e. legitimate) library: rpathlib. Following this, the necessary 
directory structure (Library/One/rpathLib.framework/
Versions/A/) was created and the ‘malicious’ dylib was 
copied in. This ensured that whenever the application was 
launched, dyld would now fi nd (and load) the hijacker dylib 
during the search for the run-path dependent dylib. 

Figure 22: The ‘malicious’ dylib placed in the primary 
run-path search path. 

Unfortunately, this initial hijack attempt failed and the 
application crashed miserably, as shown in Figure 23. 

Figure 23: Success! Then crash and burning.

The good news, though, was that the loader found and 
attempted to load the hijacker dylib (see the ‘RPATH 
successful expansion…’ log message in Figure 23). And 
although the application crashed, this was preceded by an 
informative and verbose exception, thrown by dyld. The 
exception seemed self explanatory: the version of the hijacker 
dylib was not compatible with the required (or expected) 
version. Digging into the loader’s source code revealed the 
code that triggered this exception, as shown in Figure 24. 

Figure 24: Dyld extracting and comparing compatibility 
version numbers.
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As can be seen, the loader invokes the doGetLibraryInfo() 
method to extract compatibility and current version numbers 
from the LC_ID_DYLIB load command of the library that 
is being loaded. This extracted compatibility version number 
(‘minVersion’) is then checked against the version that 
the application requires. If it is too low, an incompatibility 
exception is thrown. 

It was quite trivial to fi x the compatibility issue (and thus 
prevent the exception) by updating the version numbers in 
Xcode, and then recompiling, as shown in Figure 25. 

Figure 25: Setting the compatibility and current version 
numbers.

Dumping the LC_ID_DYLIB load command of the 
recompiled hijacker dylib confi rmed the updated (and now 
compatible) version numbers, as shown in Figure 26. 

Figure 26: Embedded compatibility and current version 
numbers.

The updated hijacker dylib was re-copied into the 
application’s primary run-path search directory. Relaunching 
the vulnerable application again showed the loader ‘fi nding’ 
the hijacker dylib and attempting to load it. Alas, although 
the dylib was now seen as compatible (i.e. the version 
number checks passed), a new exception was thrown and the 
application crashed once again, as shown in Figure 27. 

Figure 27: ‘Symbol not found’ exception.

Once again, the exception was quite verbose, explaining 
exactly why the loader threw it, and thus killed the 
application. Applications link against dependent libraries 
in order to access functionality (such as functions, 
objects, etc.) that are exported by the library. Once a 
required dylib is loaded into memory, the loader will 
attempt to resolve (via exported symbols) the required 
functionality that the dependent library is expected to 
export. If this functionality is not found, linking fails and 
the loading and linking process is aborted, thus crashing 
the process. 

There were various ways to ensure that the hijacker 
dylib exported the correct symbols, such that it would be 
fully linked in. One naive approach would have been to 
implement and export code directly within the hijacker 
dylib to mimic all the exports of the target (legitimate) 
dylib. While this would probably have succeeded, it 
seemed complex and dylib specifi c (i.e. targeting another 
dylib would have required other exports). A more elegant 
approach was simply to instruct the linker to look elsewhere 
for the symbols it required. Of course, that elsewhere was 
the legitimate dylib. In this scenario, the hijacker dylib 
would simply acts as a proxy or ‘re-exporter’ dylib, and as 
the loader would follow its re-exporting directives, no linker 
errors would be thrown. 

Figure 28: Re-exporting to the legitimate dylib.

It took some effort to get the re-exportation working 
seamlessly. The fi rst step was to return to Xcode and add 
several linker fl ags to the hijacker dylib project. These fl ags 
included ‘-Xlinker’, ‘reexport_library’, and then the path to 
the target library which contained the actual exports that the 
vulnerable application was dependent upon. 

Figure 29: Required linker fl ags to enable re-exporting.

These linker fl ags generated an embedded LC_REEXPORT_
DYLIB load command that contained the path to the target 
(legitimate) library, as shown in Figure 30.
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Figure 30: Embedded LC_REEXPORT_DYLIB load 
command.

