VIFUS coveosn

VIRUS BULLETIN

global threat landscape

USING .NET GUIDS TO HELP
HUNT FOR MALWARE

Brian Wallace
Cylance Inc., USA

ABSTRACT

During a long-term investigation, I uncovered forensic artefacts
not commonly used in .NET assembly analysis. These artefacts
are both GUIDs (globally unique identifiers). One is created

by Visual Studio on the creation of new projects and stored

as a string, the other is generated on every build and stored

as a binary value. These GUIDs can be used to determine
whether multiple samples are from the same Visual Studio
project, effectively identifying the family, and to identify
samples that are the result of the same build, allowing for

the identification of post-compilation modifications made by
tools such as builders. After releasing an open-source tool to
extract these GUIDs, we suggested that VirusTotal integrate
this functionality. They have done so, allowing for these new
artefacts to help malware hunters around the world.

.NET GUIDS

Months deep into an investigation of an Iranian operation

we dubbed ‘Operation Cleaver’ [1], I found myself buried

up to my eyes in malware samples to reverse engineer. As an
employee of a start-up, I am no stranger to situations where
the options are innovate or die, and this was one of them.
Through some simple pre-processing data I gathered on the
large number of samples located on a public FTP server, I
could tell that a substantial percentage of the malware had
been developed in a .NET-based language. Having previously
worked as a software engineer developing in C#, [was quite
familiar with .NET and recalled that it makes greater use of
GUIDs than some other languages. I identified two GUIDs
that could be of assistance in reducing the number of samples
that needed to be fully reversed.

MVID

The Module Version ID, or MVID, is a GUID that can be
used to distinguish various versions of a .NET module. This
value is generated at build time, resulting in a new GUID for
each unique build. This GUID is stored in a binary format
(as opposed to string format) in a defined location in .NET
assemblies. The GUID resides in the GUID heap, and its
location is identified in the Module table of the MetaData
tables in the .NET MetaData header.

What can we do with knowledge of this identifier? By itself,
it can assist in identifying post-compilation modifications
made by tools such as builders that generate customized
malware binaries from a common source binary. In other
cases, it can assist in identifying instances where a legitimate
.NET sample has been modified.

It should be noted that the MVID can be modified by a
malware operator. An informed malware operator could do
this with a hex editor.

Extraction methods

Extracting the MVID statically by parsing the PE and the
.NET metadata can be somewhat difficult. This is because the
format relies on a large number of variables that can lead to
intricacies in parsers. There are a number of simpler ways to
extract the MVID.

Extracting with ildasm

The disassembling counterpart to ilasm (Microsoft’s tool for
converting Common Intermediate Language code to a portable
executable), ildasm, is used to convert .NET assemblies back
to the common intermediate language code. In addition, it
extracts and displays the MVID which can be searched for
specifically with the find command on Windows platforms.

> ildasm /text /all
af7ce8dcbl6ob6344de9856e96ce83b642bccS5eelc0d29e3alded9be
67c65a085 | find "MVID"

// MVID: {F2A0DA69-155E-4543-AD0A-206026E206DB}

Extracting with monodis

As a heavy Linux user, it would be remiss of me not to include
a more Linux-friendly solution as well. We can obtain similar
results using monodis, ildasm’s counterpart in Mono (an open
source implementation of Microsoft’s .NET framework), along
with grep, the Linux equivalent to Microsoft’s find.
> monodis af7ce8dcbl6b6344de9856e96ce83b642bccbeelcOd
29e3a0dcd96e67c65a085 | grep GUID

.module E.exe // GUID = {F2A0DA69-155E-4543-AD0A-
206026E206DB}

Extract with .NET (insecure)

It should come as no surprise to developers with .NET
experience that there is a simple method to obtain the MVID
of another .NET assembly:
var aAssemblyToAnalyze = Assembly.LoadFile (strPathToFi
leToAnalyse); // DO NOT DO THIS

var mvid = aAssemblyToAnalyze.ManifestModule.
ModuleVersionID;

D

VIRUS BULLETIN

This method should not be used, and the next section will
explain why.

