
VIRUS BULLETIN www.virusbtn.com

1MARCH 2015

Covering the
global threat landscape

A TIMELINE OF MOBILE BOTNETS
Ruchna Nigam
Fortinet, France

(This paper was presented at Botconf 2014.)

The recent explosion in smartphone usage has not gone
unnoticed by malware authors. Indeed, malware authors
have increasingly focused their attention on mobile devices,
leading to a steep rise in mobile malware over the past couple
of years. This paper focuses particularly on mobile bot
variants that can be controlled remotely by an attacker.

The paper begins with a comparison between mobile
and PC botnets, discussing fundamental, conceptual and
implementational differences between them. Next, some
precursors to fully functional mobile bots are discussed,
along with some proof-of-concept mobile botnets that have
been published for research purposes.

The crux of the paper is an inventory of known mobile bot
variants in the wild. The inventory is presented in table
form, ordered chronologically based on the variants’ date
of discovery. The table lists features such as the command
and control (C&C) channel used, C&C commands, the bots’
abilities, their main motivation(s), and the number of known
samples of each. Some variants are then described in further
detail, based on criteria such as unusual functionalities,
anti-debugging tricks, code obfuscation and traffi c
encryption, and on whether they are served using unusual
attack vectors.

The paper ends with some statistics based on the analysis of
the bot variants listed in the inventory and some inferences
that can be drawn from these statistics. My motivation for this
paper stems ultimately from the possibility of this information
being of use in the design of future mobile security systems.

INTRODUCTION
2014 marked the 10th year of the existence of mobile malware
[1], which began with the discovery of Cabir (the fi rst mobile
worm) in 2004. Since then, mobile malware has broadly
followed the same evolutionary path as PC malware, albeit
at a much faster pace. This evolution includes the evident
emergence of mobile phone bots – pieces of malware that
can be controlled by a remote entity (a command and control
[C&C] server or botmaster) to perform various functions.

The concept of this paper came about with the idea of creating
an inventory of types of known mobile bot variants and, more
importantly, of studying the differences and commonalities
between them. 60-odd mobile bot variants have been
examined and analysed, starting with variants from as early

as 2010, up until the recently discovered version of the
CryptoLocker ransomware targeting the Android platform.

BOTNETS: PC VS. MOBILE
In this section, some fundamental, conceptual and
implementational differences between PC and mobile botnets
will be discussed.

• Platform of operation: The platform on which the
botmasters and slaves run is a fundamental difference
between mobile and PC botnets. In the case of PC
malware, both the botmaster and slave run on the same
platform, i.e. a PC, whereas in the case of mobile botnets,
the slave runs on a mobile phone, while the botmaster runs
either on a PC or on a phone that is operated manually by
an attacker. Botmasters haven’t yet been observed running
autonomously on phones. One could speculate that this is
due to constraints on resources in mobile phones, such as
battery life and computational power.

• Connectivity: Mobile botnets are reliant on the
connectivity of a mobile phone to a cellular network for
communication with a C&C server, whereas PC botnets
are reliant on the Internet access of the PC, which is
mostly affected only by network glitches or technical
faults in the device itself. The fi eld could theoretically be
considered level for the two kinds of botnets in this case.
However, in practice, cellular network coverage and
connectivity varies signifi cantly in different parts of the
world, meaning that mobile bots may be subject to more
variations in connectivity than their PC counterparts.

• Lucrativeness: Mobile devices provide a fundamentally
more lucrative attack surface owing to the fact that they
are almost always carried around by the user, providing a
greater probability of relevant information being grabbed
from audio and video recordings and camera captures,
as opposed to PC botnets that depend both on the
device’s uptime and the user’s availability at the device.
A particularly interesting motivation for mobile botnets
that doesn’t exist in their PC counterparts is the ability to
track the location of a victim in real time.

• Detection: Possibilities of detection using signs of
infection exist for both mobile and PC botnets. In addition,
mobile botnets also face the unique risk of detection via
phone bills, i.e. either as a result of unexpectedly high
bills due to Internet connection and/or SMS messages in
fi xed usage plans, or as a result of unusual/unrecognized
numbers appearing in the call/SMS history on bills.

• Takedown: Fortunately for security enforcers, mobile
botnets are still fairly easy to take down – all cases seen

VIRUS BULLETIN www.virusbtn.com

MARCH 20152

in the wild so far have had a single point of takedown,
i.e. either a phone number, a server or an email address.
However, with the emergence of new variants with
remotely upgradeable C&Cs, mobile botnets might be
heading towards the level of takedown complexity seen
in PC botnets.

THE EARLY STAGES OF MOBILE BOTNETS
This section will introduce the infamous Yxes malware
for the Symbian platform, which was pitted as the fi rst step
towards mobile botnets, as well as some other proof-of-
concept mobile botnets.

In 2009, a piece of Symbian malware named Yxes was
discovered. Yxes made the headlines particularly for being
the foretaste of a mobile botnet [2]. There were two main
reasons for this speculation:

1. Internet access: The malware collected information
from the infected phone, such as its serial number and
subscription number, and forwarded them to a remote
server, fulfi lling one requirement for qualifi cation as a
bot client, i.e. reporting to a remote server.

2. SMS propagation: The malware, in effect, sent SMS
messages to the phone’s contacts. The SMS messages
contained a download link which pointed to a copy
of the malware itself, thus qualifying it as a self-
propagating worm. This further fuelled speculation
of it being part of a botnet since the remote copy of
the malware could be upgraded by the attacker(s)
to include other functionalities such as the ability to
listen for commands.

However, Yxes isn’t classifi ed as a bot since it lacks one
fundamental bot functionality: the ability to take commands
from a remote location.

In the same year, another piece of malware, known as
Eeki.B, was discovered on iOS. The variant possessed the
ability to steal information from the infected phone, such as
its SMS database, iPhoneOS version and SQL version, and to
send the information to a remote server in targzipped format.
It also scanned fi xed IP ranges and the phone’s local IP range
for other jailbroken iPhones and sent a copy of itself to them.

Eeki.B was not included in this paper’s inventory for the
following reasons:

1. Jailbroken devices: The malware worked only on
jailbroken devices, and in addition, only on ones that
had an SSH-enabled application and used the default
ssh password ‘alpine’.

2. C&C down: As in the previous case, the malware
would need to be able to receive (and act on)
commands from a remote location in order for it to
qualify as a bot. In this case, there were no confi rmed

cases of an exact response received from the C&C. It
appears that the C&C was taken down fairly quickly.

However, Eeki.B is considered a precursor to a mobile bot
due to the fact that it possessed the ability to receive and
execute shell scripts from a remote server [3].

PROOFS OF CONCEPT (PoCs)
This section lists some mobile botnet PoCs that have been
released over the years:

• In 2010, a PoC for a cellular botnet architecture was
presented [4]. The authors evaluated a P2P-based C&C
mechanism for mobile phone botnets and implemented
it on jailbroken iPhones. They compared multiple
approaches for C&C communication – P2P, SMS and
SMS-HTTP – and concluded that an SMS-HTTP hybrid
approach was optimal for C&C communication because
of the diffi culty in monitoring and disrupting it.

• In 2011, the PoC for an advanced (at the time) Android
botnet was introduced. The botnet, called Andbot [5],
used a novel C&C strategy named ‘URL fl ux’. The
authors used a Username Generation Algorithm (UGA)
to generate the username of a social media account
that served as the C&C. The account would generate
encrypted Tweets that would serve as commands after
decryption by the bot. They found Andbot to be stealthy,
resilient and low cost.