However, all was not well. Since the re-export target of the 
hijacker dylib was a run-path-dependent library, the name 
fi eld in the embedded LC_REEXPORT_DYLIB (extracted 
from the legitimate dylib’s LC_ID_DYLIB load command) 
began with ‘@rpath’. This was problematic since, unlike 
LC_LOAD*_DYLIB load commands, dyld does not resolve 
run-path dependent paths in LC_REEXPORT_DYLIB load 
commands. In other words, the loader will try to load 
‘@rpath/rpathLib.framework/Versions/A/rpathLib’ directly 
from the fi le system. This, of course, would clearly fail. 

The solution was to resolve the embedded ‘@rpath’ path, 
providing the full path of the target library in the LC_
REEXPORT_DYLIB load command. This was accomplished 
with one of Apple’s developer tools: install_name_tool. 
To update the embedded install name (path) in the LC_
REEXPORT_DYLIB load command, the tool was executed 
with the -change fl ag, the existing name (within the LC_
REEXPORT_DYLIB), the new name, and fi nally the path to 
the hijacker dylib, as shown in Figure 31. 

Figure 31: Using install_tool_name to update the embedded 
name (path).

With the path in the LC_REEXPORT_DYLIB load command 
updated correctly, the hijacked dylib was re-copied into the 
application’s primary run-path search directory, and then 
the application was re-executed. As shown in Figure 32, this 
fi nally resulted in success. 

To summarize: since the rPathApp application linked against 
a run-path-dependent library which was not found in the 
initial run-path search directory, it was vulnerable to a dylib 
hijack attack. Planting a specially compatible malicious 
dylib in the initial search path directory caused the loader to 
load the hijacker dylib blindly each time the application was 

executed. Since the malicious dylib contained the correct 
versioning information as well as re-exporting all symbols to 
the legitimate dylib, all the required symbols were resolved, 
thus ensuring no functionality within the application was lost 
or broken. 

ATTACKS 

With a solid understanding of dylib hijacking on OS X behind 
us, it is now time to illustrate some real-life attack scenarios 
and provide some practical defences. 

Advanced adversaries understand the importance of 
automating as many components of an attack as possible. 
Such automation increases scale and effi ciency, freeing the 
attacker to focus on more demanding or complex aspects of 
the attack. 

The fi rst component of the hijack attack that was automated 
was the discovery of vulnerable applications. A Python 
script, dylibHijackScanner.py (available for download at 
[15]), was created to accomplish this task. After gathering 
either a list of running processes or all executables on the 
fi le system, the script intelligently parses the binaries’ 
Mach-O headers and load commands. To detect binaries 
that may be hijacked via weak dylibs, the script looks for 
LC_LOAD_WEAK_DYLIB load commands that reference 
non-existent dylibs. Automatically detecting binaries that 
may be hijacked due to non-existent @rpath’d imports was a 
little more complex. First, the script looks for a binary with at 
least one LC_LOAD*_DYLIB load command that references 
a run-path-dependent dylib. If such a load command is found, 
the script continues parsing the binary’s load commands 
looking for multiple LC_RPATHs. In the case that both these 
prerequisites hold true, the script checks to see whether the 
run-path-dependent library import is found in a primary 
run-path search path. If the library does not exist, the script 
alerts the user that the binary is vulnerable. Executing the 

Figure 32: Successfully dylib hijacking a vulnerable 
application.
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scanner script revealed a surprising number of vulnerable 
applications, including (as expected) the vulnerable test 
application, rPathApp.app.

Figure 33: Automatically detecting vulnerable applications.

As can be seen in Figure 33, the scanner script found nearly 
150 vulnerable binaries just on the author’s work laptop! 
Interestingly, the majority of vulnerable applications fell into 
the more complex (from a prerequisite standpoint) ‘multiple 
rpath’ category. Due to space constraints, the full list of 
vulnerable applications cannot be shown here. However, 
Table 1 lists several of the more widespread or well-
recognized applications that were found by the scanner script 
to be vulnerable to a dylib hijack. 

