
VIRUS BULLETIN www.virusbtn.com

1MARCH 2015

Covering the
global threat landscape

DYLIB HIJACKING ON OS X
Patrick Wardle
Synack, USA

(This paper was presented at CanSecWest 2015.)

DLL hijacking is a well known class of attack which was
always believed only to affect the Windows OS. However,
this paper will show that OS X is similarly vulnerable to
dynamic library hijacks. By abusing various features and
undocumented aspects of OS X’s dynamic loader, attackers
need only to ‘plant’ specially crafted dynamic libraries to
have malicious code automatically loaded into vulnerable
applications. Using this method, such attackers can perform
a wide range of malicious and subversive actions, including
stealthy persistence, load-time process injection, security
software circumvention, and a Gatekeeper bypass (affording
opportunities for remote infection). Since this attack
abuses legitimate functionality of the OS, it is challenging
to prevent and unlikely to be patched. However, this
paper will present techniques and tools that can uncover
vulnerable binaries as well as detect if a hijacking has
occurred.

BACKGROUND

Before detailing the dynamic library (dylib) hijacking attack
on OS X, dynamic link library (DLL) hijacking on Windows
will briefl y be reviewed. As the two attacks are conceptually
quite similar, examining the well-understood Windows attack
can help in gaining an understanding of the former.

DLL hijacking on Windows is best explained by Microsoft:

‘When an application dynamically loads a dynamic link
library (DLL) without specifying a fully qualifi ed path
name, Windows tries to locate the DLL by searching
a well-defi ned set of directories. If an attacker gains
control of one of the directories, they can force the
application to load a malicious copy of the DLL instead
of the DLL that it was expecting.’ [1]

To reiterate, the default search behaviour of the Windows
loader is to search various directories (such as the
application’s directory or the current working directory)
before the Windows system directory. This can be
problematic if an application attempts to load a system
library via an insuffi ciently qualifi ed path (i.e. just by its
name). In such a scenario, an attacker may ‘plant’ a malicious
DLL (the name of which matches that of the legitimate
system DLL) in one of the primary search directories. With
this malicious DLL in place, the Windows loader will fi nd the

attacker’s library before the legitimate DLL and blindly load
it into the context of the vulnerable application.

This is illustrated in Figures 1 and 2, where a vulnerable
application (Figure 1) is hijacked by a malicious DLL that
has been planted in the primary search directory (Figure 2).

Figure 1: Loading the legitimate system DLL.

Figure 2: Loading the attacker’s malicious DLL.

DLL hijacking attacks initially gained notoriety in 2010
and quickly grabbed the attention of both the media and
malicious attackers. Also known as ‘binary planting’,
‘insecure library loading’ or ‘DLL preloading’, the discovery
of this vulnerability is often attributed to H.D. Moore [2, 3].
However, the NSA was actually the fi rst to note this fl aw,
12 years prior to Moore, in 1998. In the NSA’s unclassifi ed
‘Windows NT Security Guidelines’, the organization both
describes and warns of DLL hijacking:

‘It is important that penetrators can’t insert a “fake”
DLL in one of these directories where the search fi nds it
before a legitimate DLL of the same name.’ [4]

To an attacker, DLL hijacking affords many useful scenarios.
For example, such attacks can allow a malicious library to
stealthily be persisted (without modifying the registry or
other components of the OS), privileges to be escalated, and
even provides the means for remote infection.

Malware authors were fairly quick to realize the benefi ts of
DLL hijacking. In a blog post entitled ‘What the fxsst?’ [5],
Mandiant researchers described how they had uncovered
various unrelated malware samples all named ‘fxsst.dll’.

VIRUS BULLETIN www.virusbtn.com

MARCH 20152

Upon closer inspection, they found that the samples were
all exploiting a DLL hijacking vulnerability in the Windows
shell (Explorer.exe), that provided a stealthy method of
persistence. Specifi cally, as Explorer.exe was installed in
C: \Windows, planting a library named fxsst.dll in the same
directory would result in the persistence of the malicious
DLL as the loader searched the application’s directory before
the system directory where the legitimate fxsst.dll lived.

Another example of malware using a DLL hijack can be
found within the leaked source code for the banking trojan
‘Carberp’ [6]. The source code shows the malware bypassing
User Account Control (UAC) via a DLL hijack of
sysprep.exe (see Figure 3). This binary is an auto-elevated
process, meaning that it requires no UAC prompt to gain
elevated status. Unfortunately, it was found to be vulnerable
to a DLL hijacking attack and would load a maliciously
planted DLL (named cryptbase.dll) into its elevated process
context [7].

These days, DLL hijacking on Windows is somewhat
uncommon. Microsoft was swift to respond to attacks,
patching vulnerable applications and detailing how others
could avoid this issue (i.e. simply by specifying an absolute,
or fully qualifi ed path for imported DLLs) [8]. Moreover,
OS-level mitigations were introduced, which if enabled via the
SafeDllSearchMode and/or CWDIllegalInDllSearch registry
keys, stop the majority of DLL hijackings generically.

DYLIB HIJACKING ON OS X
It has always been assumed that dynamic library hijacking
was a Windows-only problem. However, as one astute
StackOverfl ow user pointed out in 2010, ‘any OS which
allows for dynamic linking of external libraries is
theoretically vulnerable to this’ [9]. It took until 2015 for
him to be proved correct – this paper will reveal an equally
devastating dynamic library hijack attack affecting OS X.

The goal of the research presented here was to determine
whether OS X was vulnerable to a dynamic library attack.

Specifi cally, the research sought to answer the question:
could an attacker plant a malicious OS X dynamic library
(dylib) such that the OS’s dynamic loader would load
it automatically into a vulnerable application? It was
hypothesized that, much like DLL hijacking on Windows,
such an attack on OS X would provide an attacker with a
myriad of subversive capabilities. For example, stealthy
persistence, load-time process injection, security software
circumvention, and perhaps even ‘remote’ infection.

It should be noted that several constraints were placed
upon this undertaking. First, success was constrained
by disallowing any modifi cation to the system – except
for the creation of fi les (and if necessary folders). In
other words, the research ignored attack scenarios that
required the subverting of existing binaries (e.g. patching)
or modifi cations to existing OS confi guration fi les (e.g.
‘auto-run’ plists, etc.). As such attacks are well known and
trivial both to prevent and to detect, they were ignored. The
research also sought a method of hijack that was completely
independent of the user’s environment. OS X provides
various legitimate means to control the environment in
a manner that could coerce the loader to load malicious
libraries automatically into a target process. These
methods, such as setting the DYLD_INSERT_LIBRARIES
environment variable, are user-specifi c and, again, well
known and easy to detect. As such, they were of little
interest and were ignored.