Extract with .NET (likely secure)

While working on a method to extract the MVID as well

as the TypeLib ID from .NET samples, I became curious
about the additional attack surface created by loading a .NET
assembly with no intention of executing it. I found something
interesting when testing with mixed .NET assemblies. Mixed
assemblies, which are built with both .NET and unmanaged
code, were intended to act as a stepping stone for developers
migrating projects from purely unmanaged code to .NET.
Mixed assemblies are still identified as .NET assemblies,

but also contain a DIIMain entry point, which is executed
when loaded with Assembly.Load and related functions. A
full description of this issue can be found in [2]. The brief
explanation is that it allows for an assembly to execute code
when loaded with Assembly.LoadFile and similar methods,

Solution Explorer

which could be abused to gain control of a system inspecting
a malicious sample.

In order to work around this issue, any assemblies
loaded purely for inspection should be loaded with
Assembly.ReflectionOnlyLoadFrom instead of
Assembly.LoadFile, or any of the reflection-only method
alternatives. While it does protect from this specific issue,
there may be other unexplored attack surfaces, so it’s best,
in my opinion, to treat this method as risky but more secure
than the non-reflection-only method.
var aAssemblyToAnalyze = Assembly.ReflectionOnlyLoadFro
m(strPathToFileToAnalyse) ;

var mvid = aAssemblyToAnalyze.ManifestModule.
ModuleVersionID;

TypeLib ID

The TypeLib ID is a GUID generated by Visual Studio on the
creation of a new project by default.

Figure 1: The TypeLib ID is stored in Properties/Assemblylnfo.cs.

VIRUS BULLETIN

It is stored in Properties/AssemblyInfo.cs and is made visible
to the developer. The developer can choose to modify this
value, or remove it completely (Figure 1).

Due to its location in source code, a good number of these
GUIDs can be found on public code repositories such as
GitHub. In a search query [3], we can see that there are more
than 800,000 results of projects/files which contain GUIDs
defined for the assembly.

Since this value is created by Visual Studio on project
creation, and is stored in source code, it is consistent across
all builds of the .NET assembly unless it is modified by the
developer. We can use the TypeLib ID to assist in identifying
builds resulting from the same Visual Studio project, whether
developed by a single developer or through sharing of the
source code.

We also observed that this value is often ignored by
obfuscation tools, so even after NET malware has been
obscured by a tool such as SmartAssembly, the TypeLib
ID may still be used to identify a sample as belonging to a
certain Visual Studio project.

When using the TypeLib ID to identify samples, researchers
should note that it is simple for a malware operator to modify
this value not only with access to the source code, but also
statically. This could be done simply with a hex editor. A
malware operator with the source code could even remove
the TypeLib ID altogether.

Extraction methods

Since the TypeLib ID is actually a string in the source code,
it is not stored on the GUID heap like the MVID, but instead
in the Blob heap. Since it is not a required field, it is not
stored in a static location in the .NET metadata header either,

but is instead listed in the CustomAttribute table. This adds
complexity to the static extraction of this value, more so than
the MVID.

Extract with ILSpy

Tools like ILSpy [4] and similar tools which decompile
.NET assemblies for analysis can easily recover the TypeLib
ID (and the MVID for that matter). No additional action is
required for these tools to recover this value beyond simply
opening the target assembly (Figure 2).

We can identify the value as the ‘assembly: Guid’ value.

Extract with .NET (likely secure)

The simplest secure programmatic method I know of

for extracting the TypeLib ID is to use .NET to load the
assembly (in reflection-only mode) as we did to recover

the MVID. Using a reflection-only mode makes the code
slightly more complicated, but the resulting code is still quite
simple (and secure compared with its non-reflection-only
counterparts).

var assembly = Assembly.ReflectionOnlyLoadFrom (“af7ce8
dcb16b6344de9856e96ce83b642bcc5eelc0d29e3a0dcd96e67c6
5a085”) ;

foreach(var r in assembly.GetCustomAttributesData())
{

if (r.AttributeType.FullName == “System.Runtime.
InteropServices.GuidAttribute”)

{

Console.Writeline (r.ConstructorArguments[0].
Value) ;

break;

// Entry point: E.A.Main
// Architecture: xB6
// Runtime: .NET 2.0

Husing [.. .|

[assembly: AssemblyVersion("@.0.9.8")]
[assembly: Debuggable]

[assembly: CompilationRelaxations(3)]

[assembly: ComVisible(false)]

// C:\Users\ignore\Desktop\af7ce8dcbl6b6344de9856e96ce83bb42bccSeelcBd29e3aBdcd96e67c65a0885
// E, Version=8.0.8.8, Culture=neutral, PublicKeyToken=null

[assembly: AssemblyCompany("Microsoft Corporation™)]
[assembly: AssemblyCopyright("Microsoft Corporation™)]
[assembly: AssemblyDescription("Microsoft Corporation™)]
[assembly: AssemblyFileVersion("9.8.8.8")]

[assembly: AssemblyProduct("Microsoft Corporation™)]
[assembly: AssemblyTitle("Microsoft Corporation™)]
[assembly: AssemblyTrademark("Micresoft Corporation™)]

[assembly: RuntimeCompatibility(WrapMNonExceptionThrows = true)]

[assembly: Guid("35878dfe-@ced-4a46-bebe-790d443Tf486™)]

Figure 2: No additional action is required for tools such as ILSpy to recover the TypeLib ID value beyond simply opening the
target assembly.