Application Company Vulnerability

iCloud Photos Apple rpath import

Xcode Apple rpath import

Word Microsoft rpath & weak import

Excel Microsoft rpath & weak import

Google Drive Google rpath import

Java Oracle rpath import

GPG Keychain GPG Tools rpath import

Dropbox (garcon) Dropbox rpath import

Table 1: Common vulnerable applications. 

With an automated capability to uncover vulnerable 
applications, the next logical step was to automate the creation 
of compatible hijacker dylibs. Recall that two components of 
the hijacker dylib had to be customized in order to perform 
a hijack successfully. First, the hijacker dylib’s versioning 
numbers had to be compatible with the legitimate dylib. 
Second (in the case of the rpath hijack), the hijacker dylib also 
had to contain a re-export (LC_REEXPORT_DYLIB) load 
command that pointed to the legitimate dylib, ensuring that all 
required symbols were resolvable. 

It was fairly straightforward to automate the customization 
of a generic dylib to fulfi l these two prerequisites. A second 
Python script, createHijacker.py (also available for download 

at [15]), was created to perform this customization. First, 
the script fi nds and parses the relevant LC_ID_DYLIB load 
command within the target dylib (the legitimate dylib which 
the vulnerable application loads). This allows the necessary 
compatibility information to be extracted. Armed with this 
information, the hijacker dylib is similarly parsed, until its 
LC_ID_DYLIB load command is found. The script then 
updates the hijacker’s LC_ID_DYLIB load command with 
the extracted compatibility information, thus ensuring a 
precise compatibility versioning match. Following this, the 
re-export issue is addressed by updating the hijacker dylib’s 
LC_REEXPORT_DYLIB load command to point to the 
target dylib. While this could have been achieved by updating 
the LC_REEXPORT_DYLIB load command manually, it 
proved far easier simply to execute the install_name_tool 
command. 

Figure 34 shows the Python script automatically confi guring 
a generic hijacker dylib in order to exploit the vulnerable 
example application, rpathApp.app.

Figure 34: Automated hijacker creation.

Dylib hijacking can be used to perform a wide range of 
nefarious actions. This paper covers several of these, 
including persistence, load-time process injection, bypassing 
security products, and even a Gatekeeper bypass. These 
attacks, though highly damaging, are all realized simply 
by planting a malicious dylib which abuses legitimate 
functionality provided by the OS loader. As such, they are 
trivial to accomplish yet unlikely to be ‘patched out’ or even 
detected by personal security products. 

Using dylib hijacking to achieve stealthy persistence is one 
of the most advantageous uses of the attack. If a vulnerable 
application is started automatically whenever the system 
is rebooted or the user logs in, a local attacker can perform 
a persistent dylib hijack to gain automatic execution of 
malicious code. Besides a novel persistence mechanism, this 
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scenario affords the attacker a fairly high level of stealth. 
First, it simply requires the planting of a single fi le – no 
OS components (e.g. startup confi guration fi les or signed 
system binaries) are modifi ed. This is important since such 
components are often monitored by security software or are 
trivial to verify. Second, the attacker’s dylib will be hosted 
within the context of an existing trusted process, making it 
diffi cult to detect as nothing will obviously appear amiss. 

Of course, gaining such stealthy and elegant persistence 
requires a vulnerable application that is automatically 
started by the OS. Apple’s iCloud Photo Stream Agent 
(/Applications/iPhoto.app/Contents/Library/LoginItems/ 
PhotoStreamAgent.app) is started automatically whenever a 
user logs in, in order to sync local content with the cloud. As 
luck would have it, the application contains multiple run-path 
search directories and several @rpath imports that are not 
found in the primary run-path search directory. In other 
words, it is vulnerable to a dylib hijack attack. 

Figure 35: Apple’s vulnerable Photo Stream Agent. 