• In the same year, another PoC was presented that made
use of a mechanism for proxying the application layer
and modem on the phone [6]. The concept was based on
previous work that used the same mechanism for SMS
fuzzing [7]. The botnet architecture presented placed
the bot functionality between the application layer
and the modem, which would then listen for received
SMS messages, decode them and check for a bot key.
If the key was found, the payload functionality would
be performed. Otherwise, the SMS message would be
passed onto the application layer, as is done by default.

• In 2012, the authors of [8] presented the detailed design
of a mobile botnet PoC. They also included new attack
vectors for spreading the bot code to smartphones.
They used SMS messages as the C&C channel. They
compared structured and unstructured P2P architectures
and concluded that the structured architecture (a
modifi ed Kademlia) was a better option.

INVENTORY
Table 1 lists known mobile bot variants in the wild. The table
is ordered chronologically based on the variants’ date of
discovery, and lists features such as the C&C channel used,
C&C commands, the bots’ abilities, their main motivation(s),
and the number of known samples of each.

 VIRUS BULLETIN www.virusbtn.com

MARCH 2015 3

Date1 Name of variant C&C
type

Info leaked by
default

Botnet commands Bot capabilities Main
motivation

#2

Sep
2010

Android/SmsHowU.A SMS None ‘How are you???’ or ‘how are
you?’

Send location using GPS
and Google Maps link
to current geographic
location via SMS

Grab location of
victim

18

Sep
2010

SymbOS/Zitmo.A SMS None ON; OFF; ADD SENDER;
SET SENDER; REM
SENDER; BLOCK ON;
BLOCK OFF; SET ADMIN

SMS forwarding SMS/mTAN
stealing

2

Jan
2011

Android/Geinimi.A HTTP
port 8080

Phone number;
IMEI; network
operator details;
IMSI; voice mail
number; SIM
operator details; SIM
serial number; SIM
state; build info

PostUrl; call://; email://;
map://; sms://; search://;
install://; shortcut://; contact://;
wallpaper://; bookmark://;
http://; toast://; startapp://;
suggestsms://; silentsms://;
text://; contactlist; smsrecord;
deviceinfo; location; sms;
register; call; suggestsms;
skiptime; changefrequency;
applist; updatehost; install;
uninstall; showurl; shell; kill;
start; smskiller; dsms

Send email and SMS;
make phone calls;
update C&C address;
selective deletion
of SMS messages;
add new application
shortcut icons; create
a bookmark; display
notifi cations; list running
processes; perform web
search; display Google
Map of current location,
etc.

Propagation
of possible
malware

632

Feb
2011

BlackBerry/Zitmo.A SMS None ON; OFF; ADD SENDER;
SET SENDER; REM
SENDER; BLOCK ON;
BLOCK OFF; SET ADMIN

SMS forwarding SMS/mTAN
stealing

1

Feb
2011

SymbOS/Zitmo.B SMS None UNINSTALL 45930; SET
ADMIN

SMS forwarding; install
new packages; send
an SMS with text ‘app
installed ok’

SMS/mTAN
stealing;
propagation
of possible
malware

2

Feb
2011

WinCE/Zitmo.B SMS None UNINSTALL 45930; SET
ADMIN

Install new packages;
forward SMS; send an
SMS with text ‘app
installed ok’

SMS/mTAN
stealing;
propagation
of possible
malware

2

Mar
2011

Android/PjApps.A HTTP
port 8118

IMEI; IMSI; phone
number; SMS service
centre; ICCID

execMark; execPush;
execSoft; execTanc; execXbox

Insert bookmark; send
SMS; install a new
application; open URL in
phone browser

Financial;
propagation
of possible
malware

320

May
2011

Android/Smspacem.A HTTP +
SMS

Phone number;
network operator
name

HTTP: formula401; pacem
SMS: health

Send SMS to all contacts
on phone containing an
HTTP link; send victim’s
email address via HTTP;
SMS command sends an
SMS back to the sender
saying ‘I am infected and
alive ver 1.00’

Propagation
of possible
malware; spam

27

1 Date of discovery of the fi rst sample.
2 Number of unique samples.

Table 1: Known mobile bot variants, in chronological order.

VIRUS BULLETIN www.virusbtn.com

MARCH 20154

Date1 Name of variant C&C
type

Info leaked by
default

Botnet commands Bot capabilities Main
motivation

#2

Jun
2011

Android/CruseWin.A HTTP IMEI sms; insms; url; clean; listapp;
update

Send SMS; relay
SMS; update C&C
address; list installed
applications on
phone; delete specifi c
application from
phone; visit specifi ed
URL if bot’s version is
different from version
number received from
C&C

Spying or
fi nancial (by
sending SMS
to premium
numbers)

26

Jun
2011

Android/
DroidKungFu.A

HTTP IMEI execDelete; execInstall;
execOpenUrl; execStartApp

Download, install
and execute other
packages; uninstall a
package; open URL in
phone browser

Propagation
of possible
malware

1000+

Jun
2011

Android/JSmsHider.A HTTP IMEI; IMSI;
User-Agent string;
cell location; SDK
version; bot version
number

001; 002; 003; 004; 005; 006;
007; 008

Hide and delete SMS
from numbers starting
with ‘106’; set bot’s
update rate; download
and install package;
update a package;
send SMS; add APN
of a Chinese operator;
update C&C address

Financial;
propagation
of possible
malware

47

Jun
2011

Android/Plankton.A HTTP IMEI; build info commandstatus; commands;
activate; bookmarks; history;
installation; shortcuts;
status; homepage; terminate;
unexpectedexception

Set browser homepage;
get/set bookmarks;
get/set list of shortcuts
on the phone’s main
application page; send
debugging info

Propagation
of possible
malware

2000+

Jun
2011

Android/YzhcSms.A HTTP
port
8080

IMEI; IMSI; phone
number; build info

XML response containing tags
domreg; upgrade; address;
time; widget

Send SMS; upgrade
self; widget element
of C&C’s XML
response contains a
URL to contact, phone
numbers to send SMS
to, and content of SMS
to send

Financial 1

Jul
2011

Android/GoldDream.A HTTP IMEI; IMSI 1-8 Send SMS; make a
phone call; download
and install new
packages; delete
packages; upload fi les
to a URL

Financial;
propagation
of possible
malware

405

Jul
2011

Android/PjApps.B HTTP
port
8018

IMEI; IMSI; phone
number; location
info

execTask; execXBox Send SMS; visit a
URL

Financial 15

1 Date of discovery of the fi rst sample.
2 Number of unique samples.

Table 1: Known mobile bot variants, in chronological order (contd.).