Vo

VIRUS BULLETIN www.virusbtn.com

Extract with strings

The GUID itself is stored as an ASCII string in the resulting
PE. While this method is not particularly recommended

for accuracy, it does demonstrate that detection of TypeLib
IDs can be done in tools such as YARA as long as some
expectation of false positives is accepted (useful for
searching via services such as VirusTotal Hunting). The
following is an example of using strings, grep, cut and head
on a Linux system to obtain the TypeLib ID:

> strings af7ce8dcbl6b6344de9856e96ce83b642bccbeelc0d2
9e3a0dcd96e67c65a085 | grep -iE “\\\$[a-f0-9]{8}-[a-
f0-91{4}-[a-f0-9]1{4}-[a-f0-9]1{4}-[a-£f0-9]1{12}” | head
-n 1l | cut -b 2-

35078dfe-0ce9-4a46-bb6be-790d443£f486

GetNETGUIDs

In order to make extraction of both GUIDs not only simple
but also cross-platform, I developed a simple open-source
tool in Python 2.7 named GetNETGUIDs. This tool is hosted
on GitHub and can be downloaded from [5].

When GetNETGUIDs is run against a .NET sample, four
rows are printed: the TypeLib ID, MVID, SHA256, and path
to the sample.

> getnetguids.py af7ce8dcbl6b6344de9856e96ce83b642bcc
5eelc0d29e3a0dcd96e67c65a08535078dfe-0ce9-4a46-bbbe-
790d443££f486 f2a0da69-155e-4543-ad0a-206026e206db
af7ce8dcbl6b6344de9856e96ce83bb42bccSeelc0d29e3a0dcd96
e67c65a085
/tmp/af7ce8dcbl6b6344de9856e96ce83b642bcc5eelc0d29e3a0
dcd96e67c65a085

By utilizing GetNETGUIDs along with Gephi [6] and a helper
Python script, we can visually cluster the DotNET malware set
from VirusShare [7] (Figure 3). In the visualizations, the red
nodes represent TypeLib IDs, the light blue nodes represent
MVIDs, and the portable executables are greenish-blue. An
edge from a portable executable to either a red or light blue
node represents that the portable executable uses that GUID
for that purpose. Multiple samples that are connected to the
same TypeLib ID or MVID are potentially related.

Similarly, we can visually cluster samples from the Operation
Cleaver campaign (Figure 4).

bams

Sl S

ceih b
wao u ey

HEAAR A

Figure 3: The red nodes represent TypeLib IDs, the light blue nodes represent MVIDs, and the portable executables are
greenish-blue.

@ JUNE 2015

VIRUS BULLETIN

. . VIRUSTOTAL INTEGRATION
= ~ {"'..
* & de ’ Shortly after releasing GetNETGUIDs, I reached out to a
' g N é%;%e member of the VirusTotal staff to discuss integrating this
“© e o * % research into VirusTotal. Since I found it useful during
- R g § o the Operation Cleaver investigation, I wanted to make it
N 4] d o$ available to anyone who might need it to fight advanced
& Py L . threat actors running rampant, as well as be able to use it
9, e 2 : o % myself in VirusTotal. Since GetNETGUIDs is open source,
{o ‘ * the VirusTotal team were happy to integrate it. (Thanks to
% g s Julio Canto at VirusTotal for being so open and helpful!)
- ‘Eg & -‘?)’—‘ Py
L4 VirusTotal analysis
c:.é e . Now, when a user submits a .NET sample file to VirusTotal,
b . N . the GUIDs mentioned above will be extracted and displayed
. L
de oo j{’g}% o T e in the File Detail tab, as shown in Figure 5.
= ;
“as N & < 4 = The .NET details section contains both the Module Version
< ¢ . * oS50] ID and TypeLib ID for this sample.
] F []
2 VirusTotal intelligence
Figure 4: Visual cluster from the Operation Cleaver The VirusTotal Intelligence platform, which is available with
campaign. some VirusTotal subscription packages, provides a large
B Analysis @ File detail @ Additional information @ Comments L) Votes H Behavioural information

