
VIRUS BULLETIN www.virusbtn.com

1JUNE 2015

Covering the
global threat landscape

USING .NET GUIDS TO HELP
HUNT FOR MALWARE
Brian Wallace
Cylance Inc., USA

ABSTRACT
During a long-term investigation, I uncovered forensic artefacts
not commonly used in .NET assembly analysis. These artefacts
are both GUIDs (globally unique identifi ers). One is created
by Visual Studio on the creation of new projects and stored
as a string, the other is generated on every build and stored
as a binary value. These GUIDs can be used to determine
whether multiple samples are from the same Visual Studio
project, effectively identifying the family, and to identify
samples that are the result of the same build, allowing for
the identifi cation of post-compilation modifi cations made by
tools such as builders. After releasing an open-source tool to
extract these GUIDs, we suggested that VirusTotal integrate
this functionality. They have done so, allowing for these new
artefacts to help malware hunters around the world.

.NET GUIDS
Months deep into an investigation of an Iranian operation
we dubbed ‘Operation Cleaver’ [1], I found myself buried
up to my eyes in malware samples to reverse engineer. As an
employee of a start-up, I am no stranger to situations where
the options are innovate or die, and this was one of them.
Through some simple pre-processing data I gathered on the
large number of samples located on a public FTP server, I
could tell that a substantial percentage of the malware had
been developed in a .NET-based language. Having previously
worked as a software engineer developing in C#, I was quite
familiar with .NET and recalled that it makes greater use of
GUIDs than some other languages. I identifi ed two GUIDs
that could be of assistance in reducing the number of samples
that needed to be fully reversed.

MVID
The Module Version ID, or MVID, is a GUID that can be
used to distinguish various versions of a .NET module. This
value is generated at build time, resulting in a new GUID for
each unique build. This GUID is stored in a binary format
(as opposed to string format) in a defi ned location in .NET
assemblies. The GUID resides in the GUID heap, and its
location is identifi ed in the Module table of the MetaData
tables in the .NET MetaData header.

What can we do with knowledge of this identifi er? By itself,
it can assist in identifying post-compilation modifi cations
made by tools such as builders that generate customized
malware binaries from a common source binary. In other
cases, it can assist in identifying instances where a legitimate
.NET sample has been modifi ed.

It should be noted that the MVID can be modifi ed by a
malware operator. An informed malware operator could do
this with a hex editor.

Extraction methods

Extracting the MVID statically by parsing the PE and the
.NET metadata can be somewhat diffi cult. This is because the
format relies on a large number of variables that can lead to
intricacies in parsers. There are a number of simpler ways to
extract the MVID.

Extracting with ildasm

The disassembling counterpart to ilasm (Microsoft’s tool for
converting Common Intermediate Language code to a portable
executable), ildasm, is used to convert .NET assemblies back
to the common intermediate language code. In addition, it
extracts and displays the MVID which can be searched for
specifi cally with the fi nd command on Windows platforms.

> ildasm /text /all
af7ce8dcb16b6344de9856e96ce83b642bcc5ee1c0d29e3a0dcd96e
67c65a085 | fi nd "MVID"

// MVID: {F2A0DA69-155E-4543-AD0A-206026E206DB}

Extracting with monodis

As a heavy Linux user, it would be remiss of me not to include
a more Linux-friendly solution as well. We can obtain similar
results using monodis, ildasm’s counterpart in Mono (an open
source implementation of Microsoft’s .NET framework), along
with grep, the Linux equivalent to Microsoft’s fi nd.

> monodis af7ce8dcb16b6344de9856e96ce83b642bcc5ee1c0d
29e3a0dcd96e67c65a085 | grep GUID

.module E.exe // GUID = {F2A0DA69-155E-4543-AD0A-
206026E206DB}

Extract with .NET (insecure)

It should come as no surprise to developers with .NET
experience that there is a simple method to obtain the MVID
of another .NET assembly:

var aAssemblyToAnalyze = Assembly.LoadFile(strPathToFi
leToAnalyse); // DO NOT DO THIS

var mvid = aAssemblyToAnalyze.ManifestModule.
ModuleVersionID;

VIRUS BULLETIN www.virusbtn.com

JUNE 20152

This method should not be used, and the next section will
explain why.

Extract with .NET (likely secure)

While working on a method to extract the MVID as well
as the TypeLib ID from .NET samples, I became curious
about the additional attack surface created by loading a .NET
assembly with no intention of executing it. I found something
interesting when testing with mixed .NET assemblies. Mixed
assemblies, which are built with both .NET and unmanaged
code, were intended to act as a stepping stone for developers
migrating projects from purely unmanaged code to .NET.
Mixed assemblies are still identifi ed as .NET assemblies,
but also contain a DllMain entry point, which is executed
when loaded with Assembly.Load and related functions. A
full description of this issue can be found in [2]. The brief
explanation is that it allows for an assembly to execute code
when loaded with Assembly.LoadFile and similar methods,

which could be abused to gain control of a system inspecting
a malicious sample.