 VIRUS BULLETIN www.virusbtn.com

MARCH 2015 5

Date1 Name of variant C&C
type

Info leaked by
default

Botnet commands Bot capabilities Main
motivation

#2

Aug
2011

Android/NickiSpy.B SMS IMEI Password# + record; contact;
0boot; 1boot; 0log; 1log;
sendlog; 0sms; 1sms;
sendsms; 0gps; 1gps; state;
newnum; 0all; 1all

Send SMS history,
phone contacts, call
logs, status of phone;
enable/disable booting
notifi cations; phone
call monitoring; SMS
monitoring; GPS
monitoring; update
C&C number

Spying/data
stealing

20

Aug
2011

Android/Pirates.A HTTP IMEI; IMSI; Android
SDK version

sendsms; blog down; free
down; fav down; open wap

Send SMS; add
bookmark; open URL
in phone browser; set
APN

Financial 107

Aug
2011

SymbOS/Spinilog.A HTTP None ###CellInfo:,,,;,
###SMSInfo:,,,;,
###SMSSend:[Param],,,;,
###EMailSend:[Param],,,;,
###Send-File:[Param],,,;,
###MakeACall:[Para
m],,,;, ###BtSendMy-
File:[Param],,,;,
###LogInfo:,,,;,
###CalendarInfo:,,,;,
###Systemlist:,,,;

Send SMS; send
email; make a phone
call; send a fi le via
Bluetooth; send phone
information to an
email address

SMS/data
stealing;
propagation
of possible
malware

1

Sep
2011

Android/
DroidKungFu.D

HTTP IMEI execDelete; execInstall;
execHomepage;
execOpenUrl; execStartApp;
execUpBin; execSysInstall

Download, install
and execute other
packages; download
and install a package
in the ‘system/app’
folder; set browser
homepage; open URL
in phone browser;
download and edit
DHCPCD and other
fi les

Propagation
of possible
malware

1000+

Oct
2011

Android/FakeInst.B HTTP IMEI; IMSI delete list; catch list; catch
number=[NUM]; delete
number=[NUM]; command
name= removeAllSmsFilter;
command name=
sendContactList; command
name= removeCurrent-
CatchFilter; wait
seconds; http url=[URL]
method=GET or POST;
param name=[NAME];
update; screen

Selective SMS
deletion; selective
SMS forwarding; send
contact list; contact
URL; update self

SMS/
mTANstealing;
propagation
of possible
malware

177

1 Date of discovery of the fi rst sample.
2 Number of unique samples.

Table 1: Known mobile bot variants, in chronological order (contd.).

VIRUS BULLETIN www.virusbtn.com

MARCH 20156

Date1 Name of variant C&C
type

Info leaked by
default

Botnet commands Bot capabilities Main
motivation

#2

Nov
2011

Android/Geinimi.B HTTP Same as Android/
Geinimi.A

Same as Android/Geinimi.A Send email and SMS;
make phone calls;
add new application
shortcut icons; create
a bookmark; display
notifi cations; list
running processes;
perform web search;
display Google Map of
current location

Propagation
of possible
malware;
displaying ads

105

Nov
2011

Android/GoldenEagle.
A

SMS None ..>*<>>.a, ..>..*5r>,
..><<*b.*, ..>***h<,
..><<*>y, ..>...**j<, ..>>>*..
w, ...*<.>, ..>****>.<,
..>.<.>*8<, ..>.*<.>*,
..>**>..8

Forward SMS history,
call logs, contact list,
audio recordings from
phone to hard-coded
email addresses;
update email
destination

Spying/data
stealing

1

Jan
2012

Android/
DroidKungFu.F

HTTP
port 9000

IMEI GETID; GETTASK;
URLREPORT

Download, install
and execute other
packages; uninstall a
package

Propagation
of possible
malware

61

Feb
2012

Android/Fjcon.A HTTP
phone

ICCID XML message containing
name and download URL for
an application to install

Selective SMS
hiding; SMS sending;
download and install
other packages

Financial;
propagation
of possible
malware

80

Feb
2012

Android/Rootsmart.A HTTP IMEI; IMSI; cell ID;
location area code;
mobile network code

action.host start; action.boot;
action.shutdown; action.screen
off; action.install;
action.installed; action.check
live; action.download shells;
action.exploid; action.fi rst
commit localinfo; action.load
taskinfo; action.download apk

Send SMS; download
and install applications

Financial;
propagation
of possible
malware

15

Feb
2012

Android/Zitmo.A SMS None on; off; set admin SMS forwarding; start/
stop SMS forwarding;
update C&C phone
number

SMS and mTAN
stealing

108

Apr
2012

Android/
DroidKungFu.G

HTTP IMEI Download, install and
execute other packages

Propagation
of possible
malware

204

May
2012

Android/TigerBot.A SMS IMEI **; *0000*11*;
*[dddd]*15*[proc];
*[dddd]*16*[proc];
*[key]*21*; *[key]*13;
*[key]*17*a*b; *[key]*19;
*[key]*18; *[key]*22

Send SMS to a given
phone number; send
network info; capture
image; change APN;
notify of SIM change;
kill specifi c running
applications; restart the
device; report current
location; send debug
info

Financial;
spying/data
stealing

40

1 Date of discovery of the fi rst sample.
2 Number of unique samples.

Table 1: Known mobile bot variants, in chronological order (contd.).

 VIRUS BULLETIN www.virusbtn.com

MARCH 2015 7

Date1 Name of variant C&C
type

Info leaked by
default

Botnet commands Bot capabilities Main
motivation

#2

Jun
2012

Android/
NotCompatible.A

HTTP
port 8014

None connectProxy; newServer;
sendError; sendPong;
shutdownChanal

Use of the infected
device as a proxy
server (probably to
gain access to private
networks)

Proxy 25

Jun
2012

Android/Zitmo.E SMS IMEI; IMSI #; /; !; comma + [NUMBER] SMS forwarding;
change the C&C phone
number; mark software
for uninstall; clean
settings

SMS/mTAN
stealing

28

Jul
2012

Android/FkToken.A HTTP IMEI; IMSI; phone
number

sms; catch; delete;
httpRequest; param; update;
screen; command; wait; server

Selective SMS
forwarding; selective
SMS deletion; forward
phone contact list;
confi guration update

SMS/mTAN
stealing

688

Jul
2012

Android/Spitmo.D SMS IMEI; IMSI; phone
number

#; /; !; comma + [NUMBER] SMS forwarding;
update C&C phone
number; toggle SMS
control and forwarding

SMS/mTAN
stealing

1

Jul
2012

Android/Twikabot.A HTTP IMEI; phone number sms SMS sending Financial 5

Aug
2012

Android/Fakemart.A HTTP None sms Confi guration update;
SMS sending; SMS
hiding

Financial 3

Aug
2012

Android/Fakemart.B HTTP None sms Confi guration update;
SMS sending; SMS
hiding

Financial 16

Aug
2012

Android/LuckyCat.A HTTP
port
54321

Phone number mSendReport; GetDirList;
mReadFileDataFun;
mWriteFileDataFun

Browse directory info;
download and upload
fi les; send information
such as phone number
and IP address of
victim’s phone

Spying/data
stealing

18

Aug
2012

Android/Vdloader.A HTTP
port 8080

IMEI; IMSI; phone
number; Android
SDK version;
network type; phone
type; phone model;
network operator

Flag= + 0,1,2 Display notifi cations;
SMS sending;
download and install
packages

Financial;
propagation
of possible
malware

151

Sep
2012

Android/FakeLash.A HTTP IMEI; phone
number; SIM serial
number; Android ID

MSG:; PPI:; NUM:; SMS: Selective SMS hiding
and forwarding; send
SMS; update list of
numbers to hide SMS
from

Financial 2

Sep
2012

Android/Vidro.A HTTPS IMEI; build info;
country code; phone
language; SIM card
country ISO; SIM
card operator

service code; service text;
service interval; apk source

Selective SMS
hiding; SMS sending;
confi guration update

Financial 159

1 Date of discovery of the fi rst sample.
2 Number of unique samples.

Table 1: Known mobile bot variants, in chronological order (contd.).