The research began with an analysis of the OS X dynamic
linker and loader, dyld. This binary, found within /usr/bin,
provides standard loader and linker functionality including
fi nding, loading and linking dynamic libraries.

As Apple has made dyld open source [10], analysis was
fairly straightforward. For example, reading the source code
provided a decent understanding of dyld’s actions as an
executable is loaded and its dependent libraries are loaded
and linked in. The following briefl y summarizes the initial
steps taken by dyld (focusing on those that are relevant to the
attack described in this paper):

Figure 3: Carberp abusing a DLL hijack to bypass UAC.

 VIRUS BULLETIN www.virusbtn.com

MARCH 2015 3

1. As any new process is started, the kernel sets the
user-mode entry point to point to __dyld_start
(dyldStartup.s). This function simply sets up the stack
then jumps to dyldbootstrap::start(), which in turn calls
the loader’s _main().

2. Dyld’s _main() function (dyld.cpp) invokes link(),
which then calls an ImageLoader object’s link() method
to kick off the linking process for the main executable.

3. The ImageLoader class (ImageLoader.cpp) exposes
many functions that dyld calls in order to perform
various binary image loading logic. For example,
the class contains a link() method. When called, this
invokes the object’s recursiveLoadLibraries() method to
perform the loading of all dependent dynamic libraries.

4. The ImageLoader’s recursiveLoadLibraries() method
determines all required libraries and invokes the
context.loadLibrary() function on each. The context
object is simply a structure of function pointers that
is passed around between methods and functions. The
loadLibrary member of this structure is initialized with
the libraryLocator() function (dyld.cpp), which simply
calls the load() function.

5. The load() function (dyld.cpp) calls various helper
functions within the same fi le, named loadPhase0()
through to loadPhase5(). Each function is responsible
for handling a specifi c task of the load process, such as
resolving paths or dealing with environment variables
that can affect the load process.

6. After loadPhase5(), the loadPhase6() function
fi nally loads (maps) the required dylibs from the fi le
system into memory. It then calls into an instance of
the ImageLoaderMachO class in order to perform
Mach-O-specifi c loading and linking logic on each dylib.

With a basic understanding of dyld’s initial loading logic,
the research turned to hunting for logic that could be abused
to perform a dylib hijack. Specifi cally, the research was
interested in code in the loader that didn’t error out if a dylib
wasn’t found, or code that looked for dylibs in multiple
locations. If either of these scenarios was realized within
the loader, it was hoped that an OS X dylib hijack could be
performed.

The initial scenario was investigated fi rst. In this case, it
was hypothesized that if the loader could handle situations
where a dylib was not found, an attacker (who could
identify such situations) could place a malicious dylib in
this presumed location. From then on, the loader would
now ‘fi nd’ the planted dylib and blindly load the attacker’s
malicious code.

Recall that the loader calls the ImageLoader class’s
recursiveLoadLibraries() method to both fi nd and load all
required libraries. As shown in Figure 4, the loading code

is wrapped in a try/catch block to detect dylibs that fail to
load.

Figure 4: Error logic for dylib load failures.

Unsurprisingly, there is logic to throw an exception (with a
message) if a library fails to load. Interestingly though, this
exception is only thrown if a variable named ‘required’ is set
to true. Moreover, the comment in the source code indicates
that failure to load ‘weak’ libraries is OK. This seems to
indicate that some scenario exists where the loader is OK
with missing libraries – perfect!

Digging deeper into the loader’s source code revealed
where this ‘required’ variable is set. Specifi cally,
the doGetDependentLibraries() method of the
ImageLoaderMacho class parses the load commands
(described below) and sets the variable based on whether
or not the load command is of type LC_LOAD_WEAK_
DYLIB.

Load commands are an integral component of the Mach-O
fi le format (OS X’s native binary fi le format). Embedded
immediately following the Mach-O header, they provide
various commands to the loader. For example, there are load
commands to specify the memory layout of the binary, the
initial execution state of the main thread, and information
about the dependent dynamic libraries for the binary. To
view the load commands of a compiled binary, a tool such as
MachOView [11] or /usr/bin/otool (with the -l command-line
fl ag) can be used (see Figure 6).

The code in Figure 5 shows the loader iterating over all the
load commands within a binary, looking for those that specify
a dylib import. The format of such load commands (e.g.
LC_LOAD_DYLIB, LC_LOAD_WEAK_DYLIB, etc.) can
be found in the mach-o/loader.h fi le.

VIRUS BULLETIN www.virusbtn.com

MARCH 20154

Figure 7: The format of the LC_LOAD_* load commands.

For each dylib that an executable was dynamically linked
against, it will contain an LC_LOAD_* (LC_LOAD_DYLIB,
LC_LOAD_WEAK_DYLIB, etc.) load command. As the
loader code in Figures 4 and 5 illustrates, LC_LOAD_DYLIB
load commands specify a required dylib, while libraries

imported via LC_LOAD_WEAK_DYLIB are optional (i.e.
‘weak’). In the case of the former (LC_LOAD_DYLIB),
an exception will be thrown if the required dylib is not
found, causing the loader to abort and terminate the process.
However, in the latter case (LC_LOAD_WEAK_DYLIB), the
dylib is optional. If such a ‘weak’ dylib is not found, no harm
is done, and the main binary will still be able to execute.

Figure 8: Attempting to load a ‘weak’ dylib (LC_LOAD_
WEAK_DYLIB).

This loader logic fulfi lled the fi rst hypothetical hijack
scenario, and as such, provided a dylib hijack attack on OS X.
Namely, as illustrated in Figure 9, if a binary specifi es a weak

Figure 5: Setting the ‘required’ variable (src fi le?).

Figure 6: Dumping Calculator.app’s load commands with MachOView.

 VIRUS BULLETIN www.virusbtn.com

MARCH 2015 5

import that is not found, an attacker can place a malicious
dylib in this presumed location. From then on, the loader will
‘fi nd’ the attacker’s dylib and blindly load this malicious code
into the process space of the vulnerable binary.

Figure 9: Hijacking an application via a malicious ‘weak’
dylib.

Recall that another hijack attack was hypothesized if a
scenario existed where the loader searched for dynamic
libraries in multiple locations. In this case, it was thought that
an attacker would be able to place a malicious dylib in one
of the primary search directories (if the legitimate dylib was
found elsewhere). It was hoped that the loader would then
fi nd the attacker’s malicious dylib fi rst (before the legitimate
one), and thus naively load the attacker’s malicious library.

On OS X, load commands such as LC_LOAD_DYLIB
always specify a path to the dynamic library (as opposed
to Windows, where just the name of the library may be
provided). Because a path is provided, dyld generally does
not need to search various directories to fi nd the dynamic
library. Instead, it can simply go directly to the specifi ed
directory and load the dylib. However, analysis of dyld’s
source code uncovered a scenario in which this generality did
not hold.