Using the createHijacker.py script, it was trivial to confi gure 
a malicious hijacker dylib to ensure compatibility with the 
target dylib and application. It should be noted that in this 
case, since the vulnerable import (‘PhotoFoundation’) was 
found within a framework bundle, the same bundle structure 
was recreated in the primary run-path search directory 
(/ Applications/iPhoto.app/Contents/Library/LoginItems/). 
With the correct bundle layout and malicious hijacker dylib 
(renamed as ‘PhotoFoundation’) placed within the primary 
run-path search directory, the loader found and loaded the 
malicious dylib whenever the iCloud Photo Stream Agent 
was started. Since this application was executed by the OS, 
the hijacker dylib was stealthily and surreptitiously persisted 
across reboots.

Figure 36: Hijacking Apple’s Photo Stream Agent for 
persistence.

As a fi nal note on persistence, if no vulnerable applications are 
found to be started automatically by the OS, any vulnerable 
application commonly started by the user (such as a browser, 

or mail client) may be targeted as well. Alternatively, a 
legitimate vulnerable application could easily be made 
persistent in a variety of ways (for example registering it as 
a Login Item, etc.), then persistently exploited. Although this 
latter scenario increases the visibility of the attack, the attacker 
dylib would, of course, prevent any UI from being displayed. 
Thus, it’s unlikely that the majority of users would notice a 
legitimate (Apple) binary automatically being started (and 
exploited) in the background. 

Process injection, or coercing an external process into 
loading a dynamic library, is another useful attack scenario of 
dylib hijacking. In the context of this paper, ‘injection’ refers 
to load-time injection (i.e. whenever the process is started) 
as opposed to run-time injection. While the latter is arguably 
more powerful, the former is far simpler and often achieves 
the same level of damage. 

Using dylib hijacking to coerce an external process into 
persistently loading a malicious dylib is a powerful and 
stealthy technique. As with the other dylib hijack attack 
scenarios, it does not require any modifi cations to OS 
components or binaries (e.g. patching the target process’s 
on-disk binary image). Moreover, since the planted dylib 
will persistently and automatically be loaded into the 
target process space each time the process is started, an 
attack no longer needs a separate monitoring component 
(to detect when the target process is started, then inject a 
malicious dylib). Also, since the attacker simply requires a 
malicious hijacker dylib to be planted, it neatly side-steps the 
complexities of run-time process injection. Finally, as this 
injection technique abuses legitimate functionality provided 
by the OS loader, it is unlikely to be detected by personal 
security products (which often attempt to prevent remote 
process injection by monitoring ‘inter-process’ APIs). 

Xcode is Apple’s ‘Integrated Development Environment’ 
(IDE) application. It is used by developers to write both 
OS X and iOS applications. As such, it is a juicy target 
for an advanced adversary who may wish to inject 
code into its address space to surreptitiously infect the 
developer’s products (i.e. as a creative autonomous malware 
propagation mechanism). Xcode and several of its various 
helper tools and utilities are vulnerable to dylib hijack 
attacks. Specifi cally, run-path-dependent dylibs, such as 
DVTFoundation are not found in Xcode’s primary run-path 
search directories (see Figure 37).

The process injection hijack against Xcode was fairly 
straightforward to complete. First, a hijacker dylib was 
confi gured, such that its versioning information was 
compatible and it re-exported all symbols to the legitimate 
DVTFoundation. Then, the confi gured hijacker dylib was 
copied to /Applications/Xcode.app/Contents/Frameworks/
DVTFoundation.framework/Versions/A/ (Frameworks/ 
being the primary run-path search directory). Now, whenever 
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Xcode was started, the malicious code was automatically 
loaded as well. Here, it was free to perform actions such as 
intercepting compile requests and surreptitiously injecting 
malicious source or binary code into the fi nal products. 

As Ken Thompson noted in his seminal work ‘Refl ections on 
Trusting Trust’ [16], when you can’t trust the build process or 
compiler, you can’t even trust the code that you create. 

Figure 38: Process ‘injection’ via dylib hijacking.

Besides persistence and load-time process injection, dylib 
hijacking can be used to bypass personal security products. 
Specifi cally, by leveraging a dylib hijack attack, an attacker 
can coerce a trusted process into automatically loading 
malicious code, then perform some previous blocked or 
‘alertable’ action, now without detection. 