VIRUS BULLETIN www.virusbtn.com

MARCH 20158

Date1 Name of variant C&C
type

Info leaked by
default

Botnet commands Bot capabilities Main
motivation

#2

Nov
2012

Android/FkLookt.A HTTP None clearFileList; clear-Alarm;
getTexts; get-Dir; getFile;
getSize

Delete fi les on the
victim’s phone; upload
the phone’s fi le listing
to an FTP server; save
SMS or MMS history
from the phone to a
particular location

Spying/data
stealing

8

Jan
2013

Android/Stealer.B HTTP
and SMS

IMEI; IMSI; phone
contacts

HTTP: time; sms; send;
delete; smscf

SMS: ServerKey + 001; 002;
anything

Specify time when
trojan should next
contact C&C; send
SMS; delete SMS from
phone; selective SMS
hiding; start application;
forward received SMS;
update ServerKey value

Financial;
spying/data
stealing

7

Jan
2013

Android/Tascudap.A HTTP at
2700–
2799

None #m; #u; #t Send SMS; send large
number of UDP packets
containing randomly
chosen bytes to
specifi ed URL

Financial; DDoS 40

Feb
2013

Android/Claco.A HTTP at
port 9999

Email address
registered on phone

info; sms; call; exec; device
reboot; get packages; open;
get sd map; get fi le; get dir;
get sms; del sms; ringer; get
network info; creds attack;
creds dropbox; get pics; get
contacts; forward; forward
unset; usb autorun attack; start
track; commands

Send SMS messages;
make phone calls;
toggle the Wi-Fi state;
reboot the device; start
other activities on the
device; delete SMS
messages; change
ringer state; upload
network information,
fi le and directory
listing, SMS records,
contact information,
Android and Dropbox
user credentials, build
information

Financial;
spying/data
stealing
(particularly
account
credentials);
propagation of
malware to PC
when phone is
connected to it
in USB mode

4

Mar
2013

Android/Chuli.A HTTP Phone number contact; location; sms; other Send list of phone
contacts; send location
info; SMS forwarding;
send info regarding
received calls

Spying/data
stealing

2

Apr
2013

Android/BadNews.A HTTP IMEI; phone
number; 64-bit
Android ID; build
info; phone language

news; showpage; install;
showinstall; iconpage;
iconinstall; newdomen;
seconddomen; stop; testpost

Display of notifi cations
that could lead to the
further download and
installation of packages;
update address of the
C&C server; install
shortcuts on the infected
phone

Propagation
of possible
malware

50

1 Date of discovery of the fi rst sample.
2 Number of unique samples.

Table 1: Known mobile bot variants, in chronological order (contd.).

 VIRUS BULLETIN www.virusbtn.com

MARCH 2015 9

Date1 Name of variant C&C
type

Info leaked by
default

Botnet commands Bot capabilities Main
motivation

#2

Apr
2013

Android/Perkel.A SMS None &&; @DELETE Activate SMS listener for
a specifi c period of time;
forward SMS to a hard-
coded phone number;
deactivate bot

SMS/mTAN
stealing

9

Apr
2013

Android/SmsMngr.A HTTP IMSI; phone number GET RECEIVE MESSAGE;
GET SEND MESSAGE;
MODIFY MESSAGE;
DELETE MESSAGE; SHOW
MESSAGE

Delete, modify, forward
SMS messages present in
the inbox

SMS/mTAN
stealing

1

Apr
2013

Android/Smsilence.A SMS Phone number 112; 113 Uninstall self; download
and install payload from
hard-coded location; SMS
from hard-coded number
results in deletion of a
specifi c application

Propagation
of possible
malware

18

Apr
2013

Android/SMSSpy.F HTTP Phone number 219083 SMS forwarding; if
C&C responds with the
command (219083), the
received SMS message is
hidden from the user

SMS/mTAN
stealing

105

May
2013

Android/Pincer.A SMS IMEI; phone
number; build info;
network operator
name; Android ID;
phone language;
rooting state of
phone

command: start sms
forwarding; start call blocking;
stop sms forwarding; stop call
blocking; send sms; execute
ussd; simple execute ussd;
stop program; show message;
delay change; ping

Selective SMS
forwarding; selective call
blocking; SMS sending;
update command fetching
interval; stop bot

Spying/data
stealing

10

May
2013

Android/Stels.A HTTP IMEI; IMSI wait; server; subPref; botId;
remoteAllSmsFilters;
remoteAllCatch-Filters;
deleteSms; catchSms;
sendSms; httpRequest; update;
uninstall; notifi cations;
openUrl; sendContactList;
sendPackageList; makeCall

Call a given phone
number; send an attacker-
defi ned SMS; open given
URL in phone browser;
toast a specifi c message

Financial 3

Jun
2013

Android/Tetus.A HTTP IMEI; network
carrier; network
operator name;
build info; fi rmware
version

csc; keyword; ucsa SMS forwarding; SMS
sending; update SMS
destination and content;
send updates when a
partner application is
installed

Spying/data
stealing

181

Jul
2013

Android/IknoSpy.A HTTP IMEI; incoming and
outgoing call logs
and SMS messages

REQ TYPE = LOC; REQ
TYPE = CAM

Toggle GPS status; send
location information;
capture pictures from
phone camera

Spying/data
stealing

1

Jul
2013

Android/MSNewsSpy.
A

SMS IMEI; IMSI !#10:; !#16:; !#20:; !#30: Delete all SMS messages;
send SMS to a hard-
coded phone number;
hide incoming SMS

Financial 4

1 Date of discovery of the fi rst sample.
2 Number of unique samples.

Table 1: Known mobile bot variants, in chronological order (contd.).

VIRUS BULLETIN www.virusbtn.com

MARCH 201510

Date1 Name of variant C&C
type

Info leaked by
default

Botnet commands Bot capabilities Main
motivation

#2

Jul
2013

Android/Rmspy.A SMS IMEI; network
operator name

#OLD PIN#INT#NEW PIN Update PIN value used to
identify SMS containing
bot commands; SMS
sending when calls
received; hide incoming
calls; detect SIM change;
detect battery change

Spying/data
stealing

3

Jul
2013

Android/SaurFtp.A HTTP
and SMS

IMEI; IMSI; SIM
serial number; phone
number; location;
call logs; SMS
history; contact
information

HTTP: no commands

SMS: 5&

HTTP C&C returns
address of FTP server
where collected data is
uploaded; SMS command
hides received SMS
and replies with cellular
network details

Spying/data
stealing

2

Aug
2013

Android/AndroRat.A HTTP IMEI; phone
number; country
code; operator name;
SIM country code;
SIM serial number

5; 101-123 Forward GPS
information, contacts,
directory listings and
contents, saved fi les, call
logs and SMS history;
record audio; take a
picture; display a pop-up
on the user’s phone; open
a URL in the phone’s
browser; cause the phone
to vibrate; make a phone
call, send SMS

Spying/data
stealing

1000+

Sep
2013

Android/Crosate.A HTTP IMEI; phone
number; SIM country
ISO; network
operator name

setFilter start; setFilter
stop; macros; forceZ On;
forceZ Off; callBlock start;
callBlock stop; getMessages
in; getMessages out;
keyHttpGate; keySmsGate;
sendSms

Steal SMS, call logs,
contact information; send
SMS; record a call; makes
a phone call

Spying/data
stealing

30

Sep
2013

Android/Hesperbot.A SMS None +[NUM]; on; off; uninstall Set C&C phone number;
switch on/off SMS
forwarding; uninstall
application

SMS & mTAN
stealing

1

Jan
2014

Android/FakePlay.C HTTP IMEI; IMSI; phone
number; build info

sms start; sms stop; call start;
call stop; sms list; call list;
start record; stop record;
sendSMS; contact list; wipe
data

Download and install fake
banking applications;
SMS forwarding;
prevention of received
call notifi cations and
hiding from call logs;
send contact list; send list
of installed applications;
SMS sending

Propagation of
malware; spying/
data stealing

3

1 Date of discovery of the fi rst sample.
2 Number of unique samples.

Table 1: Known mobile bot variants, in chronological order (contd.).