The file being studied is a Portable Executable file! More sp

Developer metadata

Copyright Microsoft Corporation
Publisher Microsoft Corporation
Product Microsoft Corporation
Original name E.exe

Internal name E.exe

File version 0.0.0.0

Description Microsoft Corporation
Comments Microsoft Corporation

= PE header basic information

Target machine

Compilation timestamp 2015-03-10 14:03:49

Entry Point 0x0000A99E
MNumber of sections 3
|l .NET details

Module Version ID

TypeLib ID

i PE sections

Intel 386 or later processors and compatible processors

f2a0dab9-155e-4543-ad0a-206026e206db
35078dfe-0ce9-4a46-b6be-790d443f486

Name Virtual address Virtual size Raw size
text 8192 35236 35328
.ISIC 49152 3072 3072
reloc 57344 12 512

2 EXE file for the Windows GUI su

Entropy MD5

5.78 a7c49ciBeedicf70637d921bda8279b6
3.83 dabfa33a94e9e0bb9704080dedecsidc
0.08 1ff4819ch34a3887028c3ebc7742bb3b

Figure 5: When a user submits a .NET sample file to VirusTotal, the GUIDs will be extracted and displayed in the File Detail tab.

Vo

VIRUS BULLETIN www.virusbtn.com

7 total
netguid:12a0daB9-155e-4543-ad0a-206026e206db Search Hashes @ Select v ® Download +
2 files found
File Ratio First sub. Lastsub.™ | Timessub. Sources Size
_ affceBdcbl6b6344de9856e96ce83b642bccoeelc0d29e3aldcd96e67c65a085 40/57 | 2015-05-19 2015-05-21 | 2 2 385 KB
o d6235i28fbc266d9f1c68961e8eb2cBf 11:22:11 19:33:05
oma EXDEED
| d048i3aaaB110fd4f811d44b80fbel7 TbebdaaBa875306652c951 7105468331 37/57 | 2015-05-15 2015-05-15 1 1: 38.5 KB
- a58acth2dd4ie81172380ac2302a3f 10:46:36 10:46:36
o=a DM
. . . ¢ . 15
Figure 6: Search for the MVID using the ‘netguid’ search field.
”
(2 total
netguid:35078dfe-Oce9-4a46-b6be-790d443f486 Search = Hashes Select = @ Download ~
11 files found
File Ratio First sub. Lastsub.Y | Timessub. Sources Size
| 2bleB270f865f83728439b786023e114{54aB6a0e136dad6b4Mfof7c3B6aefc 43/57 2015-04-25 2015-05-21 5 8 310KE
g 93102a04895fef7c6i4c825b615508e6 22:29:11 06:37:37
o=q (U EN
ac671e233271bc13bcb9767ci50453522c89504439a081765%9a12dabbb665d91 | 30/57 | 2015-05-20 | 2015-05-20 1 1 310KB
a8 20a108fda26434891ee22ac3162ba21c 12:39:49 12:39:49
o=q (=3 ESITN
| 1343814¢77888797823b6casbdBco95ea25354882a6208045881 307085539 35/57 2015-05-20 2015-05-20 1 1 3915 KB
g 3c35f0d2beaS5cd3804c95d2898cfA3M6 04:46:44 04:46:44
o=a 23
af7ceBdcb16b6344de9856e96ce83b642bcc5eel c0d29e3a0ded96e67c65a085 40/57 2015-05-19 | 2015-05-21 2 2 385 KB
g d6235f28fbc266d9f1c68961e8eh2cBf 11:22:11 19:33:05
o=q (3
__ | 51afi7 b7dcOb! 4a31c0ca56ba36b888b5elcda1feb0f39a2fl 32/57 2015-05-19 2015-05-19 1 1 31.0KB
g 98ef76a440bef3567a63825a12c3f061 10:58:08 10:58:08
o=a 3
3c5daD4ccadaBafi380d580e2140b6cb2c638032a03ffe2966637179eb483704c 32/57 | 2015-05-18 | 2015-05-18 1 1 310KB
g 4d56eb069f2639059231e342cf6c57bb 09:07:23 00:07:23
o=a 3
| 7877544e4b6453095394601e5117435f0cf6ba05fcab4d7150f576d7a5ad338 14/57 2015-05-16 = 2015-05-16 1 1 280.0KB
L 3eb48861d2e443b5bc31b0efa316810d 22:38:21 22:38:21
eo=c EEDEED
c558d9ae8 L. 49aadc7cTbdb4eelc 'dd4926942d31b9bf2018 14/57 | 2015-05-16 | 2015-05-16 1 1 271.5KB
L 45522a2a1534da9999275510i0e8493b 22:27:13 22:27:13
o=a 20
63ccadf9labb61dbl8alead0]3e34bbachl9c3d8ad1071ebe61827e76ed7714a | 23/57 20150516 2015-05-16 1 1 178.0KB