In order to work around this issue, any assemblies
loaded purely for inspection should be loaded with
Assembly.Refl ectionOnlyLoadFrom instead of
Assembly.LoadFile, or any of the refl ection-only method
alternatives. While it does protect from this specifi c issue,
there may be other unexplored attack surfaces, so it’s best,
in my opinion, to treat this method as risky but more secure
than the non-refl ection-only method.

var aAssemblyToAnalyze = Assembly.Refl ectionOnlyLoadFro
m(strPathToFileToAnalyse);

var mvid = aAssemblyToAnalyze.ManifestModule.
ModuleVersionID;

TypeLib ID
The TypeLib ID is a GUID generated by Visual Studio on the
creation of a new project by default.

Figure 1: The TypeLib ID is stored in Properties/AssemblyInfo.cs.

 VIRUS BULLETIN www.virusbtn.com

JUNE 2015 3

It is stored in Properties/AssemblyInfo.cs and is made visible
to the developer. The developer can choose to modify this
value, or remove it completely (Figure 1).

Due to its location in source code, a good number of these
GUIDs can be found on public code repositories such as
GitHub. In a search query [3], we can see that there are more
than 800,000 results of projects/fi les which contain GUIDs
defi ned for the assembly.

Since this value is created by Visual Studio on project
creation, and is stored in source code, it is consistent across
all builds of the .NET assembly unless it is modifi ed by the
developer. We can use the TypeLib ID to assist in identifying
builds resulting from the same Visual Studio project, whether
developed by a single developer or through sharing of the
source code.

We also observed that this value is often ignored by
obfuscation tools, so even after .NET malware has been
obscured by a tool such as SmartAssembly, the TypeLib
ID may still be used to identify a sample as belonging to a
certain Visual Studio project.

When using the TypeLib ID to identify samples, researchers
should note that it is simple for a malware operator to modify
this value not only with access to the source code, but also
statically. This could be done simply with a hex editor. A
malware operator with the source code could even remove
the TypeLib ID altogether.

Extraction methods

Since the TypeLib ID is actually a string in the source code,
it is not stored on the GUID heap like the MVID, but instead
in the Blob heap. Since it is not a required fi eld, it is not
stored in a static location in the .NET metadata header either,

but is instead listed in the CustomAttribute table. This adds
complexity to the static extraction of this value, more so than
the MVID.

Extract with ILSpy

Tools like ILSpy [4] and similar tools which decompile
.NET assemblies for analysis can easily recover the TypeLib
ID (and the MVID for that matter). No additional action is
required for these tools to recover this value beyond simply
opening the target assembly (Figure 2).

We can identify the value as the ‘assembly: Guid’ value.

Extract with .NET (likely secure)

The simplest secure programmatic method I know of
for extracting the TypeLib ID is to use .NET to load the
assembly (in refl ection-only mode) as we did to recover
the MVID. Using a refl ection-only mode makes the code
slightly more complicated, but the resulting code is still quite
simple (and secure compared with its non-refl ection-only
counterparts).

var assembly = Assembly.Refl ectionOnlyLoadFrom(“af7ce8
dcb16b6344de9856e96ce83b642bcc5ee1c0d29e3a0dcd96e67c6
5a085”);

foreach(var r in assembly.GetCustomAttributesData())

{

 if (r.AttributeType.FullName == “System.Runtime.
InteropServices.GuidAttribute”)

 {

 Console.WriteLine(r.ConstructorArguments[0].
Value);

 break;

 }

}

Figure 2: No additional action is required for tools such as ILSpy to recover the TypeLib ID value beyond simply opening the
target assembly.

VIRUS BULLETIN www.virusbtn.com

JUNE 20154

Extract with strings

The GUID itself is stored as an ASCII string in the resulting
PE. While this method is not particularly recommended
for accuracy, it does demonstrate that detection of TypeLib
IDs can be done in tools such as YARA as long as some
expectation of false positives is accepted (useful for
searching via services such as VirusTotal Hunting). The
following is an example of using strings, grep, cut and head
on a Linux system to obtain the TypeLib ID:

> strings af7ce8dcb16b6344de9856e96ce83b642bcc5ee1c0d2
9e3a0dcd96e67c65a085 | grep -iE “\\\$[a-f0-9]{8}-[a-
f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}” | head
-n 1 | cut -b 2-

35078dfe-0ce9-4a46-b6be-790d443ff486

GetNETGUIDs
In order to make extraction of both GUIDs not only simple
but also cross-platform, I developed a simple open-source
tool in Python 2.7 named GetNETGUIDs. This tool is hosted
on GitHub and can be downloaded from [5].

When GetNETGUIDs is run against a .NET sample, four
rows are printed: the TypeLib ID, MVID, SHA256, and path
to the sample.