Personal security products (PSPs) seek to detect malicious 
code via signatures, heuristic behavioural analysis, or simply 
by alerting the user whenever some event occurs. Since 
dylib hijacking is a novel technique that abuses legitimate 
functionality, both signature-based and heuristic-based 
products are trivial to bypass completely. However, security 
products, such as fi rewalls, that alert the user about any 
outgoing connections from an unknown process, pose more 
of a challenge to an attacker. Dylib hijacking can trivially 
thwart such products as well. 

Personal fi rewalls are popular with OS X users. They often 
take a somewhat binary approach, fully trusting outgoing 
network connections from known processes, while alerting 
the user to any network activity originating from unknown 
or untrusted processes. While this is an effective method for 
detecting basic malware, advanced attackers can trivially 
bypass these products by exploiting their Achilles heel: 
trust. As mentioned, generally these products contain default 
rules, or allow the user to create blanket rules for known, 
trusted processes (e.g. ‘allow any outgoing connection from 
process X’). While this ensures that legitimate functionality 
is not broken, if an attacker can introduce malicious code 

into the context of a trusted process, the code will inherit the 
process’s trust, and thus the fi rewall will allow its outgoing 
connections. 

GPG Tools [17] is a message encryption suite for OS X that 
provides the ability to manage keys, send encrypted mail, 
or, via plug-ins, enable cryptographic services to arbitrary 
applications. Unfortunately, its products are susceptible to 
dylib hijacking.

Figure 39: GPG Tools’ vulnerable keychain app.

As GPG Keychain requires various Internet functionality (e.g. 
to look up keys on keyservers), it’s likely to have an ‘allow 
any outgoing connection’ rule, as shown in Figure 40. 

Figure 40: Access rule for GPG Keychain.

Using a dylib hijack, an attacker can target the GPG 
Keychain application to load a malicious dylib into its 
address space. Here, the dylib will inherit the same level 
of trust as the process, and thus should be able to create 
outgoing connections without generating an alert. Testing 
this confi rmed that the hijacker dylib was able to access the 
Internet in an uninhibited manner (see Figure 41).

Defensive-minded individuals may correctly point out 
that, in this scenario, GPG Keychain’s fi rewall rule could 
be tightened to mitigate this attack, by only allowing 
outgoing connections to specifi c remote endpoints (e.g. 
known key servers). However, there are a myriad of other 
vulnerable applications that may be hijacked to access the 
network in a similarly uninhibited manner. Or, in the case 
of the Little Snitch fi rewall, the inclusion of a system-level 
undeletable fi rewall rule allowing any connection from 
any process to talk to iCloud.com endpoints is more than 
enough for a full bypass (i.e. using a remote iCloud iDrive 
as a C&C server).

So far, the dylib attack scenarios described here have all been 
local. While they are powerful, elegant and stealthy, they all 
require existing access to a user’s computer. However, dylib 
hijacking can also be abused by a remote attacker in order to 
facilitate gaining initial access to a remote computer. 

Figure 37: Apple’s vulnerable IDE, Xcode.
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There are a variety of ways to infect Mac computers, but the 
simplest and most reliable is to deliver malicious content 
directly to end target(s). The ‘low-tech’ way is to coerce the 
user into downloading and installing the malicious content 
manually. Attackers creatively employ a range of techniques 
to accomplish this, such as providing ‘required’ plug-ins (to 
view content), fake updates or patches, fake security tools 
(‘rogue’ AV products), or even infected torrents. 

Figure 42: Masked malicious content.

If the user is tricked into downloading and running any of 
this malicious content, they could become infected. While 
‘low tech’, the success of such techniques should not be 
underestimated. In fact, when a rogue security program 
(Mac Defender) was distributed by such means, hundreds 
of thousands of OS X users were infected, with over 60,000 
alone contacting AppleCare in order to resolve the issue 
[18]. 

Relying on trickery to infect a remote target will probably 
not work against more computer-savvy individuals. A more 
reliable (though far more advanced) technique relies on 
man-in-the-middling users’ connections as they download 
legitimate software. Due to the constraints of the Mac 
App Store, most software is still delivered via developer 
or company websites. If such software is downloaded 
via insecure connections (e.g. over HTTP), an attacker 
with the necessary level of network access may be able 
to infect the download in transit. When the user then 
runs the software, they will become infected, as shown in 
Figure 43. 