 VIRUS BULLETIN www.virusbtn.com

MARCH 2015 11

Date1 Name of variant C&C
type

Info leaked by
default

Botnet commands Bot capabilities Main
motivation

#2

Jan
2014

Android/Nitmo.A SMS IMEI; IMSI; phone
number; build info

sms start; sms stop; call start;
call stop; sms list; call list;
start record; stop record;
sendSMS; contact list; wipe
data

Start/stop SMS
forwarding, call
forwarding, audio
recording; forward SMS
history, call logs, contact
list; SMS sending; reboot
device and erase all user
data

Spying/data
stealing

1

Jun
2014

Android/Pletor.A HTTP
using
TOR

IMEI ‘command’: ‘stop’ Deactivate ransomware Financial
(extortion of
money)

54

Jun
2014

Android/Pletor.B SMS IMEI stopec Deactivate ransomware Financial
(extortion of
money)

4

Jul
2014

Android/Wroba.I SMS Phone number ak49-[URL]; ak40-[MSG];
wokm-[MSG]; ak60-
[EMAIL]; ak61-[PWD]

Update value of URL or
EMAIL & PWD where
stolen info is sent; send
SMS containing MSG
to all phone contacts;
leak banking and credit
card details; download
and install fake banking
application updates

Propagation
of possible
malware;
fi nancial;
installation of
banking malware

77

Jul
2014

Android/Wroba.M HTTP IMEI; build info;
network operator
name; list of Korean
banking applications
installed; phone
contacts list; IMSI;
network info; SIM
operator info; phone
number; voice mail
number

padding; right; left; top;
margin

Send SMS to phone
contacts; download
and install fake updates
for existing banking
applications; upgrade self

Propagation
of possible
malware;
installation of
banking malware

156

Oct
2014

Android/Xsser.A HTTP IMEI; IMSI; SIM
serial number; SIM
state

2-24; 40-46; 100; 101 Grab SMS history, call
logs, GPS/location info,
phone browser and email
history, phone’s fi le
listing; send incoming
& outgoing phone call
recordings and audio
recordings; run shell
commands received on
phone; download, upload
or delete fi les; display a
notifi cation

Spying/data
stealing

1

1 Date of discovery of the fi rst sample.
2 Number of unique samples.

Table 1: Known mobile bot variants, in chronological order (contd.).

VIRUS BULLETIN www.virusbtn.com

MARCH 201512

SOME PARTICULARLY INTERESTING
VARIANTS
Variants with particularly unusual and/or interesting
functionalities are detailed in this section, which is followed
by subsections on anti-debugging tricks, code obfuscation
and traffi c encryption, and unusual attack vectors seen in the
wild.

Android/SmsHowU (sha256sum: a3444b5c12334b24a5
87c083eb6c73d3a982397abd0a5eff3d1718bc1c392896)

This variant responds with the user’s GPS location along
with a Google Maps link on receipt of the innocent-looking
SMS command ‘how are you?’. The location-grabbing
functionality is implemented by the code shown in Figure 1.

The requestLocationUpdates() function registers the current
activity to be updated periodically with location updates
by a provider that matches the requirements specifi ed by
localCriteria [9]. There are no constraints on the time interval
between updates, but the distance between location updates is
constrained to 10 metres.

The Google Maps link creation is implemented by the code
below, which is based on snippets from the original malware
code:

Geocoder localGeocoder;

localGeocoder = new Geocoder(this.context, Locale

 .getDefault());

localList = localGeocoder.getFromLocation(paramLocation

 .getLatitude(), paramLocation.getLongitude(), 1);

Address localAddress = (Address)localList.get(0);

if (localList != null)

{

 localStringBuffer2 = new StringBuffer();

 localStringBuffer2.append

 (“Android device map link: \n”);

 localStringBuffer2.append

 (“http://maps.google.de/maps?q=”);

 localStringBuffer2.append(URLEncoder

 .encode(localAddress.getAddressLine(i) + “,”));

}

Object localObject = localStringBuffer2;

The collected information is then sent via SMS, as
implemented in the code below, where ‘_to’ is the sender of
the SMS command, i.e. the botmaster:

if (localObject != null)

{

 String str4 = localObject.toString();

 SmsManager sms;

 his.sms.sendTextMessage(this._to, null, str4,

 this.sentIntent, null);

}

Android/NotCompatible: (sha256sum: 1a18e48fbd79c
e84d946b4d065a7e30c5f10a4762437a6c8d888348afba
b685f)

What makes this malware family interesting is that it supports
a command called ‘connectProxy’. When this command is
received, the bot opens a connection to an IP address and port
specifi ed by the package’s confi guration fi le, and redirects
traffi c to this location, thus allowing a remote attacker to use
the infected device as a proxy server.

Android/Twikabot (sha256sum: b63c33cc71eda01b795
72e1f8b82b703f9c088fde6966c7cf855f00f8c77775d)

This bot variant contacts Twitter accounts to acquire the
names of C&C servers to contact. This functionality is
implemented in the following steps:

1. Once launched, the StatisticsUploader class
generates a random string using an algorithm that
uses predefi ned strings present in the package.

2. This generated string serves as a nickname for a
Twitter account. The malware then sends an HTTP
request to http://mobile.twitter.com/[Generated
Username].

3. From the response to the HTTP request, it extracts
the string present between a randomly chosen tag
from arrayOfString3 and a randomly chosen domain
name from arrayOfString1, whose values are shown
in Figure 2.

4. Next, it sends a POST request to the URL
‘http://’+[Extracted String]+‘/carbontetraiodide’

Figure 1: Location-grabbing functionality in Android/SmsHowU.

 VIRUS BULLETIN www.virusbtn.com

MARCH 2015 13

with a randomly generated user agent. The infected
phone’s IMEI, Android ID and phone number are
included as POST parameters.

5. It then checks the response to the POST request to
see if it contains the command ‘sms’. If it does, it
sends out an SMS message using information in the
POST response such as ‘phone’ (SMS destination),

‘data’ (SMS body) and ‘interval’ (number of times to
send the SMS).

Android/Tascudap (sha256sum: c88a6e66e300268bcb6
bd8f725565c24a04bc70bbba8c522235bfb505623ed2d)

This bot variant shows no explicit signs of its presence once
it is installed. However, it is launched every time the offi cial
Google Play application is launched. It implements this
functionality by adding the application’s main intent to the
category android.intent.category.APP MARKET, which is
sent out when the Google Play application is launched. The
implementation is shown in Figure 3.

Figure 3: Android/Tascudap’s functionality to ensure it is
launched with Google Play.

More interestingly, apart from being able to process
commands for sending SMS messages and sending heartbeat
messages back to the attacker, it can also be made to send
numerous UDP packets to a specifi c destination. This is
implemented in the code shown in Figure 4 and can only be
explained as an attempt at a denial of service (DoS) attack on
a destination specifi ed by the attacker.

Figure 2: Strings used for C&C address generation.

Figure 4: Android/Tascudap’s denial of service feature.

VIRUS BULLETIN www.virusbtn.com

MARCH 201514

The exact implementation of this command is as follows:

if

 User receives SMS containing

 “\#u[Dst]:[Port]:[c]:[d]” or

 “\#u[Dst]:[Port]:[d]”

then

 Send large number of UDP packets containing
 randomly generated byte array of random length
 to the address Dst at port Port, d number of
 times. The value c, whose default value is 500,
 is used for the generation of the byte array.

Android/Claco (sha256sum: 7b1746778d0196bf01251fd
1cf5110a2ef41d707dc7c67734550dbdf3e577bb9)

This bot variant is interesting for its ability to process a
command called ‘usb autorun attack’ which leads to the
download of certain fi les from the C&C that could be used
to infect a PC when the phone is connected to it in USB
mode. The implementation of this functionality is shown in
Figure 5.