Figure 7: Search for the TypeLib ID using the ‘netguid’ search field.

number of invaluable features. One of these allows users to
search for samples based on a wide variety of fields. As part
of the integration of GetNETGUIDs into VirusTotal, a search
field was added to search for both MVIDs and TypeLib IDs.
This field is the ‘netguid’ search field. We’ll first search by
the MVID, as shown in Figure 6.

We find that our original sample shows up in the results,
along with another sample, which is very similar to the

original one (another Black Worm sample). One could
assume that at least one of these files was modified after
being compiled.

Next, we will search based on the TypeLib ID, as shown

in Figure 7. We can see that this query produced more
samples, as expected. Since there are multiple builds of this
malware, we can see all samples resulting from that Visual
Studio project. There are many other samples that share the

@ JUNE 2015

VIRUS BULLETIN

e total

File

) d6235f28fbc266d9f1c68961e8eh2c8f
o=q EOEE

d048f3aaa8110fd4f811d44b80fbef7 ThebdaaBa875306652c951 71054c68331
' | a59acbh2dd4ff981f172380ac2302a3f

o=c EDEEM

netguid:3507&dfe-Oce9-4a46-b6be-790d44 311486 netguid:f2a0da69-1 Search

affceBdch16b6344de9856e96ce83b642bccbeel c0d29e3alded96e67c65a085

= Hashes @ Select ~ @ Download ~

First sub. Lastsub. ¥ | Timessub. Sources Size
2015-05-19 20150521 2 2 38.5 KB
11:22:11 19:33:05

2015-05-15 | 2015-05-15 | 1 1 385 KB
10:46:36 10:46:36

Figure 8: Search for a combination of the MVID and the TypeLib ID.

same TypeLib ID (which are also Black Worm samples),
but since this is a new feature, it has not been applied across
VirusTotal’s complete available sample set. This means

that the feature will appreciate in value as more samples are
processed.

Next, we will search for a combination of MVID and
TypeLib ID, as shown in Figure 8.

By searching for both, we are looking for samples which
have both this MVID and TypeLib ID, making it far less
likely that there was a collision on either. You might notice
that the results are identical to those from the MVID-only
search, further confirming their accuracy.

CONCLUSION

Security researchers need to take advantage of every possible
tool as they battle threat actors. We hope that researchers will
find it easier to uncover and identify .NET malware using
MVID and TypeLib ID as artefacts — not only with extraction
methods available in examples, code and scripts, but also
with help from VirusTotal.

Good hunting, fellow malware hunters.

REFERENCES
[1] Operation Cleaver. http://cylance.com/operation-
cleaver/.

[2] Wallace, B. Implications of Loading .Net
Assemblies. http://blog.cylance.com/implications-of-
loading-net-assemblies.

[3] GitHub search query showing more than 800,000
results of projects/files which contain GUIDs defined
for the assembly. https://github.com/search?p=1&q=
%22%5Bassembly %3 A+Guid %28 %22 &type=Code
&utf8=%E2%9C%93.

[4] ILSpy. http://ilspy.net/.

[5] GetNETGUIDs. https://github.com/CylanceSPEAR/
GetNETGUIDs.

[6] Gephi. http://gephi.github.io/.
[71 VirusShare. http://virusshare.com/.

Editor: Martijn Grooten
Chief of Operations: John Hawes

Security Test Engineers: Scott James, Tony Oliveira, Adrian Luca

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

Developer: Lian Sebe

Consultant Technical Editor: Dr Morton Swimmer

© 2015 Virus Bulletin Ltd, The Pentagon, Abingdon Science
Park, Abingdon, Oxfordshire OX14 3YP, England.

Tel: +44 (0)1235 555139. Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com

Web: http://www.virusbtn.com/