Looking at the loadPhase3() function in dyld.cpp revealed
some interesting logic, as shown in Figure 10.

Dyld will iterate over an rp->paths vector, dynamically
building paths (held within the ‘newPath’ variable) which are
then loaded via the loadPhase4() function. While this does
seem to fulfi l the requirement of the second hijack scenario
(i.e. dyld looking in multiple locations for the same dylib), a
closer examination was required.

The comment on the fi rst line of dyld’s source in Figure
10 mentions the term ‘@rpath.’ According to Apple
documentation, this is a special loader keyword (introduced
in OS X 10.5, Leopard) that identifi es a dynamic library as
a ‘run-path-dependent library’ [12]. Apple explains that a
run-path dependent library ‘is a dependent library whose
complete install name (path) is not known when the library
is created’ [12]. Other online documentation such as [13]
and [14] provides more detail, describing the role of these
libraries and explaining how the @rpath keyword enables:
‘frameworks and dynamic libraries to fi nally be built only
once and be used for both system-wide installation and
embedding without changes to their install names, and
allowing applications to provide alternate locations for a
given library, or even override the location specifi ed for a
deeply embedded library’ [14].

While this feature allows software developers to deploy
complex applications more easily, it can also be abused to
perform a dylib hijack. This is true since in order to make use
of run-path-dependent libraries, ‘an executable provides a list
of run-path search paths, which the dynamic loader traverses
at load time to fi nd the libraries’ [12]. This is realized in code
in various places within dyld, including the code snippet that
was presented in Figure 10.

Since run-path dependent libraries are relatively novel and
somewhat unknown, it seemed prudent to provide an example
of building both a legitimate run-path-dependent library and a
sample application that links against it.

A run-path-dependent library is a normal dylib whose install
name is prefi xed with ‘@rpath’. To create such a library in
Xcode one can simply set the dylib’s installation directory to
‘@rpath’, as shown in Figure 11.

Figure 11: Building a run-path-dependent library.

Once the run-path-dependent library was compiled,
examination of the LC_ID_DYLIB load command (which
contains identifying information about the dylib) showed the Figure 10: Loading ‘rpath’ dependent libraries.

VIRUS BULLETIN www.virusbtn.com

MARCH 20156

run-path of the dylib. Specifi cally, the ‘name’ (path) within
the LC_ID_DYLIB load command contained the dylib’s
bundle (rpathLib.framework/ Versions/A/rpathLib), prefi xed
with the ‘@rpath’ keyword (see Figure 12).

Figure 12: ‘@rpath’ embedded in the dylib’s ‘install name’
(path).

Building an application that linked against a
run-path-dependent library was fairly straightforward as well.
First, the run-path-dependent library was added to the ‘Link
Binary With Libraries’ list in Xcode. Then a list of run-path
search directories was added to the ‘Runpath Search Paths’
list. As will be shown, these search directories are traversed
by the dynamic loader at load time in order to locate the
run-path-dependent libraries.

Figure 13: Linking in a @rpath’d dylib and specifying the
run path search paths.

Once the application was built, dumping its load commands
revealed various commands associated with the run-path
library dependency. A standard LC_LOAD_DYLIB load
command was present for the dependency on the run-path-
dependent dylib, as shown in Figure 14.

Figure 14: The dependency on the @rpath’d dylib.

In Figure 14, note that the install name (i.e. path) to the
run-path-dependent dylib is prefi xed with ‘@rpath’ and
matches the name value from the LC_ID_DYLIB load
command of the run-path-dependent dylib (see Figure 12).
This application’s embedded LC_LOAD_DYLIB load

command with the run-path-dependent dylib tells the loader,
‘I depend on the rpathLib dylib, but when built, I didn’t know
exactly where it would be installed. Please use my embedded
run-path search paths to fi nd it and load it!’

The run-path search paths that were entered into the
‘Runpath Search Paths’ list in Xcode generated LC_RPATH
load commands – one for each search directory. Dumping
the load commands of the compiled application revealed
the embedded LC_RPATH load commands, as shown in
Figure 15.

Figure 15: The embedded run-path search paths (directories).

With a practical understanding of run-path-dependent dylibs
and an application that linked against one, it was easy to
understand dyld’s source code which was responsible for
handling this scenario at load time.

When an application is launched, dyld will parse the
application’s LC_LOAD_* load commands in order to load
and link all dependent dylibs. To handle run-path-dependent
libraries, dyld performs two distinct steps: it extracts all
embedded run-path search paths and then uses this list to fi nd
and load all run-path-dependent libraries.

In order to extract all embedded run-path search paths, dyld
invokes the getRPaths() method of the ImageLoader class.
This method (invoked by the recursiveLoadLibraries()
method) simply parses the application for all LC_RPATH
load commands. For each such load command, it extracts the
run-path search path and appends it to a vector (i.e. a list), as
shown in Figure 16.

Figure 16: Extracting and saving all embedded run-path
search paths.

 VIRUS BULLETIN www.virusbtn.com

MARCH 2015 7

With a list of all embedded run-path search paths, dyld can
now ‘resolve’ all dependent run-path-dependent libraries.
This logic is performed in the loadPhase3() function in
dyld.cpp. Specifi cally, the code (shown in Figure 17) checks
to see if a dependent library’s name (path) is prefi xed with the
‘@rpath’ keyword. If so, it iterates over the list of extracted
run-path search paths, replacing the ‘@rpath’ keyword in the
import with the current search path. Then it attempts to load
the dylib from this newly resolved directory.

Figure 17: Searching run-path search directories for
@rpath’d dylibs.

It is important to note that the order of the directories that
dyld searches is deterministic and matches the order of the
embedded LC_RPATH load commands. Also, as is shown in
the code snippet in Figure 17, the search continues until the
dependent dylib is found or all paths have been exhausted.

Figure 18 illustrates this search conceptually. The loader (dyld)
can been seen searching the various embedded run-path search
paths in order to fi nd the required run-path-dependent dylib.
Note that in this example scenario, the dylib is found in the
second (i.e. non-primary) search directory (see Figure 18).

Figure 18: Dyld searching multiple run-path search
directories.

The astute reader will recognize that this loader logic opens
up yet another avenue for a dylib hijack attack. Specifi cally,
if an application is linked against a run-path-dependent
library, has multiple embedded run-path search paths, and the
run-path-dependent library is not found in a primary search
path, an attacker can perform a hijack. Such a hijack may
be accomplished simply by ‘planting’ a malicious dylib into
any of the primary run-path search paths. With the malicious
dylib in place, any time the application is subsequently run,
the loader will fi nd the malicious dylib fi rst, and load it
blindly (see Figure 19).