Figure 43: Man-in-the-middling a software download. 

Readers may be thinking, ‘hey, it’s 2015, most software 
should be downloaded via secure channels, right?’ 
Unfortunately, even today, the majority of third-party OS 
X software is distributed insecurely. For example, of the 
software found installed in the author’s dock, 66% was 
distributed insecurely. 

Figure 44: Software (in the author’s dock) that was 
distributed over HTTP.

Moreover, further research uncovered that all major third-
party OS X security products were similarly distributed 
insecurely (see Figure 45).

Apple is well aware of these risks, and since version OS X 
Lion (10.7.5), Mac computers have shipped with a built-in 
security product, named Gatekeeper, that is designed to 
counter these attack vectors directly. 

The concept of Gatekeeper is simple, yet highly effective: 
block any untrusted software from executing. Behind the 
scenes, things are a little more complex, but for the purposes 
of this discussion, a higher-level overview suffi ces. When 
any executable content is downloaded, it is tagged with a 
‘quarantined’ attribute. The fi rst time such content is set to 
run, Gatekeeper verifi es the software. Depending on the 
user’s settings, if the software is not signed with a known 
Apple developer ID (default), or from the Mac App Store, 
Gatekeeper will disallow the application from executing. 

With Gatekeeper automatically installed and enabled on 
all modern versions of OS X, tricking users into installing 

Figure 41: Bypassing a personal fi rewall (LittleSnitch) via dylib hijacking.
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malicious software or infecting insecure downloads (which 
will break digital signatures) is essentially fully mitigated. 
(Of course, an attacker could attempt to obtain a valid Apple 
developer certifi cate, then sign their malicious software. 
However, Apple is fairly cautious about handing out such 
certifi cates, and moreover, has an effective certifi cate 
revocation process that can block certifi cates if any abuse is 
discovered. Also, if Gatekeeper is set to only allow software 
from the Mac App Store, this abuse scenario is impossible.) 

Unfortunately, by abusing a dylib hijack, an attacker can 
bypass Gatekeeper to run unsigned malicious code – even 
if the user’s settings only allow Apple-signed code from the 
Mac App Store. This (re)opens the previously discussed attack 
vectors and puts OS X users at risk once again. 

Conceptually, bypassing Gatekeeper via dylib hijacking 
is straightforward. While Gatekeeper fully validates the 
contents of software packages that are being executed (e.g. 
everything in an application bundle), it does not verify 
‘external’ components. 

Figure 47: Theoretical dmg/zip that would bypass 
Gatekeeper.

Normally this isn’t a problem – why would a downloaded 
(legitimate) application ever load relatively external code? 
(Hint: relative, yet external content.) 

As Gatekeeper only verifi es internal content, if an Apple-
signed or Mac App Store application contains a relative 
external reference to a hijackable dylib, an attacker can 
bypass Gatekeeper. Specifi cally, the attacker can create (or 
infect in transit) a .dmg or .zip fi le with the necessary folder 
structure to contain the malicious dylib in the externally 
referenced relative location. When the legitimate application 
is executed by the unsuspecting user, Gatekeeper will verify 
the application bundle then (as it is trusted, and unmodifi ed) 
allow it to execute. During the loading process, the dylib 
hijack will be triggered and the externally referenced 
malicious dylib will be loaded – even if Gatekeeper is set to 
only allow code from the Mac App Store! 

Finding a vulnerable application that fulfi ls the necessary 
prerequisites was fairly easy. Instruments.app is an Apple-
signed ‘Gatekeeper approved’ application that expects to be 
installed within a sub-directory of Xcode.app. As such, it 
contains relative references to dylibs outside of its application 
bundle; dylibs that can be hijacked. 

Figure 48: Apple’s vulnerable Instruments app.

With a vulnerable trusted application, a malicious .dmg 
image was created that would trigger the Gatekeeper bypass. 

Figure 45: Insecure downloads of major OS X security 
products.