It also implements another interesting command called
‘ringer’ that is followed by a parameter. Depending upon

Figure 5: Android/Claco’s ‘usb autorun attack’ command.

Figure 6: Android/Claco’s ‘ringer’ command.

 VIRUS BULLETIN www.virusbtn.com

MARCH 2015 15

the value of this parameter, the phone’s ringer state is set
to ‘silent’ or ‘normal’. The corresponding code is shown in
Figure 6.

Anti-debugging tricks
Anti-debugging tricks are widely employed by authors of
PC malware, however these techniques aren’t as commonly
observed in mobile malware. This section will focus on the
few mobile bot samples that do employ them, that were
analysed as part of this study.

Android/NickiSpy.B (sha256sum: 498b425a8536ce03b5
738e1ba3339f70ec2680bc437e1650084d8b908a343405)

This bot variant checks the IMEI value of the device it
is being run on and forwards it to a URL that is specifi ed
in the package. The application continues to run only if
the response ‘y’ is received, otherwise it exits. The code
implementing this anti-debugging trick, which allows the
selective, IMEI-based, attacker-determined execution of this
bot, is shown in Figure 7.

The check() function implements the HTTP request made
and returns ‘true’ if the response ‘y’ is received.

Android/Crosate.A (sha256sum: 15281dbe2603f5973d
53c5fddabbcc3de6ad3ec65146aa2ffb34a779ea604f82)

This variant checks the IMEI value of the device it runs
on, and if it contains the string ‘000000000000000’, the
application exits. This is a useful emulator detection
mechanism since the string corresponds to the IMEI value on
the widely used emulators that come with the Android SDK
[10]. The implementation can be seen in Figure 8.

Android/Pincer.A (sha256sum: 032a095067442d60d0df
9fadab07553152e5500a67fc95084441752eafd43f70)

This variant checks whether it is being run on an emulator by
checking certain parameters such as the IMEI, model name,
phone number, etc. for default values found on an emulator.
We can only assume that this is done with the intention of
hindering dynamic analysis of the malware on an emulator.
The values are listed below:

Build.PRODUCT = “sdk” or “generic”

Build.MODEL = “sdk” or “generic”

IMEI = “351565050260436” or “000000000000000”

 or “357242043237517” or “012345678912345”

Phone Number = “15555215554”

Build.HARDWARE = “goldfi sh”

Nw = “Android

If any of the above values are true, the malware doesn’t
launch the function implementing its botnet capabilities,
thereby effectively hiding its malicious behaviour.

Android/Wroba.I (sha256sum: b103f3897b1619dee157e
62a1737e864452a85bab613ad971ac6193b3f6a4834)

This variant checks for the value of the device’s IMEI and
phone number to detect an emulator. This is implemented
using a code snippet similar to that shown below:

this.telephonyManager = ((TelephonyManager)

 getSystemService(“phone”));

String deviceId = “deviceid:” + this.

 telephonyManager.getDeviceId();

String phoneIdentity = this.

 telephonyManager.getLine1Number();

Figure 7: Anti-debugging trick in Android/NickiSpy.B.

Figure 8: Emulator detection in Android/Crosate.A.

VIRUS BULLETIN www.virusbtn.com

MARCH 201516

if ((phoneIdentity.startsWith(“15555”)) ||

 (deviceId.startsWith(“00000000”)))

System.exit(0);

The IMEI value used for emulator detection is ‘00000000’.
However, this check doesn’t function due to a coding fl aw.
If the phone number on the device begins with ‘15555’,
the application exits. This helps with emulator detection
since the default phone number on a standard emulator is
‘15555215554’.

For multiple emulator instances running in parallel, the last
four digits of the phone number are incremented to the next
even number within the range 5554 to 5584 [11].

Code obfuscation and traffi c encryption

This section details bot variants that employ techniques to
hide code by means of obfuscation or encryption, and those
that make use of traffi c encryption to prevent detection by
analysis of network traffi c. Each example also shows the
implementation of the obfuscation, decryption or encryption
schemes in the bot’s code.

Android/PjApps.A (sha256sum: b84ebe48e60d74984e7
e9f5d8c12c2c578ea3554b73df4af8209bbdb7276c839)

The C&C URL is ‘encrypted’ with a simple algorithm
that uses only alternate characters of a given string. The
decryption routine is implemented in the function
com.android.main.a.a() of the package that takes the
encrypted string and an integer as arguments. This class is
defi ned as follows:

public static String a(String paramString, int
paramInt)

{

 StringBuffer localStringBuffer = new StringBuffer();

 String str1, str2;

 int i = paramString.length();

 for (int j = 0; ; j++)

 {

 if (j >= i / 2)

 {

 str2 = localStringBuffer.toString();

 String str3 = str2.substring(0, paramInt);

 if (paramInt <= 0)

 {

 str1 = str2.substring(paramInt, str2.

 length() - 3) + “.” + str2.

 substring(str2.length() - 3);

 }

 str1 = str3 + “.” + str2.substring(paramInt,

 str2.length() - 3) + “.” +

 str2.substring(str2.length() - 3);

 break;

 }

 localStringBuffer.append(paramString.substring

 (1 + j * 2, 2 + j * 2));

 }

 return str1;

}

An example of its use in a bot sample is as follows:

a(“3lgoagdmfejekgfos9t15chojm”, 3) = “log.meego91.com”

Android/Vdloader.A (sha256sum: 7a771f17e3315c9a93
b6ccb1cd5e5e03ca8feeb2d02369d13e5dcdb0b95aaca8)

This sample uses a custom string encryption method. The
decrypted string is calculated as [char -position]. The
decryption code can be found at [12]. To give an example,
decryption of the string below results in a confi guration string
used by the bot:

decrypt d = new decrypt();

String str=d.a(“7B237868263F283F36392C372E7B7183324
B3443364138807B8D3C553E4D404B42849796465F8149909D
9E9B665C5D909193949697999A9C9D679DAAA977766F78717
1B372AFB9B76AA6766DBFB6708972838284768178BAC17B94
7D8D7FDB”);

System.out.println (“Decryption result: “+str);

gives the output:

Decryption result: {“ve”:”8.0”,”nct”:”0”,”ict”:”0”,
“cus”:[“http://aabbccddee.com:8080/p.jsp”],
“si”:”201”,”ci”:”1”}

Android/Tascudap.A (sha256sum: c88a6e66e300268b
cb6bd8f725565c24a04bc70bbba8c522235bfb505623e
d2d)

This variant also makes use of a custom encryption method
based on arithmetic and logical operations, for hiding the
C&C address. The decryption can be found at [13]. The
decrypted output looks like this:

Output = gzqtmtsnidcdwxoborizslk.com

Android/NotCompatible (sha256sum: 1a18e48fbd79ce
84d946b4d065a7e30c5f10a4762437a6c8d888348afbab
685f)

In this case, the confi guration fi le is encrypted using AES.
The bot decrypts a fi le in the package assets using AES with
a key that is the SHA-256 hash of a hard-coded string. This
implementation can be seen in the bot’s code in Figure 9.

Android/LuckyCat (sha256sum: 5d2b0d143f09f31bf52f
0ffa0810c66f94660490945a4ee679ea80f709aae3bd)

This variant XOR ‘encrypts’ the traffi c sent to the
C&C. The encryption can be seen in Figure 10, where
paramArrayOfByte contains the information to be sent to the
C&C.