Figure 19: Hijacking an application via a malicious ‘@rpath’
dylib.

To summarize the fi ndings so far: an OS X system is vulnerable
to a hijacking attack given the presence of any application that:

1. Contains an LC_LOAD_WEAK_DYLIB load
command that references a non-existent dylib.

or

2. Contains both an LC_LOAD*_DYLIB load command
that references a run-path-dependent library (‘@rpath’)
and multiple LC_RPATH load commands, with the run-
path-dependent library not found in a primary run-path
search path.

The remainder of this paper will fi rst walk through a
complete dylib hijack attack, then present various attack
scenarios (persistence, load-time process injection, ‘remote’
infection etc.), before concluding with some possible
defences to counter such an attack.

In order to assist the reader in gaining a deeper understanding
of dylib hijacking, it seems prudent to detail the trials, errors,
and ultimate success of a hijack attack. Armed with this
knowledge it will be trivial to understand attack automation,
attack scenarios, and practical defences.

Recall the previously described sample application
(‘rPathApp.app’) that was created in order to illustrate linking
against a run-path-dependent dylib. This application will be
the target of the hijack.

A dylib hijack is only possible against a vulnerable
application (that is to say, one that fulfi ls either of the

VIRUS BULLETIN www.virusbtn.com

MARCH 20158

two previously described hijack conditions). Since the
example application (rPathApp.app) links against a
run-path-dependent dylib, it may be vulnerable to the
second hijack scenario. The simplest way to detect such a
vulnerability is to enable debug logging in the loader, then
simply run the application from the command line. To enable
such logging, set the DYLD_PRINT_RPATHS environment
variable. This will cause dyld to log its @rpath expansions
and dylib loading attempts. Viewing this output should
quickly reveal any vulnerable expansions (i.e. a primary
expansion that points to a non-existent dylib), as shown in
Figure 20.

Figure 20: The vulnerable (test) application, rPathApp.

Figure 20 shows the loader fi rst looking for a required dylib
(rpathLib) in a location where it does not exist. As was
shown in Figure 19, in this scenario, an attacker could plant a
malicious dylib in this primary run-path search path and the
loader will then load it blindly.

A simple dylib was created to act as a malicious hijacker
library. In order to gain automatic execution when loaded,
the dylib implemented a constructor function. Such a
constructor is executed automatically by the operating
system when the dylib is loaded successfully. This is a nice
feature to make use of, since generally code within a dylib
isn’t executed until the main application calls into it via some
exported function.

Figure 21: A dylib’s constructor will automatically be
executed.

Once compiled, this dylib was renamed to match the target
(i.e. legitimate) library: rpathlib. Following this, the necessary
directory structure (Library/One/rpathLib.framework/
Versions/A/) was created and the ‘malicious’ dylib was
copied in. This ensured that whenever the application was
launched, dyld would now fi nd (and load) the hijacker dylib
during the search for the run-path dependent dylib.

Figure 22: The ‘malicious’ dylib placed in the primary
run-path search path.

Unfortunately, this initial hijack attempt failed and the
application crashed miserably, as shown in Figure 23.

Figure 23: Success! Then crash and burning.

The good news, though, was that the loader found and
attempted to load the hijacker dylib (see the ‘RPATH
successful expansion…’ log message in Figure 23). And
although the application crashed, this was preceded by an
informative and verbose exception, thrown by dyld. The
exception seemed self explanatory: the version of the hijacker
dylib was not compatible with the required (or expected)
version. Digging into the loader’s source code revealed the
code that triggered this exception, as shown in Figure 24.

Figure 24: Dyld extracting and comparing compatibility
version numbers.

 VIRUS BULLETIN www.virusbtn.com

MARCH 2015 9

As can be seen, the loader invokes the doGetLibraryInfo()
method to extract compatibility and current version numbers
from the LC_ID_DYLIB load command of the library that
is being loaded. This extracted compatibility version number
(‘minVersion’) is then checked against the version that
the application requires. If it is too low, an incompatibility
exception is thrown.

It was quite trivial to fi x the compatibility issue (and thus
prevent the exception) by updating the version numbers in
Xcode, and then recompiling, as shown in Figure 25.

Figure 25: Setting the compatibility and current version
numbers.

Dumping the LC_ID_DYLIB load command of the
recompiled hijacker dylib confi rmed the updated (and now
compatible) version numbers, as shown in Figure 26.

Figure 26: Embedded compatibility and current version
numbers.

The updated hijacker dylib was re-copied into the
application’s primary run-path search directory. Relaunching
the vulnerable application again showed the loader ‘fi nding’
the hijacker dylib and attempting to load it. Alas, although
the dylib was now seen as compatible (i.e. the version
number checks passed), a new exception was thrown and the
application crashed once again, as shown in Figure 27.

Figure 27: ‘Symbol not found’ exception.

Once again, the exception was quite verbose, explaining
exactly why the loader threw it, and thus killed the
application. Applications link against dependent libraries
in order to access functionality (such as functions,
objects, etc.) that are exported by the library. Once a
required dylib is loaded into memory, the loader will
attempt to resolve (via exported symbols) the required
functionality that the dependent library is expected to
export. If this functionality is not found, linking fails and
the loading and linking process is aborted, thus crashing
the process.

There were various ways to ensure that the hijacker
dylib exported the correct symbols, such that it would be
fully linked in. One naive approach would have been to
implement and export code directly within the hijacker
dylib to mimic all the exports of the target (legitimate)
dylib. While this would probably have succeeded, it
seemed complex and dylib specifi c (i.e. targeting another
dylib would have required other exports). A more elegant
approach was simply to instruct the linker to look elsewhere
for the symbols it required. Of course, that elsewhere was
the legitimate dylib. In this scenario, the hijacker dylib
would simply acts as a proxy or ‘re-exporter’ dylib, and as
the loader would follow its re-exporting directives, no linker
errors would be thrown.

Figure 28: Re-exporting to the legitimate dylib.

It took some effort to get the re-exportation working
seamlessly. The fi rst step was to return to Xcode and add
several linker fl ags to the hijacker dylib project. These fl ags
included ‘-Xlinker’, ‘reexport_library’, and then the path to
the target library which contained the actual exports that the
vulnerable application was dependent upon.

Figure 29: Required linker fl ags to enable re-exporting.

These linker fl ags generated an embedded LC_REEXPORT_
DYLIB load command that contained the path to the target
(legitimate) library, as shown in Figure 30.

VIRUS BULLETIN www.virusbtn.com

MARCH 201510

Figure 30: Embedded LC_REEXPORT_DYLIB load
command.