Figure 46: Gatekeeper in action.
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First, the Instruments.app was placed into the image. Then 
an external directory structure was created that contained 
the malicious dylib (CoreSimulator.framework/Versions/A/ 
CoreSimulator). 

Figure 49: Malicious .dmg image.

To make the malicious .dmg more ‘believable’, the external 
fi les were set to hidden, a top level alias (with a custom icon) 
was created to point to Instruments.app, the background was 
changed, and the entire image was made read-only (so that it 
would automatically be displayed when double-clicked). The 
fi nal product is shown in Figure 50.

This malicious (though seemingly benign) .dmg fi le was 
then ‘deployed’ (uploaded to a public URL) for testing 
purposes. When downloaded via Safari and then executed, 
Gatekeeper’s standard ‘this is downloaded from the Internet’ 
message window was initially shown. It is important to note 
that this alert is shown for any content downloaded from the 
Internet, and thus is not unusual. 

Once this message window was dismissed, the malicious 
code was surreptitiously loaded along with the legitimate 
application. This, of course, should not have been allowed as 
Gatekeeper’s settings were at the maximum (only allow apps 
from the Mac App Store) (see Figure 51). 

As the malicious dylib was loaded and executed before 
the application’s main method, the dylib could ensure that 
nothing appeared out of the ordinary. For example, in this 
case where the malicious .dmg masquerades as a Flash 
installer, the dylib can suppress Instruments.app’s UI, and 
instead spawn a legitimate Flash installer. 

With the ability to bypass Gatekeeper and load unsigned 
malicious code, attackers can return to their old habits 
of tricking users into installing fake patches, updates 
or installers, fake AV products, or executing infected 
pirated applications. Worse yet, advanced adversaries with 
networking-level capabilities (who can intercept insecure 
connections) can now arbitrarily infect legitimate software 
downloads. Neither have to worry Gatekeeper any more. 

DEFENCES 
Dylib hijacking is a powerful new attack class against OS 
X, that affords both local and remote attackers a wide range 
of malicious attack scenarios. Unfortunately, despite being 
contacted multiple times, Apple has shown no interest in 
addressing any of the issues described in this paper. Granted, 

Figure 51: Bypassing Gatekeeper via a dylib hijack.

Figure 50: The fi nalized malicious .dmg image.
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there appears to be no easy fi x for the core issue of dylib 
hijacking as it abuses the legitimate functionality of the OS. 
However, it is the opinion of the author that Gatekeeper 
should certainly be fi xed in order to prevent unsigned 
malicious code from executing. 

Users may wonder what they can do to protect themselves. 
First, until Gatekeeper is fi xed, downloading untrusted, or 
even legitimate software via insecure channels (e.g. via the 
Internet over HTTP) is not advised. Refraining from this will 
ensure that remote attackers will be unable to gain initial 
access to one’s computer via the attack vector described in 
this paper. Due to the novelty of dylib hijacking on OS X, it 
is unlikely (though not impossible) that attackers or OS X 
malware are currently abusing such attacks locally. However, 
it can’t hurt to be sure! 

To detect local hijacks, as well as to reveal vulnerable 
applications, the author created a new application named 
Dynamic Hijack Scanner (or DHS). DHS attempts to uncover 
hijackers and vulnerable targets by scanning all running 
processes of the entire fi le-system. The application can be 
downloaded from objective-see.com. 

CONCLUSION
DLL hijacking is a well known attack class that affects the 
Windows OS. Until now, OS X was assumed to be immune 
to such attacks. This paper countered that assumption, 
illustrating a similar OS X attack, dubbed ‘dylib hijacking’. 
By abusing weak or run-path-dependent imports, found 

within countless Apple and third-party applications, this 
attack class opens up a multitude of attack scenarios to both 
local and remote attackers. From stealthy local persistence 
to a Gatekeeper bypass that provides avenues for remote 
infections, dylib hijacking is likely to become a powerful 
weapon in the arsenal of OS X attackers. And while Apple 
appears apathetic toward this novel attack, secure software 
downloads and tools such as DHS can ensure that OS X users 
remain secure... for now. 
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