> getnetguids.py af7ce8dcb16b6344de9856e96ce83b642bcc
5ee1c0d29e3a0dcd96e67c65a08535078dfe-0ce9-4a46-b6be-
790d443ff486 f2a0da69-155e-4543-ad0a-206026e206db
af7ce8dcb16b6344de9856e96ce83b642bcc5ee1c0d29e3a0dcd96
e67c65a085
/tmp/af7ce8dcb16b6344de9856e96ce83b642bcc5ee1c0d29e3a0
dcd96e67c65a085

By utilizing GetNETGUIDs along with Gephi [6] and a helper
Python script, we can visually cluster the DotNET malware set
from VirusShare [7] (Figure 3). In the visualizations, the red
nodes represent TypeLib IDs, the light blue nodes represent
MVIDs, and the portable executables are greenish-blue. An
edge from a portable executable to either a red or light blue
node represents that the portable executable uses that GUID
for that purpose. Multiple samples that are connected to the
same TypeLib ID or MVID are potentially related.

Similarly, we can visually cluster samples from the Operation
Cleaver campaign (Figure 4).

Figure 3: The red nodes represent TypeLib IDs, the light blue nodes represent MVIDs, and the portable executables are
greenish-blue.

 VIRUS BULLETIN www.virusbtn.com

JUNE 2015 5

Figure 4: Visual cluster from the Operation Cleaver
campaign.

VIRUSTOTAL INTEGRATION
Shortly after releasing GetNETGUIDs, I reached out to a
member of the VirusTotal staff to discuss integrating this
research into VirusTotal. Since I found it useful during
the Operation Cleaver investigation, I wanted to make it
available to anyone who might need it to fi ght advanced
threat actors running rampant, as well as be able to use it
myself in VirusTotal. Since GetNETGUIDs is open source,
the VirusTotal team were happy to integrate it. (Thanks to
Julio Canto at VirusTotal for being so open and helpful!)

VirusTotal analysis

Now, when a user submits a .NET sample fi le to VirusTotal,
the GUIDs mentioned above will be extracted and displayed
in the File Detail tab, as shown in Figure 5.

The .NET details section contains both the Module Version
ID and TypeLib ID for this sample.

VirusTotal intelligence

The VirusTotal Intelligence platform, which is available with
some VirusTotal subscription packages, provides a large

Figure 5: When a user submits a .NET sample fi le to VirusTotal, the GUIDs will be extracted and displayed in the File Detail tab.

VIRUS BULLETIN www.virusbtn.com

JUNE 20156

number of invaluable features. One of these allows users to
search for samples based on a wide variety of fi elds. As part
of the integration of GetNETGUIDs into VirusTotal, a search
fi eld was added to search for both MVIDs and TypeLib IDs.
This fi eld is the ‘netguid’ search fi eld. We’ll fi rst search by
the MVID, as shown in Figure 6.

We fi nd that our original sample shows up in the results,
along with another sample, which is very similar to the

original one (another Black Worm sample). One could
assume that at least one of these fi les was modifi ed after
being compiled.

Next, we will search based on the TypeLib ID, as shown
in Figure 7. We can see that this query produced more
samples, as expected. Since there are multiple builds of this
malware, we can see all samples resulting from that Visual
Studio project. There are many other samples that share the

Figure 6: Search for the MVID using the ‘netguid’ search fi eld.

Figure 7: Search for the TypeLib ID using the ‘netguid’ search fi eld.

 VIRUS BULLETIN www.virusbtn.com

JUNE 2015

Editor: Martijn Grooten

Chief of Operations: John Hawes

Security Test Engineers: Scott James, Tony Oliveira, Adrian Luca

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

Developer: Lian Sebe

Consultant Technical Editor: Dr Morton Swimmer

© 2015 Virus Bulletin Ltd, The Pentagon, Abingdon Science
Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. Fax: +44 (0)1865 543153
Email: editorial@virusbtn.com
Web: http://www.virusbtn.com/

7

same TypeLib ID (which are also Black Worm samples),
but since this is a new feature, it has not been applied across
VirusTotal’s complete available sample set. This means
that the feature will appreciate in value as more samples are
processed.

Next, we will search for a combination of MVID and
TypeLib ID, as shown in Figure 8.

By searching for both, we are looking for samples which
have both this MVID and TypeLib ID, making it far less
likely that there was a collision on either. You might notice
that the results are identical to those from the MVID-only
search, further confi rming their accuracy.

CONCLUSION
Security researchers need to take advantage of every possible
tool as they battle threat actors. We hope that researchers will
fi nd it easier to uncover and identify .NET malware using
MVID and TypeLib ID as artefacts – not only with extraction
methods available in examples, code and scripts, but also
with help from VirusTotal.

Good hunting, fellow malware hunters.

REFERENCES

[1] Operation Cleaver. http://cylance.com/operation-
cleaver/.

[2] Wallace, B. Implications of Loading .Net
Assemblies. http://blog.cylance.com/implications-of-
loading-net-assemblies.

[3] GitHub search query showing more than 800,000
results of projects/fi les which contain GUIDs defi ned
for the assembly. https://github.com/search?p=1&q=
%22%5Bassembly%3A+Guid%28%22&type=Code
&utf8=%E2%9C%93.

Figure 8: Search for a combination of the MVID and the TypeLib ID.

[4] ILSpy. http://ilspy.net/.

[5] GetNETGUIDs. https://github.com/CylanceSPEAR/
GetNETGUIDs.

[6] Gephi. http://gephi.github.io/.

[7] VirusShare. http://virusshare.com/.