However, all was not well. Since the re-export target of the
hijacker dylib was a run-path-dependent library, the name
fi eld in the embedded LC_REEXPORT_DYLIB (extracted
from the legitimate dylib’s LC_ID_DYLIB load command)
began with ‘@rpath’. This was problematic since, unlike
LC_LOAD*_DYLIB load commands, dyld does not resolve
run-path dependent paths in LC_REEXPORT_DYLIB load
commands. In other words, the loader will try to load
‘@rpath/rpathLib.framework/Versions/A/rpathLib’ directly
from the fi le system. This, of course, would clearly fail.

The solution was to resolve the embedded ‘@rpath’ path,
providing the full path of the target library in the LC_
REEXPORT_DYLIB load command. This was accomplished
with one of Apple’s developer tools: install_name_tool.
To update the embedded install name (path) in the LC_
REEXPORT_DYLIB load command, the tool was executed
with the -change fl ag, the existing name (within the LC_
REEXPORT_DYLIB), the new name, and fi nally the path to
the hijacker dylib, as shown in Figure 31.

Figure 31: Using install_tool_name to update the embedded
name (path).

With the path in the LC_REEXPORT_DYLIB load command
updated correctly, the hijacked dylib was re-copied into the
application’s primary run-path search directory, and then
the application was re-executed. As shown in Figure 32, this
fi nally resulted in success.

To summarize: since the rPathApp application linked against
a run-path-dependent library which was not found in the
initial run-path search directory, it was vulnerable to a dylib
hijack attack. Planting a specially compatible malicious
dylib in the initial search path directory caused the loader to
load the hijacker dylib blindly each time the application was

executed. Since the malicious dylib contained the correct
versioning information as well as re-exporting all symbols to
the legitimate dylib, all the required symbols were resolved,
thus ensuring no functionality within the application was lost
or broken.

ATTACKS

With a solid understanding of dylib hijacking on OS X behind
us, it is now time to illustrate some real-life attack scenarios
and provide some practical defences.

Advanced adversaries understand the importance of
automating as many components of an attack as possible.
Such automation increases scale and effi ciency, freeing the
attacker to focus on more demanding or complex aspects of
the attack.

The fi rst component of the hijack attack that was automated
was the discovery of vulnerable applications. A Python
script, dylibHijackScanner.py (available for download at
[15]), was created to accomplish this task. After gathering
either a list of running processes or all executables on the
fi le system, the script intelligently parses the binaries’
Mach-O headers and load commands. To detect binaries
that may be hijacked via weak dylibs, the script looks for
LC_LOAD_WEAK_DYLIB load commands that reference
non-existent dylibs. Automatically detecting binaries that
may be hijacked due to non-existent @rpath’d imports was a
little more complex. First, the script looks for a binary with at
least one LC_LOAD*_DYLIB load command that references
a run-path-dependent dylib. If such a load command is found,
the script continues parsing the binary’s load commands
looking for multiple LC_RPATHs. In the case that both these
prerequisites hold true, the script checks to see whether the
run-path-dependent library import is found in a primary
run-path search path. If the library does not exist, the script
alerts the user that the binary is vulnerable. Executing the

Figure 32: Successfully dylib hijacking a vulnerable
application.

 VIRUS BULLETIN www.virusbtn.com

MARCH 2015 11

scanner script revealed a surprising number of vulnerable
applications, including (as expected) the vulnerable test
application, rPathApp.app.

Figure 33: Automatically detecting vulnerable applications.

As can be seen in Figure 33, the scanner script found nearly
150 vulnerable binaries just on the author’s work laptop!
Interestingly, the majority of vulnerable applications fell into
the more complex (from a prerequisite standpoint) ‘multiple
rpath’ category. Due to space constraints, the full list of
vulnerable applications cannot be shown here. However,
Table 1 lists several of the more widespread or well-
recognized applications that were found by the scanner script
to be vulnerable to a dylib hijack.

Application Company Vulnerability

iCloud Photos Apple rpath import

Xcode Apple rpath import

Word Microsoft rpath & weak import

Excel Microsoft rpath & weak import

Google Drive Google rpath import

Java Oracle rpath import

GPG Keychain GPG Tools rpath import

Dropbox (garcon) Dropbox rpath import

Table 1: Common vulnerable applications.

With an automated capability to uncover vulnerable
applications, the next logical step was to automate the creation
of compatible hijacker dylibs. Recall that two components of
the hijacker dylib had to be customized in order to perform
a hijack successfully. First, the hijacker dylib’s versioning
numbers had to be compatible with the legitimate dylib.
Second (in the case of the rpath hijack), the hijacker dylib also
had to contain a re-export (LC_REEXPORT_DYLIB) load
command that pointed to the legitimate dylib, ensuring that all
required symbols were resolvable.

It was fairly straightforward to automate the customization
of a generic dylib to fulfi l these two prerequisites. A second
Python script, createHijacker.py (also available for download

at [15]), was created to perform this customization. First,
the script fi nds and parses the relevant LC_ID_DYLIB load
command within the target dylib (the legitimate dylib which
the vulnerable application loads). This allows the necessary
compatibility information to be extracted. Armed with this
information, the hijacker dylib is similarly parsed, until its
LC_ID_DYLIB load command is found. The script then
updates the hijacker’s LC_ID_DYLIB load command with
the extracted compatibility information, thus ensuring a
precise compatibility versioning match. Following this, the
re-export issue is addressed by updating the hijacker dylib’s
LC_REEXPORT_DYLIB load command to point to the
target dylib. While this could have been achieved by updating
the LC_REEXPORT_DYLIB load command manually, it
proved far easier simply to execute the install_name_tool
command.

Figure 34 shows the Python script automatically confi guring
a generic hijacker dylib in order to exploit the vulnerable
example application, rpathApp.app.

Figure 34: Automated hijacker creation.

Dylib hijacking can be used to perform a wide range of
nefarious actions. This paper covers several of these,
including persistence, load-time process injection, bypassing
security products, and even a Gatekeeper bypass. These
attacks, though highly damaging, are all realized simply
by planting a malicious dylib which abuses legitimate
functionality provided by the OS loader. As such, they are
trivial to accomplish yet unlikely to be ‘patched out’ or even
detected by personal security products.

Using dylib hijacking to achieve stealthy persistence is one
of the most advantageous uses of the attack. If a vulnerable
application is started automatically whenever the system
is rebooted or the user logs in, a local attacker can perform
a persistent dylib hijack to gain automatic execution of
malicious code. Besides a novel persistence mechanism, this

VIRUS BULLETIN www.virusbtn.com

MARCH 201512

scenario affords the attacker a fairly high level of stealth.
First, it simply requires the planting of a single fi le – no
OS components (e.g. startup confi guration fi les or signed
system binaries) are modifi ed. This is important since such
components are often monitored by security software or are
trivial to verify. Second, the attacker’s dylib will be hosted
within the context of an existing trusted process, making it
diffi cult to detect as nothing will obviously appear amiss.