 VIRUS BULLETIN www.virusbtn.com

MARCH 2015 17

Android/SaurFtp.A (sha256sum: 9390a145806157cadc5
4ecd69d4ededc31534a19a1cebbb1824a9eb4febdc56d)

This bot variant gets its C&C address from a fi le in the
package assets called proper.ini. The contents of the fi le
between the characters ‘<####’ and ‘####>’ are read and
then XOR decrypted, as shown in Figure 11.

The result of the decryption is shown below:

http://android.uyghur.dnsd.me/default.htm
android.uyghu?O????I?E[\U?SBQE???1?S??F?PFR???,U???
?JWNFNEJ?GLMT?RF?JM?P?XVQQZMPGG\
TUT?T[P?ARBRWMP[Q?XˆT?A\Kˆ[GJ?SLNNJT

This result is split at ‘####’, with the fi rst half of the split
serving as the C&C server address from where the bot
acquires the address of an FTP server to which all the
collected information is fi nally uploaded.

Android/JSmsHider.A (sha256sum: 522e7ded785cfedb
5e5200bcf29be072d4e16ba5868b83dcf729d76923130
3fb)

This variant DES encrypts values of the POST parameters,
i.e. the collected data, in traffi c sent to the C&C, as can be
seen from the code shown in Figure 12.

Android/DroidKungFu.E (sha256sum: 66d90617f49aa2
449e338455d3b9ce852c2ca45d5460c1e9e40bb050333
b7dfb)

This bot variant contains an encrypted binary in the package
assets under the name WebView.db.init. The fi le is decrypted
using AES with a hard-coded key, as shown in Figure 13.
The resulting decrypted fi le is an ELF binary which is then
executed and communicates with the C&C, downloading
other packages and installing them.

Android/DroidKungFu.F, .G (sha256sum: 6c4aebf5043
ea6129122ebf482366c9f7cb5fbe02e2bb776345d32d89
b77a2e0)

These variants make use of Java code from a native library
in order to drop an executable onto a rooted Android

Figure 9: AES decryption using a key obtained from the
SHA256 hash of a hard-coded string in

Android/NotCompatible.

Figure 10: Traffi c encryption by Android/LuckyCat.

Figure 11: XOR decryption in Android/SaurFtp with a key providing life advice.

VIRUS BULLETIN www.virusbtn.com

MARCH 201518

device. The native library contains encrypted strings that
are fi rst decrypted before the library can drop the malicious
executable. The decryption scheme used is a bitwise NOT
operation on each byte of the encrypted string. This can
be seen in the native library’s IDA disassembly shown in
Figure 14.

Android/Wroba.I (sha256sum: b103f3897b1619dee157e
62a1737e864452a85bab613ad971ac6193b3f6a4834)

This variant hides its main malicious activity within a
package that is encrypted and hidden within itself. The inner
malicious package is present in the original package as an
asset fi le and is decrypted using DES before it can be loaded

Figure 12: Android/JSmsHider.A DES encrypts traffi c to C&C.

Figure 13: AES decryption routine in Android/KungFu.E. The byte array WP contains the hard-coded key.

Figure 14: Bitwise NOT decryption of strings in native libraries used by Android/DroidKungfu.F, G.

 VIRUS BULLETIN www.virusbtn.com

MARCH 2015 19

and the malicious functions called. The implementation of
this decryption and class loading can be seen in the code in
Figure 15. The code in the fi gure shows the DES decryption
of an asset fi le ‘ds’ using the key ‘gjaoun’. The decryption
results in an Android package that is saved in the package
directory as ‘x.zip’ and loaded using the following command:

localDexFile = (DexFile)Class.forName(“dalvik.system

.DexFile”).getMethod(“loadDex”, arrayOfClass)

.invoke(null, arrayOfObject);

This invokes the ‘dalvik.system.DexFile.loadDex()’ function
using refl ection, a technique that is commonly used to hide
function calls.

Figure 15: Decryption and loading of an inner malicious
package by Android/Wroba.I.

Unusual attack vectors

Most mobile malware follows the classic method of
uploading trojanized versions of legitimate applications to
Android markets (offi cial or third-party/non-market) in order
to propagate in the wild.

It must be mentioned that installation of any application
that doesn’t originate from the offi cial Google Play Store
requires users to have the ‘Allow Installation of non-Market
Applications’ option checked in the phone’s application
settings. If this is not already the case, the user has to go
through the extra step of checking this option before a
‘non-market’ application can be installed.

Some examples detailed below deviate from the ‘norm’ of
passing through an Android market and instead use unusual
attack vectors for distribution.

• Android/NotCompatible.A: These variants are mostly
served by means of malicious iframes on compromised
websites. An unsuspecting user visiting such a
compromised website would automatically have the
malware downloaded to his/her phone. However,
installation of the malware would still require user
intervention.

• Android/Chuli.A: This variant was touted as the fi rst
Android malware to be delivered using a targeted attack
[14]. It was sent as an email attachment to the accounts
of Tibetan human rights advocates and activists in an
email regarding the World Uyghur Congress (WUC)
that took place in Geneva from 11–13 March 2013. The
malware collected contact, location and received SMS
information, as well as call records from the infected
phones. This spyware functionality combined with its
targeted nature, led to suspicions of political motives
behind the malware.

• Android/FakePlay.C: This variant was interesting
for its ability to propagate from an infected PC to a
mobile phone connected to it in USB mode. The attack
vector was thus from PC to mobile – the inverse of
that employed by Android/Claco.A. The PC malware
propagating this mobile bot variant has been detected
as W32/BackDoor.VX!tr by Fortinet. This Windows
malware made use of Android’s Debug Bridge [15]
for communication between the PC and the connected
mobile device and for installation of the mobile
malware.

• Android/Xsser.A: This variant, discovered in 2014, was
uniquely served via links in messages on the mobile
messaging service WhatsApp. In particular, it was
sent to several participants of the 2014 Hong Kong
protests in September 2014 as part of the ‘Occupy
Central’ pro-democracy civil disobedience campaign.
The WhatsApp message provided a link that claimed
to be ‘designed by CODE4HK for the coordination
of OCCUPYCENTRAL’ [16], however the shortened
link led to a site with a Chinese TLD, with the URL
deliberately made to look like a legitimate Code4HK
link. This case, once again, led to suspicions of
political motives behind the malware. An iOS variant
of the same malware was found on the C&C with
which the Android trojan communicates, but no reports
were received of the iOS variant being distributed in
the wild.

STATISTICS
This section focuses on statistics based on the different
properties of the bot variants detailed in the inventory.

C&C channel used
Figure 16 shows the kind of channel used for communication
with the C&C by different bot variants. Of the 43 variants
that make use of HTTP, Figure 17 shows a plot of the
number of variants that make use of HTTP communication
to the standard port, i.e. 80, vs. those that use a non-standard
port.

VIRUS BULLETIN www.virusbtn.com

MARCH 201520

Information leaked by default
Figure 18 plots what information is leaked by default
against the number of variants. Information leaked by
default refers to data that is sent simply upon launching
the malware, without the receipt of any command from the
botmaster.

Device administrator privileges

Device administration is a feature available on devices
that run an Android version >= 2.2. This feature is
available by means of an API [17] that mainly provides
device administration features at the system level. It
was introduced mainly to facilitate the development of
security-aware applications. However, it is also interesting
to attackers for the escalated rights it confers on an
application.

The most common motivation seen for its use in malware
is to make uninstallation of the malware tricky. If the user
grants device administrator privileges to an application after
installation, it can only be uninstalled if its corresponding
device administrator is deactivated from the phone’s
‘Location & security’ settings menu. Without knowledge
of this information, a user could assume the application in
question is uninstallable.

Figure 19 shows the percentage of bot variants studied that
request these privileges from the user after installation.

Figure 19: Percentage of variants requesting device
administrator privileges.