Of course, gaining such stealthy and elegant persistence
requires a vulnerable application that is automatically
started by the OS. Apple’s iCloud Photo Stream Agent
(/Applications/iPhoto.app/Contents/Library/LoginItems/
PhotoStreamAgent.app) is started automatically whenever a
user logs in, in order to sync local content with the cloud. As
luck would have it, the application contains multiple run-path
search directories and several @rpath imports that are not
found in the primary run-path search directory. In other
words, it is vulnerable to a dylib hijack attack.

Figure 35: Apple’s vulnerable Photo Stream Agent.

Using the createHijacker.py script, it was trivial to confi gure
a malicious hijacker dylib to ensure compatibility with the
target dylib and application. It should be noted that in this
case, since the vulnerable import (‘PhotoFoundation’) was
found within a framework bundle, the same bundle structure
was recreated in the primary run-path search directory
(/ Applications/iPhoto.app/Contents/Library/LoginItems/).
With the correct bundle layout and malicious hijacker dylib
(renamed as ‘PhotoFoundation’) placed within the primary
run-path search directory, the loader found and loaded the
malicious dylib whenever the iCloud Photo Stream Agent
was started. Since this application was executed by the OS,
the hijacker dylib was stealthily and surreptitiously persisted
across reboots.

Figure 36: Hijacking Apple’s Photo Stream Agent for
persistence.

As a fi nal note on persistence, if no vulnerable applications are
found to be started automatically by the OS, any vulnerable
application commonly started by the user (such as a browser,

or mail client) may be targeted as well. Alternatively, a
legitimate vulnerable application could easily be made
persistent in a variety of ways (for example registering it as
a Login Item, etc.), then persistently exploited. Although this
latter scenario increases the visibility of the attack, the attacker
dylib would, of course, prevent any UI from being displayed.
Thus, it’s unlikely that the majority of users would notice a
legitimate (Apple) binary automatically being started (and
exploited) in the background.

Process injection, or coercing an external process into
loading a dynamic library, is another useful attack scenario of
dylib hijacking. In the context of this paper, ‘injection’ refers
to load-time injection (i.e. whenever the process is started)
as opposed to run-time injection. While the latter is arguably
more powerful, the former is far simpler and often achieves
the same level of damage.

Using dylib hijacking to coerce an external process into
persistently loading a malicious dylib is a powerful and
stealthy technique. As with the other dylib hijack attack
scenarios, it does not require any modifi cations to OS
components or binaries (e.g. patching the target process’s
on-disk binary image). Moreover, since the planted dylib
will persistently and automatically be loaded into the
target process space each time the process is started, an
attack no longer needs a separate monitoring component
(to detect when the target process is started, then inject a
malicious dylib). Also, since the attacker simply requires a
malicious hijacker dylib to be planted, it neatly side-steps the
complexities of run-time process injection. Finally, as this
injection technique abuses legitimate functionality provided
by the OS loader, it is unlikely to be detected by personal
security products (which often attempt to prevent remote
process injection by monitoring ‘inter-process’ APIs).

Xcode is Apple’s ‘Integrated Development Environment’
(IDE) application. It is used by developers to write both
OS X and iOS applications. As such, it is a juicy target
for an advanced adversary who may wish to inject
code into its address space to surreptitiously infect the
developer’s products (i.e. as a creative autonomous malware
propagation mechanism). Xcode and several of its various
helper tools and utilities are vulnerable to dylib hijack
attacks. Specifi cally, run-path-dependent dylibs, such as
DVTFoundation are not found in Xcode’s primary run-path
search directories (see Figure 37).

The process injection hijack against Xcode was fairly
straightforward to complete. First, a hijacker dylib was
confi gured, such that its versioning information was
compatible and it re-exported all symbols to the legitimate
DVTFoundation. Then, the confi gured hijacker dylib was
copied to /Applications/Xcode.app/Contents/Frameworks/
DVTFoundation.framework/Versions/A/ (Frameworks/
being the primary run-path search directory). Now, whenever

 VIRUS BULLETIN www.virusbtn.com

MARCH 2015 13

Xcode was started, the malicious code was automatically
loaded as well. Here, it was free to perform actions such as
intercepting compile requests and surreptitiously injecting
malicious source or binary code into the fi nal products.

As Ken Thompson noted in his seminal work ‘Refl ections on
Trusting Trust’ [16], when you can’t trust the build process or
compiler, you can’t even trust the code that you create.

Figure 38: Process ‘injection’ via dylib hijacking.

Besides persistence and load-time process injection, dylib
hijacking can be used to bypass personal security products.
Specifi cally, by leveraging a dylib hijack attack, an attacker
can coerce a trusted process into automatically loading
malicious code, then perform some previous blocked or
‘alertable’ action, now without detection.

Personal security products (PSPs) seek to detect malicious
code via signatures, heuristic behavioural analysis, or simply
by alerting the user whenever some event occurs. Since
dylib hijacking is a novel technique that abuses legitimate
functionality, both signature-based and heuristic-based
products are trivial to bypass completely. However, security
products, such as fi rewalls, that alert the user about any
outgoing connections from an unknown process, pose more
of a challenge to an attacker. Dylib hijacking can trivially
thwart such products as well.

Personal fi rewalls are popular with OS X users. They often
take a somewhat binary approach, fully trusting outgoing
network connections from known processes, while alerting
the user to any network activity originating from unknown
or untrusted processes. While this is an effective method for
detecting basic malware, advanced attackers can trivially
bypass these products by exploiting their Achilles heel:
trust. As mentioned, generally these products contain default
rules, or allow the user to create blanket rules for known,
trusted processes (e.g. ‘allow any outgoing connection from
process X’). While this ensures that legitimate functionality
is not broken, if an attacker can introduce malicious code

into the context of a trusted process, the code will inherit the
process’s trust, and thus the fi rewall will allow its outgoing
connections.

GPG Tools [17] is a message encryption suite for OS X that
provides the ability to manage keys, send encrypted mail,
or, via plug-ins, enable cryptographic services to arbitrary
applications. Unfortunately, its products are susceptible to
dylib hijacking.

Figure 39: GPG Tools’ vulnerable keychain app.

As GPG Keychain requires various Internet functionality (e.g.
to look up keys on keyservers), it’s likely to have an ‘allow
any outgoing connection’ rule, as shown in Figure 40.

Figure 40: Access rule for GPG Keychain.

Using a dylib hijack, an attacker can target the GPG
Keychain application to load a malicious dylib into its
address space. Here, the dylib will inherit the same level
of trust as the process, and thus should be able to create
outgoing connections without generating an alert. Testing
this confi rmed that the hijacker dylib was able to access the
Internet in an uninhibited manner (see Figure 41).

Defensive-minded individuals may correctly point out
that, in this scenario, GPG Keychain’s fi rewall rule could
be tightened to mitigate this attack, by only allowing
outgoing connections to specifi c remote endpoints (e.g.
known key servers). However, there are a myriad of other
vulnerable applications that may be hijacked to access the
network in a similarly uninhibited manner. Or, in the case
of the Little Snitch fi rewall, the inclusion of a system-level
undeletable fi rewall rule allowing any connection from
any process to talk to iCloud.com endpoints is more than
enough for a full bypass (i.e. using a remote iCloud iDrive
as a C&C server).

So far, the dylib attack scenarios described here have all been
local. While they are powerful, elegant and stealthy, they all
require existing access to a user’s computer. However, dylib
hijacking can also be abused by a remote attacker in order to
facilitate gaining initial access to a remote computer.

Figure 37: Apple’s vulnerable IDE, Xcode.

VIRUS BULLETIN www.virusbtn.com

MARCH 201514

There are a variety of ways to infect Mac computers, but the
simplest and most reliable is to deliver malicious content
directly to end target(s). The ‘low-tech’ way is to coerce the
user into downloading and installing the malicious content
manually. Attackers creatively employ a range of techniques
to accomplish this, such as providing ‘required’ plug-ins (to
view content), fake updates or patches, fake security tools
(‘rogue’ AV products), or even infected torrents.

Figure 42: Masked malicious content.

If the user is tricked into downloading and running any of
this malicious content, they could become infected. While
‘low tech’, the success of such techniques should not be
underestimated. In fact, when a rogue security program
(Mac Defender) was distributed by such means, hundreds
of thousands of OS X users were infected, with over 60,000
alone contacting AppleCare in order to resolve the issue
[18].

Relying on trickery to infect a remote target will probably
not work against more computer-savvy individuals. A more
reliable (though far more advanced) technique relies on
man-in-the-middling users’ connections as they download
legitimate software. Due to the constraints of the Mac
App Store, most software is still delivered via developer
or company websites. If such software is downloaded
via insecure connections (e.g. over HTTP), an attacker
with the necessary level of network access may be able
to infect the download in transit. When the user then
runs the software, they will become infected, as shown in
Figure 43.

Figure 43: Man-in-the-middling a software download.

Readers may be thinking, ‘hey, it’s 2015, most software
should be downloaded via secure channels, right?’
Unfortunately, even today, the majority of third-party OS
X software is distributed insecurely. For example, of the
software found installed in the author’s dock, 66% was
distributed insecurely.

Figure 44: Software (in the author’s dock) that was
distributed over HTTP.

Moreover, further research uncovered that all major third-
party OS X security products were similarly distributed
insecurely (see Figure 45).

Apple is well aware of these risks, and since version OS X
Lion (10.7.5), Mac computers have shipped with a built-in
security product, named Gatekeeper, that is designed to
counter these attack vectors directly.

The concept of Gatekeeper is simple, yet highly effective:
block any untrusted software from executing. Behind the
scenes, things are a little more complex, but for the purposes
of this discussion, a higher-level overview suffi ces. When
any executable content is downloaded, it is tagged with a
‘quarantined’ attribute. The fi rst time such content is set to
run, Gatekeeper verifi es the software. Depending on the
user’s settings, if the software is not signed with a known
Apple developer ID (default), or from the Mac App Store,
Gatekeeper will disallow the application from executing.

With Gatekeeper automatically installed and enabled on
all modern versions of OS X, tricking users into installing

Figure 41: Bypassing a personal fi rewall (LittleSnitch) via dylib hijacking.

 VIRUS BULLETIN www.virusbtn.com

MARCH 2015 15

malicious software or infecting insecure downloads (which
will break digital signatures) is essentially fully mitigated.
(Of course, an attacker could attempt to obtain a valid Apple
developer certifi cate, then sign their malicious software.
However, Apple is fairly cautious about handing out such
certifi cates, and moreover, has an effective certifi cate
revocation process that can block certifi cates if any abuse is
discovered. Also, if Gatekeeper is set to only allow software
from the Mac App Store, this abuse scenario is impossible.)

Unfortunately, by abusing a dylib hijack, an attacker can
bypass Gatekeeper to run unsigned malicious code – even
if the user’s settings only allow Apple-signed code from the
Mac App Store. This (re)opens the previously discussed attack
vectors and puts OS X users at risk once again.

Conceptually, bypassing Gatekeeper via dylib hijacking
is straightforward. While Gatekeeper fully validates the
contents of software packages that are being executed (e.g.
everything in an application bundle), it does not verify
‘external’ components.

Figure 47: Theoretical dmg/zip that would bypass
Gatekeeper.

Normally this isn’t a problem – why would a downloaded
(legitimate) application ever load relatively external code?
(Hint: relative, yet external content.)

As Gatekeeper only verifi es internal content, if an Apple-
signed or Mac App Store application contains a relative
external reference to a hijackable dylib, an attacker can
bypass Gatekeeper. Specifi cally, the attacker can create (or
infect in transit) a .dmg or .zip fi le with the necessary folder
structure to contain the malicious dylib in the externally
referenced relative location. When the legitimate application
is executed by the unsuspecting user, Gatekeeper will verify
the application bundle then (as it is trusted, and unmodifi ed)
allow it to execute. During the loading process, the dylib
hijack will be triggered and the externally referenced
malicious dylib will be loaded – even if Gatekeeper is set to
only allow code from the Mac App Store!

Finding a vulnerable application that fulfi ls the necessary
prerequisites was fairly easy. Instruments.app is an Apple-
signed ‘Gatekeeper approved’ application that expects to be
installed within a sub-directory of Xcode.app. As such, it
contains relative references to dylibs outside of its application
bundle; dylibs that can be hijacked.

Figure 48: Apple’s vulnerable Instruments app.

With a vulnerable trusted application, a malicious .dmg
image was created that would trigger the Gatekeeper bypass.

Figure 45: Insecure downloads of major OS X security
products.

Figure 46: Gatekeeper in action.

VIRUS BULLETIN www.virusbtn.com

MARCH 201516

First, the Instruments.app was placed into the image. Then
an external directory structure was created that contained
the malicious dylib (CoreSimulator.framework/Versions/A/
CoreSimulator).

Figure 49: Malicious .dmg image.