Main motivation

During classifi cation of variants based upon their motives,
the lines between different categories can become blurred
and it can generally be assumed that they all fi nally merge
towards monetary gain. For the purposes of this paper, the
most evident motive was given preference.

 ¶ Variants using HTTP or HTTPS
 *Variants using both HTTP and SMS as C&C channels

Figure 16: C&C channels used by different bot variants.

‡ These two variants used HTTPS and HTTP with TOR
respectively

Figure 17: Ports used by variants using an HTTP C&C
channel.

† This information covers everything accessible through
the ‘android.os.Build’ class

Figure 18: Information leaked by default by different
variants.

¶ *

‡

†

 VIRUS BULLETIN www.virusbtn.com

MARCH 2015 21

Figure 20 shows a plot based on the main motives for the
creation of the different bot variants, surmised based upon
the bots’ functionalities.

• Spying/data stealing: This category includes all bot
variants that also had ‘SMS/mTAN stealing’ as their
main motivation.

• Financial: This category includes bot variants that rely
on sending SMS to premium phone numbers in order to
make money, as well as ransomware.

• Propagation of possible malware: All variants classifi ed
in this category either have the ability to download and
install new packages onto an infected phone or they send
SMS messages containing links pointing to possible
malware to the contacts saved on the infected phone. The
malware Android/Claco, which can infect a PC via USB,
also falls under this category.

Figure 20: Main motives behind creation of bot variants.

Signing certifi cates
Figure 21 plots the number of variants against the certifi cates
used to sign one sample of each. The certifi cates have been
classifi ed under three categories.

• The Android Developer Certifi cate corresponds to the
certifi cate that comes with the Android SDK. It can be
identifi ed by the following values:

Owner: CN=Android Debug, O=Android, C=US

Issuer: CN=Android Debug, O=Android, C=US

• A custom certifi cate describes a developer-specifi c
certifi cate. An example is given below:

Owner: CN=Yaba

Issuer: CN=Yaba

Serial number: 4fc1f17d

Valid from: Sun May 27 11:18:53 CEST 2012

until: Sat May 19 11:18:53 CEST 2046

• Several variants were found to be signed using a
certifi cate like the one seen below and have hence been
grouped under a category of their own.

Owner: EMAILADDRESS=android@android.com,

CN=Android, OU=Android, O=Android,

L=Mountain View, ST=California, C=US

Issuer: EMAILADDRESS=android@android.com,

CN=Android, OU=Android, O=Android,

L=Mountain View, ST=California, C=US

Figure 21: Certifi cates used for signing different bot
variants.

CONCLUSION
In this paper, I have shown that malware authors continue
to be driven mainly by motives relating to spying, fi nancial
gain and further propagation of malware. The precedence
of fi nancial motives over spying in the statistics could be
explained by the fact that the statistics don’t take into account
how many successful infections of each variant exist in the
wild.

Based on the statistics collected and the variants described,
it can be concluded that although attackers’ motives haven’t
changed much, the strategies used in writing malware
continue to evolve, be it the employment of anti-debugging
tricks or the increasing use of encryption and obfuscation
in new malware. It has also been shown through examples
that mobile bot variants are still relatively easy to take apart,
and have yet to achieve the level of complexity of their PC
counterparts.

More importantly, the emergence of new and innovative
attack vectors – including attacks that can move from one
attack surface to another (Android/Claco.A,
Android/FakePlay.C) – provides a multi-level threat.

VIRUS BULLETIN www.virusbtn.com

MARCH 201522

Combining that with the fact that mobile phones are
increasingly being used for diverse purposes, e.g. to control
smart TVs, interfacing with fi tness trackers, or interfacing
with any other Internet-connected device, we can expect to
see more attacks spanning different attack surfaces.

Finally, with the use of multiple C&C channels by a single
bot variant and remotely confi gurable C&C addresses, mobile
botnets are becoming more resilient to takedown. All these
factors hint at the need for systems/applications designed
specifi cally for the detection and takedown of mobile botnets
to be put in place – which is where this paper aims to help.

ACKNOWLEDGEMENTS
I would like to thank Axelle Apvrille and Guillaume Lovet
for their help with writing this paper. Many thanks also to all
authors whose work was referenced in the paper.

REFERENCES
[1] Fortinet, 2014. http://www.fortinet.com/sites/default/

fi les/whitepapers/10-Years-of-Mobile-Malware-
Whitepaper.pdf.

[2] Apvrille, A. Symbian worm Yxes: Towards
mobile botnets? http://www.fortiguard.com/fi les/
EICAR2010 Symbian-Yxes Towards-Mobile-
Botnets.pdf.

[3] Porras, P.; Saidi, H.; Yegneswaran, V. An analysis
of the ikee.b (duh) iphone botnet. http://mtc.sri.com/
iPhone/.

[4] Mulliner, C.; Seifert, J.-P. Rise of the iBots: 0wning
a Telco Network. In Proceedings of the 5th IEEE
International Conference on Malicious and Unwanted
Software (Malware). http://mulliner.org/collin/
academic/publications/ibots_MALWARE2010.pdf.

[5] Xiang, C.; Binxing, F.; Lihua, Y.; Xiaoyi, L.;
Tianning, Z. Andbot: Towards Advanced Mobile
Botnets. https://www.usenix.org/legacy/events/
leet11/tech/slides/xiang.pdf.

[6] Weidman, G. Transparent Botnet Control for
Smartphones Over SMS. http://issa-dc.org/
presentations/04192011_weidman_smartphone_
botnets.pdf.

[7] Mulliner, C. Fuzzing the Phone in Your Phone.
http://www.blackhat.com/presentations/bh-usa-09/
MILLER/BHUSA09-Miller-FuzzingPhone-SLIDES.
pdf.

[8] Zeng, Y.; Shin, K. G.; Hu, X. Design of SMS
commanded-and-controlled and p2p-structured
mobile botnets. http://www-personal.umich.edu/
~gracez/mobilebotnet.pdf.

[9] Android. LocationManager.
https://developer.android.com/reference/android/
location/LocationManager.html#requestLocationUpd
ates%28java.lang.String,%20long,%20fl oat,%20andr
oid.location.LocationListener%29.

[10] Android SDK download. https://developer.android.
com/sdk/index.html.

[11] DGODDARD. Changing the IMEI, Provider, Model,
and Phone Number in the Android Emulator.
http://vrt-blog.snort.org/2013/04/changing-imei-
provider-model-and-phone.html.

[12] Tascudap string decryption. https://github.com/slojo/
Decryptors/blob/master/Tascudap decrypt.java.

[13] Vdloader string decryption. https://github.com/slojo/
Decryptors/blob/master/Vdloader decrypt.java.

[14] Gallagher, S. First targeted attack to use Android
malware discovered. http://arstechnica.com/
security/2013/03/fi rst-targeted-attackto-use-android-
malware-discovered/.

[15] Android. Android debug bridge.
https://developer.android.com/tools/help/adb.html.

[16] Code4HK. Fake code4hk mobile app.
https://code4hk.hackpad.com/Fake-Code4HK-
Mobile-App-HQXXrylI6Wi.

[17] Android. Device administration.
http://developer.android.com/guide/topics/admin/
device-admin.html.

Editor: Martijn Grooten

Chief of Operations: John Hawes

Security Test Engineers: Scott James, Tony Oliveira, Adrian Luca

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

Consultant Technical Editors: Dr Morton Swimmer, Ian Whalley

© 2015 Virus Bulletin Ltd, The Pentagon, Abingdon Science
Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. Fax: +44 (0)1865 543153
Email: editorial@virusbtn.com
Web: http://www.virusbtn.com/