To make the malicious .dmg more ‘believable’, the external
fi les were set to hidden, a top level alias (with a custom icon)
was created to point to Instruments.app, the background was
changed, and the entire image was made read-only (so that it
would automatically be displayed when double-clicked). The
fi nal product is shown in Figure 50.

This malicious (though seemingly benign) .dmg fi le was
then ‘deployed’ (uploaded to a public URL) for testing
purposes. When downloaded via Safari and then executed,
Gatekeeper’s standard ‘this is downloaded from the Internet’
message window was initially shown. It is important to note
that this alert is shown for any content downloaded from the
Internet, and thus is not unusual.

Once this message window was dismissed, the malicious
code was surreptitiously loaded along with the legitimate
application. This, of course, should not have been allowed as
Gatekeeper’s settings were at the maximum (only allow apps
from the Mac App Store) (see Figure 51).

As the malicious dylib was loaded and executed before
the application’s main method, the dylib could ensure that
nothing appeared out of the ordinary. For example, in this
case where the malicious .dmg masquerades as a Flash
installer, the dylib can suppress Instruments.app’s UI, and
instead spawn a legitimate Flash installer.

With the ability to bypass Gatekeeper and load unsigned
malicious code, attackers can return to their old habits
of tricking users into installing fake patches, updates
or installers, fake AV products, or executing infected
pirated applications. Worse yet, advanced adversaries with
networking-level capabilities (who can intercept insecure
connections) can now arbitrarily infect legitimate software
downloads. Neither have to worry Gatekeeper any more.

DEFENCES
Dylib hijacking is a powerful new attack class against OS
X, that affords both local and remote attackers a wide range
of malicious attack scenarios. Unfortunately, despite being
contacted multiple times, Apple has shown no interest in
addressing any of the issues described in this paper. Granted,

Figure 51: Bypassing Gatekeeper via a dylib hijack.

Figure 50: The fi nalized malicious .dmg image.

 VIRUS BULLETIN www.virusbtn.com

MARCH 2015 17

there appears to be no easy fi x for the core issue of dylib
hijacking as it abuses the legitimate functionality of the OS.
However, it is the opinion of the author that Gatekeeper
should certainly be fi xed in order to prevent unsigned
malicious code from executing.

Users may wonder what they can do to protect themselves.
First, until Gatekeeper is fi xed, downloading untrusted, or
even legitimate software via insecure channels (e.g. via the
Internet over HTTP) is not advised. Refraining from this will
ensure that remote attackers will be unable to gain initial
access to one’s computer via the attack vector described in
this paper. Due to the novelty of dylib hijacking on OS X, it
is unlikely (though not impossible) that attackers or OS X
malware are currently abusing such attacks locally. However,
it can’t hurt to be sure!

To detect local hijacks, as well as to reveal vulnerable
applications, the author created a new application named
Dynamic Hijack Scanner (or DHS). DHS attempts to uncover
hijackers and vulnerable targets by scanning all running
processes of the entire fi le-system. The application can be
downloaded from objective-see.com.

CONCLUSION
DLL hijacking is a well known attack class that affects the
Windows OS. Until now, OS X was assumed to be immune
to such attacks. This paper countered that assumption,
illustrating a similar OS X attack, dubbed ‘dylib hijacking’.
By abusing weak or run-path-dependent imports, found

within countless Apple and third-party applications, this
attack class opens up a multitude of attack scenarios to both
local and remote attackers. From stealthy local persistence
to a Gatekeeper bypass that provides avenues for remote
infections, dylib hijacking is likely to become a powerful
weapon in the arsenal of OS X attackers. And while Apple
appears apathetic toward this novel attack, secure software
downloads and tools such as DHS can ensure that OS X users
remain secure... for now.

REFERENCES
[1] Secure loading of libraries to prevent DLL

preloading attacks. http://blogs.technet.com/cfs-
fi le.ashx/__key/CommunityServer-Components-
PostAttachments/00-03-35-14-21/Secure-loading-of-
libraries-to-prevent-DLL-Preloading.docx.

[2] DLL hijacking. http://en.wikipedia.org/wiki/
Dynamic-link_library#DLL_hijacking.

[3] Dynamic-Link Library Hijacking.
http://www.exploit-db.com/wp-content/themes/
exploit/docs/31687.pdf.

[4] Windows NT Security Guidelines.
http://www.autistici.org/loa/pasky/NSAGuideV2.PDF.

[5] What the fxsst? https://www.mandiant.com/blog/
fxsst/.

[6] Leaked Carberp source code. https://github.com/
hzeroo/Carberp.

Figure 52: Objective-see’s DHS scanner.

VIRUS BULLETIN www.virusbtn.com

MARCH 201518

[7] Windows 7 UAC whitelist: Proof-of-concept source
code. http://www.pretentiousname.com/misc/W7E_
Source/win7_uac_poc_details.html.

[8] Microsoft Security Advisory 2269637; Insecure
Library Loading Could Allow Remote Code
Execution. https://technet.microsoft.com/en-us/
library/security/2269637.aspx.

[9] What is dll hijacking? http://stackoverfl ow.com/
a/3623571/3854841.

[10] OS X loader (dyld) source code.
http://www.opensource.apple.com/source/dyld.

[11] MachOView. http://sourceforge.net/projects/
machoview/.

[12] Run-Path Dependent Libraries.
https://developer.apple.com/library/
mac/documentation/DeveloperTools/
Conceptual/DynamicLibraries/100-Articles/
RunpathDependentLibraries.html.

[13] Using @rpath: Why and How. http://www.dribin.
org/dave/blog/archives/2009/11/15/rpath/.

[14] Friday Q&A 2012-11-09: dyld: Dynamic Linking On
OS X. https://www.mikeash.com/pyblog/friday-qa-
2012-11-09-dyld-dynamic-linking-on-os-x.html.

[15] dylibHijackScanner.py & createHijacker.py.
https://github.com/synack/.

[16] Refl ections on Trusting Trust.
http://cm.bell-labs.com/who/ken/trust.html.

[17] GPG Tools. https://gpgtools.org/.

[18] Apple support to infected Mac users: ‘You cannot
show the customer how to stop the process’.
https://nakedsecurity.sophos.com/2011/05/24/apple-
support-to-infected-mac-users-you-cannot-show-the-
customer-how-to-stop-the-process.

Editor: Martijn Grooten

Chief of Operations: John Hawes

Security Test Engineers: Scott James, Tony Oliveira, Adrian Luca

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

Consultant Technical Editors: Dr Morton Swimmer, Ian Whalley

© 2015 Virus Bulletin Ltd, The Pentagon, Abingdon Science
Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. Fax: +44 (0)1865 543153
Email: editorial@virusbtn.com
Web: http://www.virusbtn.com/

